

THIRD EDITION

Discrete-Time
Signal

Processing

Alan V. Oppenheim
Massachusetts Institute of Technology

Ronald W. Schafer
Hewlett-Packard Laboratories

Upper Saddle River · Boston · Columbus · San Francisco · New York
Indianapolis · London · Toronto · Sydney · Singapore · Tokyo · Montreal
Dubai · Madrid · Hong Kong · Mexico City · Munich · Paris · Amsterdam · Cape Town

Vice President and Editorial Director, ECS: Marcia J. Horton
Acquisition Editor: Andrew Gilfillan
Editorial Assistant: William Opaluch
Director of Team-Based Project Management: Vince O’Brien
Senior Marketing Manager: Tim Galligan
Marketing Assistant: Mack Patterson
Senior Managing Editor: Scott Disanno
Production Project Manager: Clare Romeo
Senior Operations Specialist: Alan Fischer
Operations Specialist: Lisa McDowell
Art Director: Kristine Carney
Cover Designer: Kristine Carney
Cover Photo: Librado Romero/New York Times—Maps and Graphics
Manager, Cover Photo Permissions: Karen Sanatar
Composition: PreTeX Inc.: Paul Mailhot
Printer/Binder: Courier Westford
Typeface: 10/12 TimesTen

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the
appropriate page within the text.

LabVIEW is a registered trademark of National Instruments, 11500 N Mopac Expwy, Austin, TX 78759-3504.

Mathematica is a registered trademark of Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820-7237.

MATLAB and Simulink are registered trademarks of The MathWorks, 3 Apple Hill Drive, Natick, MA 01760-2098.

© 2010, 1999, 1989 by Pearson Higher Education, Inc., Upper Saddle River, NJ 07458. All rights reserved. Manufactured in the
United States of America. This publication is protected by Copyright and permissions should be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission(s) to use materials from this work, please submit a written request to
Pearson Higher Education, Permissions Department, One Lake Street, Upper Saddle River, NJ 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development,
research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher
shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of
these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd.
Pearson Education Canada, Inc., Toronto
Pearson Education–Japan, Tokyo
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education North Asia Ltd., Hong Kong
Pearson Education de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-198842-2
ISBN-10: 0-13-198842-5

To Phyllis, Justine, and Jason

To Dorothy, Bill, Tricia, Ken, and Kate
and in memory of John

This page intentionally left blank

Contents

Preface xv

The Companion Website xxii

The Cover xxv

Acknowledgments xxvi

1 Introduction 1

2 Discrete-Time Signals and Systems 9
2.0 Introduction . 9
2.1 Discrete-Time Signals . 10
2.2 Discrete-Time Systems . 17

2.2.1 Memoryless Systems . 18
2.2.2 Linear Systems . 19
2.2.3 Time-Invariant Systems . 20
2.2.4 Causality . 22
2.2.5 Stability . 22

2.3 LTI Systems . 23
2.4 Properties of Linear Time-Invariant Systems 30
2.5 Linear Constant-Coefficient Difference Equations 35
2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 40

2.6.1 Eigenfunctions for Linear Time-Invariant Systems 40
2.6.2 Suddenly Applied Complex Exponential Inputs 46

2.7 Representation of Sequences by Fourier Transforms 48
2.8 Symmetry Properties of the Fourier Transform 54
2.9 Fourier Transform Theorems . 58

2.9.1 Linearity of the Fourier Transform 59
2.9.2 Time Shifting and Frequency Shifting Theorem 59
2.9.3 Time Reversal Theorem . 59

v

vi Contents

2.9.4 Differentiation in Frequency Theorem 59
2.9.5 Parseval’s Theorem . 60
2.9.6 The Convolution Theorem . 60
2.9.7 The Modulation or Windowing Theorem 61

2.10 Discrete-Time Random Signals . 64
2.11 Summary . 70

Problems . 70

3 The z-Transform 99
3.0 Introduction . 99
3.1 z-Transform . 99
3.2 Properties of the ROC for the z-Transform 110
3.3 The Inverse z-Transform . 115

3.3.1 Inspection Method . 116
3.3.2 Partial Fraction Expansion . 116
3.3.3 Power Series Expansion . 122

3.4 z-Transform Properties . 124
3.4.1 Linearity . 124
3.4.2 Time Shifting . 125
3.4.3 Multiplication by an Exponential Sequence 126
3.4.4 Differentiation of X(z) . 127
3.4.5 Conjugation of a Complex Sequence 129
3.4.6 Time Reversal . 129
3.4.7 Convolution of Sequences . 130
3.4.8 Summary of Some z-Transform Properties 131

3.5 z-Transforms and LTI Systems . 131
3.6 The Unilateral z-Transform . 135
3.7 Summary . 137

Problems . 138

4 Sampling of Continuous-Time Signals 153
4.0 Introduction . 153
4.1 Periodic Sampling . 153
4.2 Frequency-Domain Representation of Sampling 156
4.3 Reconstruction of a Bandlimited Signal from Its Samples 163
4.4 Discrete-Time Processing of Continuous-Time Signals 167

4.4.1 Discrete-Time LTI Processing of Continuous-Time Signals . . . 168
4.4.2 Impulse Invariance . 173

4.5 Continuous-Time Processing of Discrete-Time Signals 175
4.6 Changing the Sampling Rate Using Discrete-Time Processing 179

4.6.1 Sampling Rate Reduction by an Integer Factor 180
4.6.2 Increasing the Sampling Rate by an Integer Factor 184
4.6.3 Simple and Practical Interpolation Filters 187
4.6.4 Changing the Sampling Rate by a Noninteger Factor 190

4.7 Multirate Signal Processing . 194
4.7.1 Interchange of Filtering with Compressor/Expander 194
4.7.2 Multistage Decimation and Interpolation 195

Contents vii

4.7.3 Polyphase Decompositions . 197
4.7.4 Polyphase Implementation of Decimation Filters 199
4.7.5 Polyphase Implementation of Interpolation Filters 200
4.7.6 Multirate Filter Banks . 201

4.8 Digital Processing of Analog Signals . 205
4.8.1 Prefiltering to Avoid Aliasing 206
4.8.2 A/D Conversion . 209
4.8.3 Analysis of Quantization Errors 214
4.8.4 D/A Conversion . 221

4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 224
4.9.1 Oversampled A/D Conversion with Direct Quantization 225
4.9.2 Oversampled A/D Conversion with Noise Shaping 229
4.9.3 Oversampling and Noise Shaping in D/A Conversion 234

4.10 Summary . 236
Problems . 237

5 Transform Analysis of Linear Time-Invariant Systems 274
5.0 Introduction . 274
5.1 The Frequency Response of LTI Systems 275

5.1.1 Frequency Response Phase and Group Delay 275
5.1.2 Illustration of Effects of Group Delay and Attenuation 278

5.2 System Functions—Linear Constant-Coefficient Difference Equations 283
5.2.1 Stability and Causality . 285
5.2.2 Inverse Systems . 286
5.2.3 Impulse Response for Rational System Functions 288

5.3 Frequency Response for Rational System Functions 290
5.3.1 Frequency Response of 1st-Order Systems 292
5.3.2 Examples with Multiple Poles and Zeros 296

5.4 Relationship between Magnitude and Phase 301
5.5 All-Pass Systems . 305
5.6 Minimum-Phase Systems . 311

5.6.1 Minimum-Phase and All-Pass Decomposition 311
5.6.2 Frequency-Response Compensation of Non-Minimum-Phase

Systems . 313
5.6.3 Properties of Minimum-Phase Systems 318

5.7 Linear Systems with Generalized Linear Phase 322
5.7.1 Systems with Linear Phase . 322
5.7.2 Generalized Linear Phase . 326
5.7.3 Causal Generalized Linear-Phase Systems 328
5.7.4 Relation of FIR Linear-Phase Systems to Minimum-Phase

Systems . 338
5.8 Summary . 340

Problems . 341

viii Contents

6 Structures for Discrete-Time Systems 374
6.0 Introduction . 374
6.1 Block Diagram Representation of Linear Constant-Coefficient

Difference Equations . 375
6.2 Signal Flow Graph Representation . 382
6.3 Basic Structures for IIR Systems . 388

6.3.1 Direct Forms . 388
6.3.2 Cascade Form . 390
6.3.3 Parallel Form . 393
6.3.4 Feedback in IIR Systems . 395

6.4 Transposed Forms . 397
6.5 Basic Network Structures for FIR Systems 401

6.5.1 Direct Form . 401
6.5.2 Cascade Form . 402
6.5.3 Structures for Linear-Phase FIR Systems 403

6.6 Lattice Filters . 405
6.6.1 FIR Lattice Filters . 406
6.6.2 All-Pole Lattice Structure . 412
6.6.3 Generalization of Lattice Systems 415

6.7 Overview of Finite-Precision Numerical Effects 415
6.7.1 Number Representations . 415
6.7.2 Quantization in Implementing Systems 419

6.8 The Effects of Coefficient Quantization 421
6.8.1 Effects of Coefficient Quantization in IIR Systems 422
6.8.2 Example of Coefficient Quantization in an Elliptic Filter 423
6.8.3 Poles of Quantized 2nd-Order Sections 427
6.8.4 Effects of Coefficient Quantization in FIR Systems 429
6.8.5 Example of Quantization of an Optimum FIR Filter 431
6.8.6 Maintaining Linear Phase . 434

6.9 Effects of Round-off Noise in Digital Filters 436
6.9.1 Analysis of the Direct Form IIR Structures 436
6.9.2 Scaling in Fixed-Point Implementations of IIR Systems 445
6.9.3 Example of Analysis of a Cascade IIR Structure 448
6.9.4 Analysis of Direct-Form FIR Systems 453
6.9.5 Floating-Point Realizations of Discrete-Time Systems 458

6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR
Digital Filters . 459
6.10.1 Limit Cycles Owing to Round-off and Truncation 459
6.10.2 Limit Cycles Owing to Overflow 462
6.10.3 Avoiding Limit Cycles . 463

6.11 Summary . 463
Problems . 464

7 Filter Design Techniques 493
7.0 Introduction . 493
7.1 Filter Specifications . 494

Contents ix

7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters . . . 496
7.2.1 Filter Design by Impulse Invariance 497
7.2.2 Bilinear Transformation . 504

7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 508
7.3.1 Examples of IIR Filter Design 509

7.4 Frequency Transformations of Lowpass IIR Filters 526
7.5 Design of FIR Filters by Windowing . 533

7.5.1 Properties of Commonly Used Windows 535
7.5.2 Incorporation of Generalized Linear Phase 538
7.5.3 The Kaiser Window Filter Design Method 541

7.6 Examples of FIR Filter Design by the Kaiser Window Method 545
7.6.1 Lowpass Filter . 545
7.6.2 Highpass Filter . 547
7.6.3 Discrete-Time Differentiators 550

7.7 Optimum Approximations of FIR Filters 554
7.7.1 Optimal Type I Lowpass Filters 559
7.7.2 Optimal Type II Lowpass Filters 565
7.7.3 The Parks–McClellan Algorithm 566
7.7.4 Characteristics of Optimum FIR Filters 568

7.8 Examples of FIR Equiripple Approximation 570
7.8.1 Lowpass Filter . 570
7.8.2 Compensation for Zero-Order Hold 571
7.8.3 Bandpass Filter . 576

7.9 Comments on IIR and FIR Discrete-Time Filters 578
7.10 Design of an Upsampling Filter . 579
7.11 Summary . 582

Problems . 582

8 The Discrete Fourier Transform 623
8.0 Introduction . 623
8.1 Representation of Periodic Sequences: The Discrete Fourier Series . . 624
8.2 Properties of the DFS . 628

8.2.1 Linearity . 629
8.2.2 Shift of a Sequence . 629
8.2.3 Duality . 629
8.2.4 Symmetry Properties . 630
8.2.5 Periodic Convolution . 630
8.2.6 Summary of Properties of the DFS Representation of Periodic

Sequences . 633
8.3 The Fourier Transform of Periodic Signals 633
8.4 Sampling the Fourier Transform . 638
8.5 Fourier Representation of Finite-Duration Sequences 642
8.6 Properties of the DFT . 647

8.6.1 Linearity . 647
8.6.2 Circular Shift of a Sequence . 648
8.6.3 Duality . 650
8.6.4 Symmetry Properties . 653

x Contents

8.6.5 Circular Convolution . 654
8.6.6 Summary of Properties of the DFT 659

8.7 Linear Convolution Using the DFT . 660
8.7.1 Linear Convolution of Two Finite-Length Sequences 661
8.7.2 Circular Convolution as Linear Convolution with Aliasing . . . 661
8.7.3 Implementing Linear Time-Invariant Systems Using the DFT . 667

8.8 The Discrete Cosine Transform (DCT) 673
8.8.1 Definitions of the DCT . 673
8.8.2 Definition of the DCT-1 and DCT-2 675
8.8.3 Relationship between the DFT and the DCT-1 676
8.8.4 Relationship between the DFT and the DCT-2 678
8.8.5 Energy Compaction Property of the DCT-2 679
8.8.6 Applications of the DCT . 682

8.9 Summary . 683
Problems . 684

9 Computation of the Discrete Fourier Transform 716
9.0 Introduction . 716
9.1 Direct Computation of the Discrete Fourier Transform 718

9.1.1 Direct Evaluation of the Definition of the DFT 718
9.1.2 The Goertzel Algorithm . 719
9.1.3 Exploiting both Symmetry and Periodicity 722

9.2 Decimation-in-Time FFT Algorithms 723
9.2.1 Generalization and Programming the FFT 731
9.2.2 In-Place Computations . 731
9.2.3 Alternative Forms . 734

9.3 Decimation-in-Frequency FFT Algorithms 737
9.3.1 In-Place Computation . 741
9.3.2 Alternative Forms . 741

9.4 Practical Considerations . 743
9.4.1 Indexing . 743
9.4.2 Coefficients . 745

9.5 More General FFT Algorithms . 745
9.5.1 Algorithms for Composite Values of N 746
9.5.2 Optimized FFT Algorithms . 748

9.6 Implementation of the DFT Using Convolution 748
9.6.1 Overview of the Winograd Fourier Transform Algorithm 749
9.6.2 The Chirp Transform Algorithm 749

9.7 Effects of Finite Register Length . 754
9.8 Summary . 762

Problems . 763

10 Fourier Analysis of Signals Using the Discrete Fourier Transform 792
10.0 Introduction . 792
10.1 Fourier Analysis of Signals Using the DFT 793

Contents xi

10.2 DFT Analysis of Sinusoidal Signals . 797
10.2.1 The Effect of Windowing . 797
10.2.2 Properties of the Windows . 800
10.2.3 The Effect of Spectral Sampling 801

10.3 The Time-Dependent Fourier Transform 811
10.3.1 Invertibility of X[n,) . 815
10.3.2 Filter Bank Interpretation of X[n,) 816
10.3.3 The Effect of the Window . 817
10.3.4 Sampling in Time and Frequency 819
10.3.5 The Overlap–Add Method of Reconstruction 822
10.3.6 Signal Processing Based on the Time-Dependent Fourier

Transform . 825
10.3.7 Filter Bank Interpretation of the Time-Dependent Fourier

Transform . 826
10.4 Examples of Fourier Analysis of Nonstationary Signals 829

10.4.1 Time-Dependent Fourier Analysis of Speech Signals 830
10.4.2 Time-Dependent Fourier Analysis of Radar Signals 834

10.5 Fourier Analysis of Stationary Random Signals: the Periodogram . . . 836
10.5.1 The Periodogram . 837
10.5.2 Properties of the Periodogram 839
10.5.3 Periodogram Averaging . 843
10.5.4 Computation of Average Periodograms Using the DFT 845
10.5.5 An Example of Periodogram Analysis 845

10.6 Spectrum Analysis of Random Signals 849
10.6.1 Computing Correlation and Power Spectrum Estimates Using

the DFT . 853
10.6.2 Estimating the Power Spectrum of Quantization Noise 855
10.6.3 Estimating the Power Spectrum of Speech 860

10.7 Summary . 862
Problems . 864

11 Parametric Signal Modeling 890
11.0 Introduction . 890
11.1 All-Pole Modeling of Signals . 891

11.1.1 Least-Squares Approximation 892
11.1.2 Least-Squares Inverse Model . 892
11.1.3 Linear Prediction Formulation of All-Pole Modeling 895

11.2 Deterministic and Random Signal Models 896
11.2.1 All-Pole Modeling of Finite-Energy Deterministic Signals . . . 896
11.2.2 Modeling of Random Signals . 897
11.2.3 Minimum Mean-Squared Error 898
11.2.4 Autocorrelation Matching Property 898
11.2.5 Determination of the Gain Parameter G 899

11.3 Estimation of the Correlation Functions 900
11.3.1 The Autocorrelation Method . 900
11.3.2 The Covariance Method . 903
11.3.3 Comparison of Methods . 904

xii Contents

11.4 Model Order . 905
11.5 All-Pole Spectrum Analysis . 907

11.5.1 All-Pole Analysis of Speech Signals 908
11.5.2 Pole Locations . 911
11.5.3 All-Pole Modeling of Sinusoidal Signals 913

11.6 Solution of the Autocorrelation Normal Equations 915
11.6.1 The Levinson–Durbin Recursion 916
11.6.2 Derivation of the Levinson–Durbin Algorithm 917

11.7 Lattice Filters . 920
11.7.1 Prediction Error Lattice Network 921
11.7.2 All-Pole Model Lattice Network 923
11.7.3 Direct Computation of the k-Parameters 925

11.8 Summary . 926
Problems . 927

12 Discrete Hilbert Transforms 942
12.0 Introduction . 942
12.1 Real- and Imaginary-Part Sufficiency of the Fourier Transform 944
12.2 Sufficiency Theorems for Finite-Length Sequences 949
12.3 Relationships Between Magnitude and Phase 955
12.4 Hilbert Transform Relations for Complex Sequences 956

12.4.1 Design of Hilbert Transformers 960
12.4.2 Representation of Bandpass Signals 963
12.4.3 Bandpass Sampling . 966

12.5 Summary . 969
Problems . 969

13 Cepstrum Analysis and Homomorphic Deconvolution 980
13.0 Introduction . 980
13.1 Definition of the Cepstrum . 981
13.2 Definition of the Complex Cepstrum . 982
13.3 Properties of the Complex Logarithm 984
13.4 Alternative Expressions for the Complex Cepstrum 985
13.5 Properties of the Complex Cepstrum 986

13.5.1 Exponential Sequences . 986
13.5.2 Minimum-Phase and Maximum-Phase Sequences 989
13.5.3 Relationship Between the Real Cepstrum and the Complex

Cepstrum . 990
13.6 Computation of the Complex Cepstrum 992

13.6.1 Phase Unwrapping . 993
13.6.2 Computation of the Complex Cepstrum Using the Logarithmic

Derivative . 996
13.6.3 Minimum-Phase Realizations for Minimum-Phase Sequences . 998
13.6.4 Recursive Computation of the Complex Cepstrum for Minimum-

and Maximum-Phase Sequences 998
13.6.5 The Use of Exponential Weighting 1000

13.7 Computation of the Complex Cepstrum Using Polynomial Roots . . . 1001

Contents xiii

13.8 Deconvolution Using the Complex Cepstrum 1002
13.8.1 Minimum-Phase/Allpass Homomorphic Deconvolution 1003
13.8.2 Minimum-Phase/Maximum-Phase Homomorphic

Deconvolution . 1004
13.9 The Complex Cepstrum for a Simple Multipath Model 1006

13.9.1 Computation of the Complex Cepstrum by z-Transform
Analysis . 1009

13.9.2 Computation of the Cepstrum Using the DFT 1013
13.9.3 Homomorphic Deconvolution for the Multipath Model 1016
13.9.4 Minimum-Phase Decomposition 1017
13.9.5 Generalizations . 1024

13.10 Applications to Speech Processing . 1024
13.10.1 The Speech Model . 1024
13.10.2 Example of Homomorphic Deconvolution of Speech 1028
13.10.3 Estimating the Parameters of the Speech Model 1030
13.10.4 Applications . 1032

13.11 Summary . 1032
Problems . 1034

A Random Signals 1043

B Continuous-Time Filters 1056

C Answers to Selected Basic Problems 1061

Bibliography 1082

Index 1091

This page intentionally left blank

Preface

This third edition of Discrete-Time Signal Processing is a descendent of our original
textbook Digital Signal Processing published in 1975. That very successful text appeared
at a time when the field was young and just beginning to develop rapidly. At that time
the topic was taught only at the graduate level and at only a very few schools. Our 1975
text was designed for such courses. It is still in print and is still used successfully at a
number of schools in the United States and internationally.

By the 1980’s, the pace of signal processing research, applications and implemen-
tation technology made it clear that digital signal processing (DSP) would realize and
exceed the potential that had been evident in the 1970’s. The burgeoning importance
of DSP clearly justified a revision and updating of the original text. In organizing that
revision, it was clear that so many changes had occurred both in the field and in the
level and style with which the topic was taught, that it was most appropriate to develop
a new textbook, strongly based on our original text, while keeping the original text in
print. We titled the new book, published in 1989, Discrete-Time Signal Processing to
emphasize that most of the DSP theory and design techniques discussed in the text
apply to discrete-time systems in general, whether analog or digital.

In developing Discrete-Time Signal Processing we recognized that the basic prin-
ciples of DSP were being commonly taught at the undergraduate level, sometimes even
as part of a first course on discrete-time linear systems, but more often, at a more ad-
vanced level in third-year, fourth-year, or beginning graduate subjects. Therefore, it
was appropriate to expand considerably the treatment of such topics as linear systems,
sampling, multirate signal processing, applications, and spectral analysis. In addition,
more examples were included to emphasize and illustrate important concepts. Consis-
tent with the importance that we placed on well constructed examples and homework
problems, that new text contained more than 400 problems.

xv

xvi Preface

While the field continued to advance in both theory and applications, the under-
lying fundamentals remained largely the same, albeit with a refinement of emphasis,
understanding and pedagogy. Consequently, the Second Edition of Discrete-Time Sig-
nal Processing was published in 1999. That new edition was a major revision, with the
intent of making the subject of discrete-time signal processing even more accessible to
students and practicing engineers, without compromising on the coverage of what we
considered to be the essential concepts that define the field.

This third edition of Discrete-Time Signal Processing is a major revision of our
Second Edition. The new edition is in response to changes in the way the subject is
taught and to changes in scope of typical courses at the undergraduate and first-year
graduate level. It continues the tradition of emphasizing the accessibility of the topics
to students and practicing engineers and focusing on the fundamental principles with
broad applicability. A major feature of the new edition is the incorporation and expan-
sion of some of the more advanced topics, the understanding of which are now essential
in order to work effectively in the field. Every chapter of the second edition has under-
gone significant review and changes, one entirely new chapter has been added, and one
chapter has been restored and significantly up-dated from the first edition. With this
third edition, a closely integrated and highly interactive companion web site has been
developed by Professors Mark Yoder and Wayne Padgett of Rose-Hulman Institute of
Technology. A more complete discussion of the website is given in the website overview
section following this Preface.

As we have continued to teach the subject over the ten years since the second
edition, we have routinely created new problems for homework assignments and ex-
ams. Consistent with the importance that we have always placed on well constructed
examples and homework problems, we have selected over 130 of the best of these to be
included in the third edition, which now contains a total of more than 700 homework
problems overall. The homework problems from the second edition that do not appear
in this new edition are available on the companion web site.

As in the earlier generations of this text, it is assumed that the reader has a
background of advanced calculus, along with a good understanding of the elements
of complex numbers and complex variables. A background in linear system theory for
continuous-time signals, including Laplace and Fourier transforms, as taught in most
undergraduate electrical and mechanical engineering curricula, remains a basic pre-
requisite. It is also now common in most undergraduate curricula to include an early
exposure to discrete-time signals and systems, discrete-time Fourier transforms and
discrete-time processing of continuous-time signals.

Our experience in teaching discrete-time signal processing at the advanced under-
graduate level and the graduate level confirms that it is essential to begin with a careful
review of these topics so that students move on to the more advanced topics from a solid
base of understanding and a familiarity with a consistent notational framework that is
used throughout the course and the accompanying textbook. Most typically in a first
exposure to discrete-time signal processing in early undergraduate courses, students
learn to carry out many of the mathematical manipulations, but it is in revisiting the
topics that they learn to reason more deeply with the underlying concepts. Therefore in
this edition we retain the coverage of these fundamentals in the first five chapters, en-
hanced with new examples and expanded discussion. In later sections of some chapters,

Preface xvii

some topics such as quantization noise are included that assume a basic background in
random signals. A brief review of the essential background for these sections is included
in Chapter 2 and in Appendix A.

An important major change in DSP education that has occurred in the past decade
or so is the widespread use of sophisticated software packages such as MATLAB, Lab-
VIEW, and Mathematica to provide an interactive, “hands-on” experience for students.
The accessibility and ease of use of these software packages provide the opportunity
to connect the concepts and mathematics that are the basis for discrete-time signal
processing, to applications involving real signals and real-time systems. These software
packages are well documented, have excellent technical support, and have excellent
user interfaces. These make them easily accessible to students without becoming a dis-
traction from the goal of developing insight into and intuition about the fundamentals.
It is now common in many signal processing courses to include projects and exercises to
be done using one or several of the available software packages. Of course, this needs to
be done carefully in order to maximize the benefit to student learning by emphasizing
experimentation with the concepts, parameters, and so on, rather than simple cookbook
exercises. It is particularly exciting that with one of these powerful software packages
installed, every student’s laptop computer becomes a state-of-the-art laboratory for
experimenting with discrete-time signal processing concepts and systems.

As teachers, we have consistently looked for the best way to use computer re-
sources to improve the learning environment for our students. We continue to believe
in textbooks as the best way to encapsulate knowledge in the most convenient and stable
form. Textbooks necessarily evolve on a relatively slow time scale. This ensures a certain
stability and provides the time to sort through developments in the field and to test ways
of presenting new ideas to students. On the other hand, changes in computer software
and hardware technology are on a much faster time scale. Software revisions often occur
semi-annually, and hardware speeds continue to increase yearly. This, together with the
availability of the world-wide-web, provides the opportunity to more frequently update
the interactive and experimental components of the learning environment. For these
reasons, providing separate environments for the basic mathematics and basic concepts
in the form of the textbook and the hands-on interactive experience primarily through
the world-wide-web seems to be a natural path.

With these thoughts in mind, we have created this third edition of Discrete-Time
Signal Processing, incorporating what we believe to be the fundamental mathematics
and concepts of discrete-time signal processing and with tight coupling to a companion
website created by our colleagues Mark Yoder and Wayne Padgett of Rose-Hulman
Institute of Technology. The website contains a variety of interactive and software re-
sources for learning that both reinforce and expand the impact of the text. This website
is described in more detail in the introductory section following this Preface. It is de-
signed to be dynamic and continually changing to rapidly incorporate new resources
developed by the authors of the text and by the website authors. The website will be
sensitive to the continually changing hardware and software environments that serve
as the platform for visualization of abstract concepts and experimentation with real
signal processing problems. We are excited by the virtually limitless potential for this
companion website environment to significantly improve our ability to teach and our
students’ ability to learn the subject of discrete-time signal processing.

xviii Preface

The material in this book is organized in a way that provides considerable flexi-
bility in its use at both the undergraduate and graduate level. A typical one-semester
undergraduate elective might cover in depth Chapter 2, Sections 2.0–2.9; Chapter 3;
Chapter 4, Sections 4.0–4.6; Chapter 5, Sections 5.0–5.3; Chapter 6, Sections 6.0–6.5;
and Chapter 7, Sections 7.0–7.3 and a brief overview of Sections 7.4–7.6. If students
have studied discrete-time signals and systems in a previous signals and systems course,
it would be possible to move more quickly through the material of Chapters 2, 3, and 4,
thus freeing time for covering Chapter 8. A first-year graduate course or senior elective
could augment the above topics with the remaining topics in Chapter 5, a discussion of
multirate signal processing (Section 4.7), an exposure to some of the quantization issues
introduced in Section 4.8, and perhaps an introduction to noise shaping in A/D and D/A
converters as discussed in Section 4.9. A first-year graduate course should also include
exposure to some of the quantization issues addressed in Sections 6.6–6.9, a discussion
of optimal FIR filters as incorporated in Sections 7.7–7.9, and a thorough treatment of
the discrete Fourier transform (Chapter 8) and its computation using the FFT (Chapter
9). The discussion of the DFT can be effectively augmented with many of the examples
in Chapter 10. In a two-semester graduate course, the entire text including the new chap-
ters on parametric signal modeling (Chapter 11) and the cepstrum (Chapter 13) can be
covered along with a number of additional advanced topics. In all cases, the homework
problems at the end of each chapter can be worked with or without the aid of a com-
puter, and problems and projects from the website can be assigned to strengthen the
connection between theory and computer implementation of signal processing systems.

We conclude this Preface with a summary of chapter contents highlighting the
significant changes in the third edition.

In Chapter 2, we introduce the basic class of discrete-time signals and systems and
define basic system properties such as linearity, time invariance, stability, and causality.
The primary focus of the book is on linear time-invariant systems because of the rich
set of tools available for designing and analyzing this class of systems. In particular, in
Chapter 2 we develop the time-domain representation of linear time-invariant systems
through the convolution sum and discuss the class of linear time-invariant systems repre-
sented by linear constant-coefficient difference equations. In Chapter 6, we develop this
class of systems in considerably more detail. Also in Chapter 2 we discuss the frequency-
domain representation of discrete-time signals and systems through the discrete-time
Fourier transform. The primary focus in Chapter 2 is on the representation of sequences
in terms of the discrete-time Fourier transform, i.e., as a linear combination of complex
exponentials, and the development of the basic properties of the discrete-time Fourier
transform.

In Chapter 3, we develop the z-transform as a generalization of the Fourier trans-
form. This chapter focuses on developing the basic theorems and properties of the
z-transform and the development of the partial fraction expansion method for the in-
verse transform operation. A new section on the unilateral z-transform has been added
in this edition. In Chapter 5, the results developed in Chapters 2 and 3 are used exten-
sively in a detailed discussion of the representation and analysis of linear time-invariant
systems. While the material in Chapters 2 and 3 might be review for many students, most
introductory signals and systems courses will not contain either the depth or breadth
of coverage of these chapters. Furthermore, these chapters establish notation that will

Preface xix

be used throughout the text. Thus, we recommend that Chapters 2 and 3 be studied as
carefully as is necessary for students to feel confident of their grasp of the fundamentals
of discrete-time signals and systems.

Chapter 4 is a detailed discussion of the relationship between continuous-time and
discrete-time signals when the discrete-time signals are obtained through periodic sam-
pling of continuous-time signals. This includes a development of the Nyquist sampling
theorem. In addition, we discuss upsampling and downsampling of discrete-time sig-
nals, as used, for example, in multirate signal processing systems and for sampling rate
conversion. The chapter concludes with a discussion of some of the practical issues en-
countered in conversion from continuous time to discrete time including prefiltering to
avoid aliasing, modeling the effects of amplitude quantization when the discrete-time
signals are represented digitally, and the use of oversampling in simplifying the A/D
and D/A conversion processes. This third edition includes new examples of quantiza-
tion noise simulations, a new discussion of interpolation filters derived from splines, and
new discussions of multi-stage interpolation and two-channel multi-rate filter banks.

In Chapter 5 we apply the concepts developed in the previous chapters to a de-
tailed study of the properties of linear time-invariant systems. We define the class of
ideal, frequency-selective filters and develop the system function and pole-zero rep-
resentation for systems described by linear constant-coefficient difference equations,
a class of systems whose implementation is considered in detail in Chapter 6. Also in
Chapter 5, we define and discuss group delay, phase response and phase distortion,
and the relationships between the magnitude response and the phase response of sys-
tems, including a discussion of minimum-phase, allpass, and generalized linear phase
systems. Third edition changes include a new example of the effects of group delay and
attenuation, which is also available on the website for interactive experimentation.

In Chapter 6, we focus specifically on systems described by linear constant-
coefficient difference equations and develop their representation in terms of block dia-
grams and linear signal flow graphs. Much of this chapter is concerned with developing
a variety of the important system structures and comparing some of their properties.
The importance of this discussion and the variety of filter structures relate to the fact
that in a practical implementation of a discrete-time system, the effects of coefficient
inaccuracies and arithmetic error can be very dependent on the specific structure used.
While these basic issues are similar for digital and discrete-time analog implementations,
we illustrate them in this chapter in the context of a digital implementation through a
discussion of the effects of coefficient quantization and arithmetic roundoff noise for
digital filters. A new section provides a detailed discussion of FIR and IIR lattice fil-
ters for implementing linear constant-coefficient difference equations. As discussed in
Chapter 6 and later in Chapter 11, this class of filter structures has become extremely
important in many applications because of their desirable properties. It is common in
discussions of lattice filters in many texts and papers to tie their importance intimately to
linear prediction analysis and signal modeling. However the importance of using lattice
implementations of FIR and IIR filters is independent of how the difference equation to
be implemented is obtained. For example the difference equation might have resulted
from the use of filter design techniques as discussed in Chapter 7, the use of parametric
signal modeling as discussed in Chapter 11 or any of a variety of other ways in which a
difference equation to be implemented arises.

xx Preface

While Chapter 6 is concerned with the representation and implementation of
linear constant-coefficient difference equations, Chapter 7 is a discussion of procedures
for obtaining the coefficients of this class of difference equations to approximate a
desired system response. The design techniques separate into those used for infinite
impulse response (IIR) filters and those used for finite impulse response (FIR) filters.
New examples of IIR filter design provide added insight into the properties of the
different approximation methods. A new example on filter design for interpolation
provides a framework for comparing IIR and FIR filters in a practical setting.

In continuous-time linear system theory, the Fourier transform is primarily an
analytical tool for representing signals and systems. In contrast, in the discrete-time
case, many signal processing systems and algorithms involve the explicit computation
of the Fourier transform. While the Fourier transform itself cannot be computed, a
sampled version of it, the discrete Fourier transform (DFT), can be computed, and
for finite-length signals the DFT is a complete Fourier representation of the signal. In
Chapter 8, the DFT is introduced and its properties and relationship to the discrete-time
Fourier transform (DTFT) are developed in detail. In this chapter we also provide an
introduction to the discrete cosine transform (DCT) which plays a very important role
in applications such as audio and video compression.

In Chapter 9, the rich and important variety of algorithms for computing or gen-
erating the DFT is introduced and discussed, including the Goertzel algorithm, the fast
Fourier transform (FFT) algorithms, and the chirp transform. In this third edition, the
basic upsampling and downsampling operations discussed in Chapter 4 are used to pro-
vide additional insight into the derivation of FFT algorithms. As also discussed in this
chapter, the evolution of technology has considerably altered the important metrics in
evaluating the efficiency of signal processing algorithms. At the time of our first book in
the 1970’s both memory and arithmetic computation (multiplications and also floating
point additions) were costly and the efficiency of algorithms was typically judged by how
much of these resources were required. Currently it is commonplace to use additional
memory to increase speed and to reduce the power requirements in the implementation
of signal processing algorithms. In a similar sense, multi-core platforms have in some
contexts resulted in favoring parallel implementation of algorithms even at the cost of
increased computation. Often the number of cycles of data exchange, communication
on a chip, and power requirements are now key metrics in choosing the structure for
implementing an algorithm. As discussed in chapter 9, while the FFT is more efficient in
terms of the required multiplications than the Goertzel algorithm or the direct compu-
tation of the DFT, it is less efficient than either if the dominant metric is communication
cycles since direct computation or the Goertzel algorithm can be much more highly
parallelized than the FFT.

With the background developed in the earlier chapters and particularly Chapters
2, 3, 5, and 8, we focus in Chapter 10 on Fourier analysis of signals using the DFT.
Without a careful understanding of the issues involved and the relationship between
the continuous-time Fourier transform, the DTFT, and the DFT, using the DFT for
practical signal analysis can often lead to confusion and misinterpretation. We address
a number of these issues in Chapter 10. We also consider in some detail the Fourier anal-
ysis of signals with time-varying characteristics by means of the time-dependent Fourier
transform. New in the third edition is a more detailed discussion of filter bank analysis

Preface xxi

including an illustration of the MPEG filter bank, new examples of time-dependent
Fourier analysis of chirp signals illustrating the effect of window length, and more de-
tailed simulations of quantization noise analysis.

Chapter 11 is an entirely new chapter on the subject of parametric signal modeling.
Starting with the basic concept of representing a signal as the output of an LTI system,
Chapter 11 shows how the parameters of the signal model can be found by solution of
a set of linear equations. Details of the computations involved in setting up and solving
the equations are discussed and illustrated by examples. Particular emphasis is on the
Levinson–Durbin solution algorithm and the many properties of the solution that are
easily derived from the details of the algorithm such as the lattice filter interpretation.

Chapter 12 is concerned with the discrete Hilbert transform. This transform arises
in a variety of practical applications, including inverse filtering, complex representations
for real bandpass signals, single-sideband modulation techniques, and many others.
With the advent of increasingly sophisticated communications systems and the growing
richness of methods for efficiently sampling wide-band and multi-band continuous-time
signals, a basic understanding of Hilbert transforms is becoming increasingly important.
The Hilbert transform also plays an important role in the discussion of the cepstrum in
Chapter 13.

Our first book in 1975 and the first edition of this book in 1989 included a detailed
treatment of the class of nonlinear techniques referred to as cepstral analysis and homo-
morphic deconvolution. These techniques have become increasingly important and now
have widespread use in applications such as speech coding, speech and speaker recogni-
tion, analysis of geophysical and medical imaging data, and in many other applications
in which deconvolution is an important theme. Consequently with this edition we re-
introduce those topics with expanded discussion and examples. The chapter contains a
detailed discussion of the definition and properties of the cepstrum and the variety of
ways of computing it including new results on the use of polynomial rooting as a ba-
sis for computing the cepstrum. An exposure to the material in Chapter 13 also offers
the reader the opportunity to develop new insights into the fundamentals presented in
the early chapters, in the context of a set of nonlinear signal analysis techniques with
growing importance and that lend themselves to the same type of rich analysis enjoyed
by linear techniques. The chapter also includes new examples illustrating the use of
homomorphic filtering in deconvolution.

We look forward to using this new edition in our teaching and hope that our
colleagues and students will benefit from the many enhancements from the previous
editions. Signal processing in general and discrete-time signal processing in particular
have a richness in all their dimensions that promises even more exciting developments
ahead.

Alan V. Oppenheim
Ronald W. Schafer

The Companion Website

A companion website has been developed for this text by Mark A. Yoder and Wayne
T. Padgett of Rose-Hulman Institute of Technology and is accessible at
www.pearsonhighered.com/oppenheim. This web companion, which will continuously
evolve, is designed to reinforce and enhance the material presented in the textbook by
providing visualizations of important concepts and a framework for obtaining “hands-
on” experience with using the concepts. It contains six primary elements: Live Figures,
Build-a-Figures, MATLAB-based homework problems, MATLAB-based projects, De-
mos, and additional Traditional Homework Problems, each tying into specific sections
and pages in the book.

Live Figures

The Live Figures element reinforces concepts in the text by presenting “live” versions of
select figures. With these, the reader is able to interactively investigate how parameters
and concepts interoperate using graphics and audio. Live Figures were created with NI
LabVIEW signal processing tools. The following three examples provide a glimpse of
what is available with this element of the website:

Figure 2.10(a)-(c) in Section 2.3 on page 28 shows the graphical method for com-
puting a discrete-convolution with the result shown in Figure 2.10(d). The corresponding
Live Figure allows the user to choose the input signals and manually slide the flipped
input signal past the impulse response and see the result being calculated and plotted.
Users can quickly explore many different configurations and quickly understand how
graphical convolution is applied.

Figure 4.73 on page 231 of Section 4.9.2 shows the power spectral density of the
quantization noise and signal after noise shaping. The Live Figure shows the spectrum
of the noise and signal as a live audio file plays. The reader can see and hear the noise

xxii

The Companion Website xxiii

as the noise shaping is enabled or disabled and as a lowpass filter is applied to remove
the noise.

Figure 5.5(a) on page 282 of Section 5.1.2 shows three pulses, each of a different
frequency, which enter an LTI system. Figure 5.6 on page 283 shows the output of the
LTI system. The associated Live Figure allows students to experiment with the location
of the poles and zeros in the system as well as the amplitude, frequency, and position
of the pulses to see the effect on the output. These are just three examples of the many
web-based Live Figures accessible on the companion website.

Build-a-Figure

The Build-a-Figure element extends the concept of the Live Figure element. It guides
the student in recreating selected figures from the text using MATLAB to reinforce the
understanding of the basic concepts. Build-a-Figures are not simply step-by-step recipes
for constructing a figure. Rather, they assume a basic understanding of MATLAB and
introduce new MATLAB commands and techniques as they are needed to create the
figures. This not only further reinforces signal processing concepts, but also develops
MATLAB skills in the context of signal processing. As an example, Figures 2.3 and
2.5 on pages 12 and 16 in Section 2.1 of the text are plots of several sequences. The
corresponding Build-a-Figures introduce the MATLAB plot command techniques for
labeling plots, incorporating Greek characters, and including a legend. Later Build-a-
Figures use this knowledge as needed in creating plots. The Noise Shaping and Group
Delay Build-a-Figures (Figure 4.73, page 231 and Figure 5.5, page 282) have instructions
for recreating the Live Figures discussed above. Rather than giving step-by-step instruc-
tions, they introduce new MATLAB commands and suggest approaches for recreating
the figures with considerable latitude for experimentation.

MATLAB Homework Problems

Through the MATLAB Homework Problems element, the companion website provides
a primary mechanism for combining MATLAB with homework exercises. One aspect of
this is the use of homework to practice using MATLAB somewhat in the style of Build-
a-Figures. These exercises are much like non-MATLAB exercises but with MATLAB
used to facilitate certain parts, such as in plotting results. The second avenue is the
use of MATLAB to explore and solve problems that cannot be done by mathematical
analysis. The MATLAB problems are all classroom tested and tend to be short exercises,
comparable to the Basic Problems in the textbook, in which the user is asked to complete
straightforward signal processing tasks using MATLAB. These problems are modest in
scope as would be typical of one of several problems in a weekly homework assignment.
Some problems are directly linked to analytic problems in the text, while others will
stand on their own. Many of the problems blend analytic solutions with MATLAB,
emphasizing the complementary value of each approach.

xxiv The Companion Website

MATLAB-Based Projects

The MATLAB-based Projects element contains longer and more sophisticated projects
or exercises than the homework problems. The projects explore important concepts
from the textbook in greater depth and are relatively extensive. Projects are linked to
sections of the text and can be used once that section is understood. For example, the
first project is somewhat tutorial in nature and can be used at any stage. It introduces
MATLAB and shows how it is used to create and manipulate discrete-time signals
and systems. It assumes that the students have some programming experience, but
not necessarily in MATLAB. Many of the other projects require some filter design
techniques and therefore tie in with Chapter 7 (Filter Design Techniques) or later.
They explore topics such as FIR and IIR filter design, filter design for sample rate
conversion, testing a "Folk Theorem" about humans not being able to hear phase in
a signal, enhancing speech by removing noise, hardware considerations for removing
noise, spectral estimation and more. All have been classroom tested and some have led
to student publications.

Demos

The Demos are interactive demonstrations that relate to specific chapters. Unlike the
Live Figures, they do not tie directly to a given figure. Rather, they illustrate a bigger
idea that the student can understand after completing the chapter. For example, one
demo shows the importance of using a linear-phase filter when it is essential to preserve
the shape of a bandlimited pulse.

Additional Traditional Homework Problems

A sixth important component of the website is a collection of problems that were re-
moved from the second edition to make room for new problems. These problems can be
used to supplement the problems in the text. Each of these problems is given in .pdf
and .tex form along with any figures needed to create the problem.

In summary, the companion web site is a rich set of resources which are closely
tied to the textbook. The resources range from the Live Figures which reinforce new
concepts to the MATLAB-based projects which challenge the students to go beyond the
textbook to explore new ideas. This website will continuously evolve as new teaching
resources are developed by the authors of the text and by the website authors, Mark
Yoder and Wayne Padgett.

The Cover

In this third edition of Discrete-Time Signal Processing we continue the cover theme
of “waves” as a symbol of our book and of signal processing. The cover of the first
edition was a colorful rendering of a time-varying spectral waterfall plot. For the second
edition, the artist Vivian Berman carried the theme forward resulting in a combination
of spectral plots and artistic wave patterns. In considering possibilities for the cover,
we were particularly drawn to a striking photograph by Librado Romero in a New
York Times article (May 7, 2009). This article by Holland Cotter entitled “Storm King
Wavefield” was about the artist Maya Lin’s new work at the Storm King Art Center.1

With this suggestion, Kristine Carney at Pearson/Prentice-Hall produced the beautiful
cover for this edition.

To us, the grass-covered earthen waves in Ms. Lin’s sculpture symbolize much
about the field of Signal Processing and suggest the perfect evolution of our covers. As
the New York Times article states,

“Like any landscape, it is a work in progress. Vegetation is still coming in, drainage issues
are in testing mode, and there are unruly variables: woodchucks have begun converting
one wave into an apartment complex.”

Change a few words here and there, and it provides an intriguing description of
the field of Discrete-Time Signal Processing. It has a beautiful solid framework. Fur-
thermore, new ideas, constraints, and opportunities keep the field fluid and dynamically
changing, and there will always be a few “unruly variables.” As Mr. Cotter also notes,
Ms. Lin’s work

“sharpens your eye to existing harmonies and asymmetries otherwise overlooked.”

Even after more than 40 years of living and working in the field of signal processing, we
are consistently surprised and delighted by the harmonies, symmetries, and asymmetries
that continue to be revealed.

1Information about the Storm King Art Center can be found at www.stormking.org and about Ms. Lin
and her beautiful art at www.mayalin.com.

xxv

Acknowledgments

This third edition of Discrete-Time Signal Processing has evolved from the first two
editions (1989, 1999) which originated from our first book Digital Signal Processing
(1975). The influence and impact of the many colleagues, students and friends who
have assisted, supported and contributed to those earlier works remain evident in this
new edition and we would like to express again our deep appreciation to all whom we
have acknowledged more explicitly in those previous editions.

Throughout our careers we both have had the good fortune of having extraordi-
nary mentors. We would each like to acknowledge several who have had such a major
impact on our lives and careers.

Al Oppenheim was profoundly guided and influenced as a graduate student and
throughout his career by Professor Amar Bose, Professor Thomas Stockham, and Dr.
Ben Gold. As a teaching assistant for several years with and as a doctoral student super-
vised by Professor Bose, Al was significantly influenced by the inspirational teaching,
creative research style and extraordinary standards which are characteristic of Professor
Bose in everything that he does. Early in his career Al Oppenheim was also extremely
fortunate to develop a close collaboration and friendship with both Dr. Ben Gold and
Professor Thomas Stockham. The incredible encouragement and role model provided
by Ben was significant in shaping Al’s style of mentoring and research. Tom Stockham
also provided significant mentoring, support and encouragement as well as ongoing
friendship and another wonderful role model. The influence of these extraordinary
mentors flows throughout this book.

Most notable among the many teachers and mentors who have influenced Ron
Schafer are Professor Levi T. Wilson, Professor Thomas Stockham, and Dr. James L.
Flanagan. Professor Wilson introduced a naive small town boy to the wonders of math-
ematics and science in a way that was memorable and life changing. His dedication to
teaching was an inspiration too strong to resist. Professor Stockham was a great teacher,

xxvi

Acknowledgments xxvii

a friend at a crucial time, a valued colleague, and a wonderfully creative engineer. Jim
Flanagan is a giant in the area of speech science and engineering and an inspiration to
all who are so lucky as to have worked with him. Not all great teachers carry the title
“Professor”. He taught Ron and many others the value of careful thought, the value of
dedication to a field of learning, and the value of clear and lucid writing and expression.
Ron Schafer freely admits appropriating many habits of thought and expression from
these great mentors, and does so with confidence that they don’t mind at all.

Throughout our academic careers, MIT and Georgia Tech have provided us with a
stimulating environment for research and teaching and have provided both encourage-
ment and support for this evolving project. Since 1977 Al Oppenheim has spent several
sabbaticals and almost every summer at the Woods Hole Oceanographic Institution
(WHOI) and he is deeply appreciative of this special opportunity and association. It
was during those periods and in the wonderful WHOI environment that much of the
writing of the various editions of this book were carried out.

AT MIT and at Georgia Tech we have both received generous financial support
from a number of sources. Al Oppenheim is extremely grateful for the support from
Mr. Ray Stata and Analog Devices, Inc., the Bose Foundation, and the Ford Foundation
for the funding of research and teaching at MIT in various forms. Both of us have also
enjoyed the support of Texas Instruments, Inc. for our teaching and research activities.
In particular, Gene Frantz at TI has been a dedicated supporter of our work and DSP
education in general at both academic institutions. Ron Schafer is also grateful for the
generous support from the John and Mary Franklin Foundation, which funded the John
and Marilu McCarty Chair at Georgia Tech. Demetrius Paris, long time director of
the School of ECE at Georgia Tech, and W. Kelly Mosley and Marilu McCarty of the
Franklin Foundation, deserve special thanks for their friendship and support for over
30 years. Ron Schafer is appreciative of the opportunity to be a part of the research
team at Hewlett-Packard Laboratories, first through research support at Georgia Tech
over many years, and since 2004, as an HP Fellow. The third edition could not have been
completed without the encouragement and support of HP Labs managers Fred Kitson,
Susie Wee, and John Apostolopoulos.

Our association with Prentice Hall Inc. began several decades ago with our first
book published in 1975 and has continued through all three editions of this book as well
as with other books. We feel extremely fortunate to have worked with Prentice Hall.
The encouragement and support provided by Marcia Horton and Tom Robbins through
this and many other writing projects and by Michael McDonald, Andrew Gilfillan, Scott
Disanno, and Clare Romeo with this edition have significantly enhanced the enjoyment
of writing and completing this project.

As with the previous editions, in producing this third edition, we were fortunate to
receive the help of many colleagues, students, and friends. We greatly appreciate their
generosity in devoting their time to help us with this project. In particular we express
our thanks and appreciation to:

Professor John Buck for his significant role in the preparation of the second edition
and his continued time and effort during the life of that edition,

Professors Vivek Goyal, Jae Lim, Gregory Wornell, Victor Zue and Drs. Babak Ayazi-
far, Soosan Beheshti, and Charles Rohrs who have taught at MIT from various
editions and have made many helpful comments and suggestions,

xxviii Acknowledgments

Professors Tom Barnwell, Russ Mersereau, and Jim McClellan, long-time friends and
colleagues of Ron Schafer, who have taught frequently from various editions
and have influenced many aspects of the book,

Professor Bruce Black of Rose-Hulman Institute of Technology for carefully organiz-
ing ten years worth of new problems, selecting the best of these, and updating
and integrating them into the chapters,

Professor Mark Yoder and Professor Wayne Padgett for the development of an out-
standing companion web site for this edition,

Ballard Blair for his assistance in updating the bibliography,

Eric Strattman, Darla Secor, Diane Wheeler, Stacy Schultz, Kay Gilstrap, and Char-
lotte Doughty for their administrative assistance in the preparation of this re-
vision and continued support of our teaching activities,

Tom Baran for his help with many of the computer issues associated with managing the
files for this edition and for his significant help with the examples in a number
of the chapters,

Shay Maymon who meticulously read through most of the chapters, reworked many of
the problems in the more advanced chapters, and made important corrections
and suggestions,

To all who helped in careful reviewing of the manuscript and page proofs: Berkin
Bilgic, Albert Chang, Myung Jin Choi, Majid Fozunbal, Reeve Ingle, Jeremy
Leow, Ying Liu, Paul Ryu, Sanquan Song, Dennis Wei, and Zahi Karam.

And to the many teaching assistants who have influenced this edition directly or in-
directly while working with us in teaching the subject at MIT and at Georgia
Tech.

1

Introduction

The rich history and future promise of signal processing derive from a strong synergy
between increasingly sophisticated applications, new theoretical developments and con-
stantly emerging new hardware architectures and platforms. Signal processing applica-
tions span an immense set of disciplines that include entertainment, communications,
space exploration, medicine, archaeology, geophysics, just to name a few. Signal process-
ing algorithms and hardware are prevalent in a wide range of systems, from highly spe-
cialized military systems and industrial applications to low-cost, high-volume consumer
electronics. Although we routinely take for granted the extraordinary performance of
multimedia systems, such as high definition video, high fidelity audio, and interactive
games, these systems have always relied heavily on state-of-the-art signal processing.
Sophisticated digital signal processors are at the core of all modern cell phones. MPEG
audio and video and JPEG1 image data compression standards rely heavily on many
of the signal processing principles and techniques discussed in this text. High-density
data storage devices and new solid-state memories rely increasingly on the use of signal
processing to provide consistency and robustness to otherwise fragile technologies. As
we look to the future, it is clear that the role of signal processing is expanding, driven in
part by the convergence of communications, computers, and signal processing in both
the consumer arena and in advanced industrial and government applications.

The growing number of applications and demand for increasingly sophisticated
algorithms go hand-in-hand with the rapid development of device technology for imple-
menting signal processing systems. By some estimates, even with impending limitations

1The acronyms MPEG and JPEG are the terms used in even casual conversation for referring to the
standards developed by the “Moving Picture Expert Group (MPEG)” and the “Joint Photographic Expert
Group (JPEG)” of the “International Organization for Standardization (ISO).”

1

2 Chapter 1 Introduction

on Moore’s Law, the processing capability of both special-purpose signal processing
microprocessors and personal computers is likely to increase by several orders of mag-
nitude over the next 10 years. Clearly, the importance and role of signal processing will
continue to expand at an accelerating rate well into the future.

Signal processing deals with the representation, transformation, and manipulation
of signals and the information the signals contain. For example, we may wish to sepa-
rate two or more signals that have been combined by some operation, such as addition,
multiplication, or convolution, or we may want to enhance some signal component or
estimate some parameter of a signal model. In communications systems, it is generally
necessary to do preprocessing such as modulation, signal conditioning, and compression
prior to transmission over a communications channel, and then to carry out postpro-
cessing at the receiver to recover a facsimile of the original signal. Prior to the 1960s,
the technology for such signal processing was almost exclusively continuous-time ana-
log technology.2 A continual and major shift to digital technologies has resulted from
the rapid evolution of digital computers and microprocessors and low-cost chips for
analog to digital (A/D) and digital to analog (D/A) conversion. These developments
in technology have been reinforced by many important theoretical developments, such
as the fast Fourier transform (FFT) algorithm, parametric signal modeling, multirate
techniques, polyphase filter implementation, and new ways of representing signals, such
as with wavelet expansions. As just one example of this shift, analog radio communica-
tion systems are evolving into reconfigurable “software radios” that are implemented
almost exclusively with digital computation.

Discrete-time signal processing is based on processing of numeric sequences in-
dexed on integer variables rather than functions of a continuous independent vari-
able. In digital signal processing (DSP), signals are represented by sequences of finite-
precision numbers, and processing is implemented using digital computation. The more
general term discrete-time signal processing includes digital signal processing as a spe-
cial case but also includes the possibility that sequences of samples (sampled data)
could be processed with other discrete-time technologies. Often the distinction be-
tween the terms discrete-time signal processing and digital signal processing is of minor
importance, since both are concerned with discrete-time signals. This is particularly true
when high-precision computation is employed. Although there are many examples in
which signals to be processed are inherently discrete-time sequences, most applica-
tions involve the use of discrete-time technology for processing signals that originate
as continuous-time signals. In this case, a continuous-time signal is typically converted
into a sequence of samples, i.e., a discrete-time signal. Indeed, one of the most impor-
tant spurs to widespread application of digital signal processing was the development
of low-cost A/D, D/A conversion chips based on differential quantization with noise
shaping. After discrete-time processing, the output sequence is converted back to a
continuous-time signal. Real-time operation is often required or desirable for such sys-
tems. As computer speeds have increased, discrete-time processing of continuous-time
signals in real time has become commonplace in communication systems, radar and
sonar, speech and video coding and enhancement, biomedical engineering, and many

2In a general context, we shall refer to the independent variable as “time,” even though in specific
contexts, the independent variable may take on any of a broad range of possible dimensions. Consequently,
continuous time and discrete time should be thought of as generic terms referring to a continuous independent
variable and a discrete independent variable, respectively.

Chapter 1 Introduction 3

other areas of application. Non-real-time applications are also common. The compact
disc player and MP3 player are examples of asymmetric systems in which an input signal
is processed only once. The initial processing may occur in real time, slower than real
time, or even faster than real time. The processed form of the input is stored (on the
compact disc or in a solid state memory), and final processing for reconstructing the
audio signal is carried out in real time when the output is played back for listening.
The compact disc and MP3 recording and playback systems rely on many of the signal
processing concepts that we discuss in this book.

Financial Engineering represents another rapidly emerging field which incorpo-
rates many signal processing concepts and techniques. Effective modeling, prediction
and filtering of economic data can result in significant gains in economic performance
and stability. Portfolio investment managers, for example, are relying increasingly on
using sophisticated signal processing since even a very small increase in signal pre-
dictability or signal-to-noise ratio (SNR) can result in significant gain in performance.

Another important area of signal processing is signal interpretation. In such con-
texts, the objective of the processing is to obtain a characterization of the input signal.
For example, in a speech recognition or understanding system, the objective is to in-
terpret the input signal or extract information from it. Typically, such a system will
apply digital pre-processing (filtering, parameter estimation, and so on) followed by a
pattern recognition system to produce a symbolic representation, such as a phonemic
transcription of the speech. This symbolic output can, in turn, be the input to a sym-
bolic processing system, such as a rules-based expert system, to provide the final signal
interpretation.

Still another relatively new category of signal processing involves the symbolic
manipulation of signal processing expressions. This type of processing is potentially
useful in signal processing workstations and for the computer-aided design of signal
processing systems. In this class of processing, signals and systems are represented and
manipulated as abstract data objects. Object-oriented programming languages provide
a convenient environment for manipulating signals, systems, and signal processing ex-
pressions without explicitly evaluating the data sequences. The sophistication of systems
designed to do signal expression processing is directly influenced by the incorporation
of fundamental signal processing concepts, theorems, and properties, such as those that
form the basis for this book. For example, a signal processing environment that incor-
porates the property that convolution in the time domain corresponds to multiplication
in the frequency domain can explore a variety of rearrangements of filtering structures,
including those involving the direct use of the discrete Fourier transform (DFT) and the
FFT algorithm. Similarly, environments that incorporate the relationship between sam-
pling rate and aliasing can make effective use of decimation and interpolation strategies
for filter implementation. Similar ideas are currently being explored for implementing
signal processing in network environments. In this type of environment, data can po-
tentially be tagged with a high-level description of the processing to be done, and the
details of the implementation can be based dynamically on the resources available on
the network.

Many of the concepts and design techniques discussed in this text are now incorpo-
rated into the structure of sophisticated software systems such as MATLAB, Simulink,
Mathematica, and LabVIEW. In many cases where discrete-time signals are acquired
and stored in computers, these tools allow extremely sophisticated signal processing

4 Chapter 1 Introduction

operations to be formed from basic functions. In such cases, it is not generally necessary
to know the details of the underlying algorithm that implements the computation of an
operation like the FFT, but nevertheless it is essential to understand what is computed
and how it should be interpreted. In other words, a good understanding of the concepts
considered in this text is essential for intelligent use of the signal processing software
tools that are now widely available.

Signal processing problems are not confined, of course, to one-dimensional signals.
Although there are some fundamental differences in the theories for one-dimensional
and multidimensional signal processing, much of the material that we discuss in this text
has a direct counterpart in multidimensional systems. The theory of multidimensional
digital signal processing is presented in detail in a variety of references including Dud-
geon and Mersereau (1984), Lim (1989), and Bracewell (1994).3 Many image processing
applications require the use of two-dimensional signal processing techniques. This is the
case in such areas as video coding, medical imaging, enhancement and analysis of aerial
photographs, analysis of satellite weather photos, and enhancement of video transmis-
sions from lunar and deep-space probes. Applications of multidimensional digital signal
processing to image processing are discussed, for example, in Macovski (1983), Castle-
man (1996), Jain (1989), Bovic (ed.) (2005), Woods (2006), Gonzalez and Woods (2007),
and Pratt (2007). Seismic data analysis as required in oil exploration, earthquake mea-
surement, and nuclear test monitoring also uses multidimensional signal processing
techniques. Seismic applications are discussed in, for example, Robinson and Treitel
(1980) and Robinson and Durrani (1985).

Multidimensional signal processing is only one of many advanced and specialized
topics that build on the fundamentals covered in this text. Spectral analysis based on the
use of the DFT and the use of signal modeling is another particularly rich and important
aspect of signal processing. We discuss many facets of this topic in Chapters 10 and 11,
which focus on the basic concepts and techniques relating to the use of the DFT and
parametric signal modeling. In Chapter 11, we also discuss in some detail high resolu-
tion spectrum analysis methods, based on representing the signal to be analyzed as the
response of a discrete-time linear time-invariant (LTI) filter to either an impulse or to
white noise. Spectral analysis is achieved by estimating the parameters (e.g., the differ-
ence equation coefficients) of the system and then evaluating the magnitude squared
of the frequency response of the model filter. Detailed discussions of spectrum analysis
can be found in the texts by Kay (1988), Marple (1987), Therrien (1992), Hayes (1996)
and Stoica and Moses (2005).

Signal modeling also plays an important role in data compression and coding,
and here again, the fundamentals of difference equations provide the basis for under-
standing many of these techniques. For example, one class of signal coding techniques,
referred to as linear predictive coding (LPC), exploits the notion that if a signal is the
response of a certain class of discrete-time filters, the signal value at any time index is a
linear function of (and thus linearly predictable from) previous values. Consequently,
efficient signal representations can be obtained by estimating these prediction param-
eters and using them along with the prediction error to represent the signal. The signal
can then be regenerated when needed from the model parameters. This class of signal

3Authors names and dates are used throughout the text to refer to books and papers listed in the
Bibliography at the end of the book.

Chapter 1 Introduction 5

coding techniques has been particularly effective in speech coding and is described in
considerable detail in Jayant and Noll (1984), Markel and Gray (1976), Rabiner and
Schafer (1978) and Quatieri (2002), and is also discussed in some detail in Chapter 11.

Another advanced topic of considerable importance is adaptive signal processing.
Adaptive systems represent a particular class of time-varying and, in some sense, non-
linear systems with broad application and with established and effective techniques for
their design and analysis. Again, many of these techniques build from the fundamen-
tals of discrete-time signal processing covered in this text. Details of adaptive signal
processing are given by Widrow and Stearns (1985), Haykin (2002) and Sayed (2008).

These represent only a few of the many advanced topics that extend from the
content covered in this text. Others include advanced and specialized filter design pro-
cedures, a variety of specialized algorithms for evaluation of the Fourier transform, spe-
cialized filter structures, and various advanced multirate signal processing techniques,
including wavelet transforms. (See Burrus, Gopinath, and Guo (1997), Vaidyanathan
(1993) and Vetterli and Kovačević (1995) for introductions to these topics.)

It has often been said that the purpose of a fundamental textbook should be to
uncover, rather than cover, a subject. In choosing the topics and depth of coverage in
this book, we have been guided by this philosophy. The preceding brief discussion and
the Bibliography at the end of the book make it abundantly clear that there is a rich
variety of both challenging theory and compelling applications to be uncovered by those
who diligently prepare themselves with a study of the fundamentals of DSP.

HISTORIC PERSPECTIVE

Discrete-time signal processing has advanced in uneven steps over time. Looking back
at the development of the field of discrete-time signal processing provides a valuable
perspective on fundamentals that will remain central to the field for a long time to
come. Since the invention of calculus in the 17th century, scientists and engineers have
developed models to represent physical phenomena in terms of functions of continuous
variables and differential equations. However, numeric techniques have been used to
solve these equations when analytical solutions are not possible. Indeed, Newton used
finite-difference methods that are special cases of some of the discrete-time systems that
we present in this text. Mathematicians of the 18th century, such as Euler, Bernoulli, and
Lagrange, developed methods for numeric integration and interpolation of functions of
a continuous variable. Interesting historic research by Heideman, Johnson, and Burrus
(1984) showed that Gauss discovered the fundamental principle of the FFT (discussed
in Chapter 9) as early as 1805—even before the publication of Fourier’s treatise on
harmonic series representation of functions.

Until the early 1950s, signal processing as we have defined it was typically carried
out with analog systems implemented with electronic circuits or even with mechanical
devices. Even though digital computers were becoming available in business environ-
ments and in scientific laboratories, they were expensive and had relatively limited
capabilities. About that time, the need for more sophisticated signal processing in some
application areas created considerable interest in discrete-time signal processing. One
of the first uses of digital computers in DSP was in geophysical exploration, where rel-
atively low frequency seismic signals could be digitized and recorded on magnetic tape

6 Chapter 1 Introduction

for later processing. This type of signal processing could not generally be done in real
time; minutes or even hours of computer time were often required to process only sec-
onds of data. Even so, the flexibility of the digital computer and the potential payoffs
made this alternative extremely inviting.

Also in the 1950s, the use of digital computers in signal processing arose in a
different way. Because of the flexibility of digital computers, it was often useful to sim-
ulate a signal processing system on a digital computer before implementing it in analog
hardware. In this way, a new signal processing algorithm or system could be studied
in a flexible experimental environment before committing economic and engineering
resources to constructing it. Typical examples of such simulations were the vocoder sim-
ulations carried out at Massachusetts Institute of Technology (MIT) Lincoln Laboratory
and Bell Telephone Laboratories. In the implementation of an analog channel vocoder,
for example, the filter characteristics affected the perceived quality of the coded speech
signal in ways that were difficult to quantify objectively. Through computer simulations,
these filter characteristics could be adjusted and the perceived quality of a speech coding
system evaluated prior to construction of the analog equipment.

In all of these examples of signal processing using digital computers, the computer
offered tremendous advantages in flexibility. However, the processing could not be
done in real time. Consequently, the prevalent attitude up to the late 1960s was that the
digital computer was being used to approximate, or simulate, an analog signal processing
system. In keeping with that style, early work on digital filtering concentrated on ways in
which a filter could be programmed on a digital computer so that with A/D conversion
of the signal, followed by digital filtering, followed by D/A conversion, the overall
system approximated a good analog filter. The notion that digital systems might, in
fact, be practical for the actual real-time implementation of signal processing in speech
communication, radar processing, or any of a variety of other applications seemed,
even at the most optimistic times, to be highly speculative. Speed, cost, and size were,
of course, three of the important factors in favor of the use of analog components.

As signals were being processed on digital computers, researchers had a natural
tendency to experiment with increasingly sophisticated signal processing algorithms.
Some of these algorithms grew out of the flexibility of the digital computer and had no
apparent practical implementation in analog equipment. Thus, many of these algorithms
were treated as interesting, but somewhat impractical, ideas. However, the development
of such signal processing algorithms made the notion of all-digital implementation of
signal processing systems even more tempting. Active work began on the investigation
of digital vocoders, digital spectrum analyzers, and other all-digital systems, with the
hope that eventually, such systems would become practical.

The evolution of a new point of view toward discrete-time signal processing was
further accelerated by the disclosure by Cooley and Tukey (1965) of an efficient class
of algorithms for computation of Fourier transforms known collectively as the FFT.
The FFT was significant for several reasons. Many signal processing algorithms that
had been developed on digital computers required processing times several orders of
magnitude greater than real time. Often, this was because spectrum analysis was an
important component of the signal processing and no efficient means were available for
implementing it. The FFT reduced the computation time of the Fourier transform by
orders of magnitude, permitting the implementation of increasingly sophisticated signal

Chapter 1 Introduction 7

processing algorithms with processing times that allowed interactive experimentation
with the system. Furthermore, with the realization that the FFT algorithms might, in
fact, be implementable with special-purpose digital hardware, many signal processing
algorithms that previously had appeared to be impractical began to appear feasible.

Another important implication of the FFT was that it was an inherently discrete-
time concept. It was directed toward the computation of the Fourier transform of a
discrete-time signal or sequence and involved a set of properties and mathematics
that was exact in the discrete-time domain—it was not simply an approximation to
a continuous-time Fourier transform. This had the effect of stimulating a reformulation
of many signal processing concepts and algorithms in terms of discrete-time mathemat-
ics, and these techniques then formed an exact set of relationships in the discrete-time
domain. Following this shift away from the notion that signal processing on a digital
computer was merely an approximation to analog signal processing techniques, there
emerged the current view that discrete-time signal processing is an important field of
investigation in its own right.

Another major development in the history of discrete-time signal processing oc-
curred in the field of microelectronics. The invention and subsequent proliferation of
the microprocessor paved the way for low-cost implementations of discrete-time signal
processing systems. Although the first microprocessors were too slow to implement most
discrete-time systems in real time except at very low sampling rates, by the mid-1980s,
integrated circuit technology had advanced to a level that permitted the implementation
of very fast fixed-point and floating-point microcomputers with architectures specially
designed for implementing discrete-time signal processing algorithms. With this tech-
nology came, for the first time, the possibility of widespread application of discrete-time
signal processing techniques. The rapid pace of development in microelectronics also
significantly impacted the development of signal processing algorithms in other ways.
For example, in the early days of real-time digital signal processing devices, memory
was relatively costly and one of the important metrics in developing signal processing
algorithms was the efficient use of memory. Digital memory is now so inexpensive that
many algorithms purposely incorporate more memory than is absolutely required so
that the power requirements of the processor are reduced. Another area in which tech-
nology limitations posed a significant barrier to widespread deployment of DSP was in
conversion of signals from analog to discrete-time (digital) form. The first widely avail-
able A/D and D/A converters were stand-alone devices costing thousands of dollars.
By combining digital signal processing theory with microelectronic technology, over-
sampled A/D and D/A converters costing a few dollars or less have enabled a myriad
of real-time applications.

In a similar way, minimizing the number of arithmetic operations, such as multi-
plies or floating point additions, is now less essential, since multicore processors often
have several multipliers available and it becomes increasingly important to reduce com-
munication between cores, even if it then requires more multiplications. In a multicore
environment, for example, direct computation of the DFT (or the use of the Goertzel al-
gorithm) is more “efficient” than the use of an FFT algorithm since, although many more
multiplications are required, communication requirements are significantly reduced be-
cause the processing can be more efficiently distributed among multiple processors or
cores. More broadly, the restructuring of algorithms and the development of new ones

8 Chapter 1 Introduction

to exploit the opportunity for more parallel and distributed processing is becoming a
significant new direction in the development of signal processing algorithms.

FUTURE PROMISE

Microelectronics engineers continue to strive for increased circuit densities and produc-
tion yields, and as a result, the complexity and sophistication of microelectronic systems
continually increase. The complexity, speed, and capability of DSP chips have grown
exponentially since the early 1980s and show no sign of slowing down. As wafer-scale
integration techniques become highly developed, very complex discrete-time signal
processing systems will be implemented with low cost, miniature size, and low power
consumption. Furthermore, technologies such as microelectronic mechanical systems
(MEMS) promise to produce many types of tiny sensors whose outputs will need to
be processed using DSP techniques that operate on distributed arrays of sensor inputs.
Consequently, the importance of discrete-time signal processing will continue to in-
crease, and the future development of the field promises to be even more dramatic than
the course of development that we have just described.

Discrete-time signal processing techniques have already promoted revolutionary
advances in some fields of application. A notable example is in the area of telecommuni-
cations, where discrete-time signal processing techniques, microelectronic technology,
and fiber optic transmission have combined to change the nature of communication
systems in truly revolutionary ways. A similar impact can be expected in many other
areas. Indeed, signal processing has always been, and will always be, a field that thrives
on new applications. The needs of a new field of application can sometimes be filled
by knowledge adapted from other applications, but frequently, new application needs
stimulate new algorithms and new hardware systems to implement those algorithms.
Early on, applications to seismology, radar, and communication provided the context
for developing many of the core signal processing techniques that we discuss in this
book. Certainly, signal processing will remain at the heart of applications in national
defense, entertainment, communication, and medical care and diagnosis. Recently, we
have seen applications of signal processing techniques in new areas as disparate as
finance and DNA sequence analysis.

Although it is difficult to predict where other new applications will arise, there is
no doubt that they will be obvious to those who are prepared to recognize them. The
key to being ready to solve new signal processing problems is, and has always been, a
thorough grounding in the fundamental mathematics of signals and systems and in the
associated design and processing algorithms. While discrete-time signal processing is a
dynamic, steadily growing field, its fundamentals are well formulated, and it is extremely
valuable to learn them well. Our goal in this book is to uncover the fundamentals of the
field by providing a coherent treatment of the theory of discrete-time linear systems,
filtering, sampling, discrete-time Fourier analysis, and signal modeling. This text should
provide the reader with the knowledge necessary for an appreciation of the wide scope
of applications for discrete-time signal processing and a foundation for contributing to
future developments in this exciting field.

2

Discrete-Time

Signals and Systems

2.0 INTRODUCTION

The term signal is generally applied to something that conveys information. Signals
may, for example, convey information about the state or behavior of a physical system.
As another class of examples, signals are synthesized for the purpose of communicating
information between humans or between humans and machines. Although signals can
be represented in many ways, in all cases, the information is contained in some pattern
of variations. Signals are represented mathematically as functions of one or more in-
dependent variables. For example, a speech signal is represented mathematically as a
function of time, and a photographic image is represented as a brightness function of
two spatial variables. A common convention—and one that usually will be followed in
this book—is to refer to the independent variable of the mathematical representation
of a signal as time, although in specific examples, the independent variable may not in
fact correspond to time.

The independent variable in the mathematical representation of a signal may be
either continuous or discrete. Continuous-time signals are defined along a continuum of
time and are thus represented by a continuous independent variable. Continuous-time
signals are often referred to as analog signals. Discrete-time signals are defined at discrete
times, and thus, the independent variable has discrete values; that is, discrete-time signals
are represented as sequences of numbers. Signals such as speech or images may have
either a continuous- or a discrete-variable representation, and if certain conditions hold,
these representations are entirely equivalent. Besides the independent variables being
either continuous or discrete, the signal amplitude may be either continuous or discrete.
Digital signals are those for which both time and amplitude are discrete.

9

10 Chapter 2 Discrete-Time Signals and Systems

Signal-processing systems may be classified along the same lines as signals. That
is, continuous-time systems are systems for which both the input and the output are
continuous-time signals, and discrete-time systems are those for which both the input
and the output are discrete-time signals. Similarly, a digital system is a system for which
both the input and the output are digital signals. Digital signal processing, then, deals
with the transformation of signals that are discrete in both amplitude and time. The
principal focus of this book is on discrete-time—rather than digital—signals and systems.
However, the theory of discrete-time signals and systems is also exceedingly useful for
digital signals and systems, particularly if the signal amplitudes are finely quantized. The
effects of signal amplitude quantization are considered in Sections 4.8, 6.8–6.10, and 9.7.

In this chapter, we present the basic definitions, establish notation, and develop
and review the basic concepts associated with discrete-time signals and systems. The pre-
sentation of this material assumes that the reader has had previous exposure to some of
this material, perhaps with a different emphasis and notation. Thus, this chapter is pri-
marily intended to provide a common foundation for material covered in later chapters.

In Section 2.1, we discuss the representation of discrete-time signals as sequences
and describe the basic sequences such as the unit impulse, the unit step, and complex
exponential, which play a central role in characterizing discrete-time systems and form
building blocks for more general sequences. In Section 2.2, the representation, basic
properties, and simple examples of discrete-time systems are presented. Sections 2.3 and
2.4 focus on the important class of linear time-invariant (LTI) systems and their time-
domain representation through the convolution sum, with Section 2.5 considering the
specific class of LTI systems represented by linear, constant–coefficient difference equa-
tions. Section 2.6 develops the frequency domain representation of discrete-time sys-
tems through the concept of complex exponentials as eigenfunctions, and Sections 2.7,
2.8, and 2.9 develop and explore the Fourier transform representation of discrete-time
signals as a linear combination of complex exponentials. Section 2.10 provides a brief
introduction to discrete-time random signals.

2.1 DISCRETE-TIME SIGNALS

Discrete-time signals are represented mathematically as sequences of numbers. A se-
quence of numbers x, in which the nth number in the sequence is denoted x[n],1 is
formally written as

x = {x[n]}, −∞ < n < ∞, (2.1)

where n is an integer. In a practical setting, such sequences can often arise from periodic
sampling of an analog (i.e., continuous-time) signal xa(t). In that case, the numeric value
of the nth number in the sequence is equal to the value of the analog signal, xa(t), at
time nT : i.e.,

x[n] = xa(nT), −∞ < n < ∞. (2.2)

The quantity T is the sampling period, and its reciprocal is the sampling frequency. Al-
though sequences do not always arise from sampling analog waveforms, it is convenient

1Note that we use [] to enclose the independent variable of discrete-variable functions, and we use ()
to enclose the independent variable of continuous-variable functions.

Section 2.1 Discrete-Time Signals 11

to refer to x[n] as the “nth sample” of the sequence. Also, although, strictly speaking,
x[n] denotes the nth number in the sequence, the notation of Eq. (2.1) is often unnec-
essarily cumbersome, and it is convenient and unambiguous to refer to “the sequence
x[n]” when we mean the entire sequence, just as we referred to “the analog signal xa(t).”
We depict discrete-time signals (i.e., sequences) graphically, as shown in Figure 2.1. Al-
though the abscissa is drawn as a continuous line, it is important to recognize that x[n]
is defined only for integer values of n. It is not correct to think of x[n] as being zero
when n is not an integer; x[n] is simply undefined for noninteger values of n.

–9 –7 –5 –3–4–6–8 0 1 2 3 4 5 6
7 8 9 10 11

–1–2

x [0]
x [1]

x [2]
x [n]

x [–1]
x [–2]

n Figure 2.1 Graphic representation of a
discrete-time signal.

As an example of a sequence obtained by sampling, Figure 2.2(a) shows a segment
of a speech signal corresponding to acoustic pressure variation as a function of time,
and Figure 2.2(b) presents a sequence of samples of the speech signal. Although the
original speech signal is defined at all values of time t , the sequence contains information
about the signal only at discrete instants. The sampling theorem, discussed in Chapter 4,

32 ms

(a)

256 samples

(b)

Figure 2.2 (a) Segment of a continuous-time speech signal xa (t). (b) Sequence of samples
x [n] = xa (nT) obtained from the signal in part (a) with T = 125 μs.

12 Chapter 2 Discrete-Time Signals and Systems

guarantees that the original signal can be reconstructed as accurately as desired from a
corresponding sequence of samples if the samples are taken frequently enough.

In discussing the theory of discrete-time signals and systems, several basic se-
quences are of particular importance. These sequences are shown in Figure 2.3 and will
be discussed next.

The unit sample sequence (Figure 2.3a) is defined as the sequence

δ[n] =
{

0, n �= 0,

1, n = 0.
(2.3)

The unit sample sequence plays the same role for discrete-time signals and systems that
the unit impulse function (Dirac delta function) does for continuous-time signals and
systems. For convenience, we often refer to the unit sample sequence as a discrete-time
impulse or simply as an impulse. It is important to note that a discrete-time impulse
does not suffer from the mathematic complications of the continuous-time impulse; its
definition in Eq. (2.3) is simple and precise.

1
Unit sample

0

(a)

n

1
Unit step

0

(b)

...

......

...

n

Real exponential

0

(c)

n

Sinusoidal

0

(d)

...

...

...

... n Figure 2.3 Some basic sequences.
The sequences shown play important
roles in the analysis and representation
of discrete-time signals and systems.

Section 2.1 Discrete-Time Signals 13

10 3 4 5 6 8

72

–2–4

p[n]

n

a–3

a1

a2
a7

Figure 2.4 Example of a sequence to
be represented as a sum of scaled,
delayed impulses.

One of the important aspects of the impulse sequence is that an arbitrary sequence
can be represented as a sum of scaled, delayed impulses. For example, the sequence p[n]
in Figure 2.4 can be expressed as

p[n] = a−3δ[n + 3] + a1δ[n − 1] + a2δ[n − 2] + a7δ[n − 7]. (2.4)

More generally, any sequence can be expressed as

x[n] =
∞∑

k=−∞
x[k]δ[n − k]. (2.5)

We will make specific use of Eq. (2.5) in discussing the representation of discrete-time
linear systems.

The unit step sequence (Figure 2.3b) is defined as

u[n] =
{

1, n ≥ 0,

0, n < 0.
(2.6)

The unit step is related to the unit impulse by

u[n] =
n∑

k=−∞
δ[k]; (2.7)

that is, the value of the unit step sequence at (time) index n is equal to the accumulated
sum of the value at index n and all previous values of the impulse sequence. An alterna-
tive representation of the unit step in terms of the impulse is obtained by interpreting
the unit step in Figure 2.3(b) in terms of a sum of delayed impulses, as in Eq. (2.5). In
this case, the nonzero values are all unity, so

u[n] = δ[n] + δ[n − 1] + δ[n − 2] + · · · (2.8a)

or

u[n] =
∞∑

k=0

δ[n − k]. (2.8b)

As yet another alternative, the impulse sequence can be expressed as the first backward
difference of the unit step sequence, i.e.,

δ[n] = u[n] − u[n − 1]. (2.9)

Exponential sequences are another important class of basic signals. The general
form of an exponential sequence is

x[n] = A αn. (2.10)

If A and α are real numbers, then the sequence is real. If 0 < α < 1 and A is positive,
then the sequence values are positive and decrease with increasing n, as in Figure 2.3(c).

14 Chapter 2 Discrete-Time Signals and Systems

For −1 < α < 0, the sequence values alternate in sign but again decrease in magnitude
with increasing n. If |α| > 1, then the sequence grows in magnitude as n increases.

The exponential sequence A αn with α complex has real and imaginary parts that
are exponentially weighted sinusoids. Specifically, if α = |α|ejω 0 and A = |A |ejφ , the
sequence A αn can be expressed in any of the following ways:

x[n] = A αn = |A |ejφ |α|nejω 0n

= |A | |α|nej (ω 0n+φ) (2.11)

= |A | |α|n cos(ω 0n + φ) + j |A | |α|n sin(ω 0n + φ).

The sequence oscillates with an exponentially growing envelope if |α| > 1 or with an
exponentially decaying envelope if |α| < 1. (As a simple example, consider the case
ω 0 = π .)

When |α| = 1, the sequence has the form

x[n] = |A |ej (ω 0n+φ) = |A | cos(ω 0n + φ) + j |A | sin(ω0n + φ); (2.12)

that is, the real and imaginary parts of ejω 0n vary sinusoidally with n. By analogy with the
continuous-time case, the quantity ω 0 is called the frequency of the complex sinusoid
or complex exponential, and φ is called the phase. However, since n is a dimensionless
integer, the dimension of ω 0 is radians. If we wish to maintain a closer analogy with the
continuous-time case, we can specify the units of ω 0 to be radians per sample and the
units of n to be samples.

The fact that n is always an integer in Eq. (2.12) leads to some important differ-
ences between the properties of discrete-time and continuous-time complex exponential
sequences and sinusoidal sequences. Consider, for example, a frequency (ω 0 + 2π). In
this case,

x[n] = A ej(ω 0+2π)n

= A ejω 0nej2πn = A ejω 0n.
(2.13)

Generally, complex exponential sequences with frequencies (ω 0 + 2πr), where r is
an integer, are indistinguishable from one another. An identical statement holds for
sinusoidal sequences. Specifically, it is easily verified that

x[n] = A cos[(ω 0 + 2πr)n + φ]
= A cos(ω 0n + φ).

(2.14)

The implications of this property for sequences obtained by sampling sinusoids and
other signals will be discussed in Chapter 4. For now, we conclude that, when discussing
complex exponential signals of the form x[n] = A ejω 0n or real sinusoidal signals of the
form x[n] = A cos(ω 0n+φ), we need only consider frequencies in an interval of length
2π . Typically, we will choose either −π < ω 0 ≤ π or 0 ≤ ω 0 < 2π .

Another important difference between continuous-time and discrete-time com-
plex exponentials and sinusoids concerns their periodicity in n. In the continuous-time
case, a sinusoidal signal and a complex exponential signal are both periodic in time with
the period equal to 2π divided by the frequency. In the discrete-time case, a periodic
sequence is a sequence for which

x[n] = x[n + N], for all n, (2.15)

Section 2.1 Discrete-Time Signals 15

where the period N is necessarily an integer. If this condition for periodicity is tested
for the discrete-time sinusoid, then

A cos(ω 0n + φ) = A cos(ω 0n + ω 0N + φ), (2.16)

which requires that

ω 0N = 2πk, (2.17)

where k is an integer. A similar statement holds for the complex exponential sequence
Cejω 0n; that is, periodicity with period N requires that

ejω 0(n+N) = ejω 0n, (2.18)

which is true only for ω 0N = 2πk, as in Eq. (2.17). Consequently, complex exponential
and sinusoidal sequences are not necessarily periodic in n with period (2π/ω 0) and,
depending on the value of ω 0, may not be periodic at all.

Example 2.1 Periodic and Aperiodic Discrete-Time Sinusoids

Consider the signal x1[n] = cos(πn/4). This signal has a period of N = 8. To show this,
note that x[n+8] = cos(π(n+8)/4) = cos(πn/4+2π) = cos(πn/4) = x[n], satisfying
the definition of a discrete-time periodic signal. Contrary to continuous-time sinusoids,
increasing the value of ω 0 for a discrete-time sinusoid does not necessarily decrease
the period of the signal. Consider the discrete-time sinusoid x2[n] = cos(3πn/8), which
has a higher frequency than x1[n]. However, x2[n] is not periodic with period 8, since
x2[n + 8] = cos(3π(n + 8)/8) = cos(3πn/8 + 3π) = −x2[n]. Using an argument
analogous to the one for x1[n], we can show that x2[n] has a period of N = 16. Thus,
increasing the value of ω 0 = 2π/8 to ω 0 = 3π/8 also increases the period of the signal.
This occurs because discrete-time signals are defined only for integer indices n.

The integer restriction on n results in some sinusoidal signals not being periodic
at all. For example, there is no integer N such that the signal x3[n] = cos(n) satisfies
the condition x3[n + N] = x3[n] for all n. These and other properties of discrete-time
sinusoids that run counter to their continuous-time counterparts are caused by the
limitation of the time index n to integers for discrete-time signals and systems.

When we combine the condition of Eq. (2.17) with our previous observation that
ω 0 and (ω 0 + 2πr) are indistinguishable frequencies, it becomes clear that there are
N distinguishable frequencies for which the corresponding sequences are periodic with
period N . One set of frequencies is ωk = 2πk/N , k = 0, 1, . . . , N − 1. These properties
of complex exponential and sinusoidal sequences are basic to both the theory and the
design of computational algorithms for discrete-time Fourier analysis, and they will be
discussed in more detail in Chapters 8 and 9.

Related to the preceding discussion is the fact that the interpretation of high
and low frequencies is somewhat different for continuous-time and discrete-time sinu-
soidal and complex exponential signals. For a continuous-time sinusoidal signal x(t) =
A cos(� 0t + φ), as � 0 increases, x(t) oscillates progressively more rapidly. For the
discrete-time sinusoidal signal x[n] = A cos(ω 0n + φ), as ω 0 increases from ω 0 = 0 to-
ward ω 0 = π , x[n] oscillates progressively more rapidly. However, as ω 0 increases from
ω 0 = π to ω 0 = 2π , the oscillations become slower. This is illustrated in Figure 2.5. In

0

(a)

......

n

�0 = 0 or �0 = 2�

0

(b)

......

n

�0 = �/8 or �0 = 15�/8

�0 = �/4 or �0 = 7�/4

0

(c)

......

n

0

(d)

......

......
n

�0 = �

Figure 2.5 cos ω 0n for several different values of ω 0. As ω 0 increases from
zero toward π (parts a–d), the sequence oscillates more rapidly. As ω 0 increases
from π to 2π (parts d–a), the oscillations become slower.

16

Section 2.2 Discrete-Time Systems 17

fact, because of the periodicity in ω 0 of sinusoidal and complex exponential sequences,
ω 0 = 2π is indistinguishable from ω 0 = 0, and, more generally, frequencies around
ω 0 = 2π are indistinguishable from frequencies around ω 0 = 0. As a consequence, for
sinusoidal and complex exponential signals, values of ω 0 in the vicinity of ω 0 = 2πk

for any integer value of k are typically referred to as low frequencies (relatively slow
oscillations), whereas values of ω 0 in the vicinity of ω 0 = (π + 2πk) for any integer
value of k are typically referred to as high frequencies (relatively rapid oscillations).

2.2 DISCRETE-TIME SYSTEMS

A discrete-time system is defined mathematically as a transformation or operator that
maps an input sequence with values x[n] into an output sequence with values y[n]. This
can be denoted as

y[n] = T {x[n]} (2.19)

and is indicated pictorially in Figure 2.6. Equation (2.19) represents a rule or formula
for computing the output sequence values from the input sequence values. It should
be emphasized that the value of the output sequence at each value of the index n may
depend on input samples x[n] for all values of n, i.e., y at time n can depend on all or
part of the entire sequence x. The following examples illustrate some simple and useful
systems.

x [n] y [n]
T {•}

Figure 2.6 Representation of a
discrete-time system, i.e., a
transformation that maps an input
sequence x [n] into a unique output
sequence y [n].

Example 2.2 The Ideal Delay System

The ideal delay system is defined by the equation

y[n] = x[n − nd], −∞ < n < ∞, (2.20)

where nd is a fixed positive integer representing the delay of the system. In other words,
the ideal delay system shifts the input sequence to the right by nd samples to form the
output. If, in Eq. (2.20), nd is a fixed negative integer, then the system would shift the
input to the left by |nd | samples, corresponding to a time advance.

In the system of Example 2.2, only one sample of the input sequence is involved
in determining a certain output sample. In the following example, this is not the case.

18 Chapter 2 Discrete-Time Signals and Systems

Example 2.3 Moving Average

The general moving-average system is defined by the equation

y[n] = 1
M 1 + M 2 + 1

M 2∑
k=−M 1

x[n − k]

= 1
M 1 + M 2 + 1

{
x[n + M 1] + x[n + M 1 − 1] + · · · + x[n] (2.21)

+x[n − 1] + · · · + x[n − M 2]} .
This system computes the nth sample of the output sequence as the average of (M 1 +
M 2+1) samples of the input sequence around the nth sample. Figure 2.7 shows an input
sequence plotted as a function of a dummy index k and the samples (solid dots) involved
in the computation of the output sample y[n] for n = 7, M 1 = 0, and M 2 = 5. The out-
put sample y[7] is equal to one-sixth of the sum of all the samples between the vertical
dotted lines. To compute y[8], both dotted lines would move one sample to the right.

x [k]

kn0
n – 5

Figure 2.7 Sequence values involved in computing a moving average withM1 = 0
and M2 = 5.

Classes of systems are defined by placing constraints on the properties of the
transformation T {·}. Doing so often leads to very general mathematical representations,
as we will see. Of particular importance are the system constraints and properties,
discussed in Sections 2.2.1–2.2.5.

2.2.1 Memoryless Systems

A system is referred to as memoryless if the output y[n] at every value of n depends
only on the input x[n] at the same value of n.

Example 2.4 A Memoryless System

An example of a memoryless system is a system for which x[n] and y[n] are related by

y[n] = (x[n])2, for each value of n. (2.22)

Section 2.2 Discrete-Time Systems 19

The system in Example 2.2 is not memoryless unless nd = 0; in particular, that
system is referred to as having “memory” whether nd is positive (a time delay) or
negative (a time advance). The moving average system in Example 2.3 is not memoryless
unless M 1 = M 2 = 0.

2.2.2 Linear Systems

The class of linear systems is defined by the principle of superposition. If y 1[n] and y 2[n]
are the responses of a system when x1[n] and x2[n] are the respective inputs, then the
system is linear if and only if

T {x1[n] + x2[n]} = T {x1[n]} + T {x2[n]} = y 1[n] + y 2[n] (2.23a)

and

T {ax[n]} = aT {x[n]} = ay[n], (2.23b)

where a is an arbitrary constant. The first property is the additivity property, and the
second the homogeneity or scaling property. These two properties together comprise
the principle of superposition, stated as

T {ax1[n] + bx2[n]} = aT {x1[n]} + bT {x2[n]} (2.24)

for arbitrary constants a and b. This equation can be generalized to the superposition
of many inputs. Specifically, if

x[n] =
∑

k

akxk[n], (2.25a)

then the output of a linear system will be

y[n] =
∑

k

akyk[n], (2.25b)

where yk[n] is the system response to the input xk[n].
By using the definition of the principle of superposition, it is easily shown that the

systems of Examples 2.2 and 2.3 are linear systems. (See Problem 2.39.) An example of
a nonlinear system is the system in Example 2.4.

Example 2.5 The Accumulator System

The system defined by the input–output equation

y[n] =
n∑

k=−∞
x[k] (2.26)

is called the accumulator system, since the output at time n is the accumulation or
sum of the present and all previous input samples. The accumulator system is a linear
system. Since this may not be intuitively obvious, it is a useful exercise to go through
the steps of more formally showing this. We begin by defining two arbitrary inputs
x1[n] and x2[n] and their corresponding outputs

20 Chapter 2 Discrete-Time Signals and Systems

y 1[n] =
n∑

k=−∞
x1[k], (2.27)

y 2[n] =
n∑

k=−∞
x2[k]. (2.28)

When the input is x3[n] = ax1[n] + bx2[n], the superposition principle requires the
output y3[n] = ay 1[n] + by 2[n] for all possible choices of a and b. We can show this
by starting from Eq. (2.26):

y3[n] =
n∑

k=−∞
x3[k], (2.29)

=
n∑

k=−∞

(
ax1[k] + bx2[k]), (2.30)

= a

n∑
k=−∞

x1[k] + b

n∑
k=−∞

x2[k], (2.31)

= ay 1[n] + by 2[n]. (2.32)

Thus, the accumulator system of Eq. (2.26) satisfies the superposition principle for all
inputs and is therefore linear.

Example 2.6 A Nonlinear System

Consider the system defined by

w[n] = log10 (|x[n]|). (2.33)

This system is not linear. To prove this, we only need to find one counterexample—
that is, one set of inputs and outputs which demonstrates that the system violates
the superposition principle, Eq. (2.24). The inputs x1[n] = 1 and x2[n] = 10 are a
counterexample. However, the output for x1[n] + x2[n] = 11 is

log10(1 + 10) = log10(11) �= log10(1) + log10(10) = 1.

Also, the output for the first signal is w1[n] = 0, whereas for the second, w2[n] = 1. The
scaling property of linear systems requires that, since x2[n] = 10x1[n], if the system is
linear, it must be true that w2[n] = 10w1[n]. Since this is not so for Eq. (2.33) for this
set of inputs and outputs, the system is not linear.

2.2.3 Time-Invariant Systems
A time-invariant system (often referred to equivalently as a shift-invariant system) is
a system for which a time shift or delay of the input sequence causes a corresponding
shift in the output sequence. Specifically, suppose that a system transforms the input
sequence with values x[n] into the output sequence with values y[n]. Then, the system
is said to be time invariant if, for all n0, the input sequence with values x1[n] = x[n−n0]
produces the output sequence with values y 1[n] = y[n − n0].

As in the case of linearity, proving that a system is time invariant requires a general
proof making no specific assumptions about the input signals. On the other hand, proving
non-time invariance only requires a counter example to time invariance. All of the
systems in Examples 2.2–2.6 are time invariant. The style of proof for time invariance
is illustrated in Examples 2.7 and 2.8.

Section 2.2 Discrete-Time Systems 21

Example 2.7 The Accumulator as a Time-Invariant System

Consider the accumulator from Example 2.5. We define x1[n] = x[n − n0]. To show
time invariance, we solve for both y[n−n0] and y 1[n] and compare them to see whether
they are equal. First,

y[n − n0] =
n−n0∑

k=−∞
x[k]. (2.34)

Next, we find

y 1[n] =
n∑

k=−∞
x1[k] (2.35)

=
n∑

k=−∞
x[k − n0]. (2.36)

Substituting the change of variables k 1 = k − n0 into the summation gives

y 1[n] =
n−n0∑

k 1=−∞
x[k 1]. (2.37)

Since the index k in Eq. (2.34) and the index k 1 in Eq. (2.37) are dummy indices of
summation, and can have any label, Eqs. (2.34) and (2.37) are equal and therefore
y 1[n] = y[n − n0]. The accumulator is a time-invariant system.

The following example illustrates a system that is not time invariant.

Example 2.8 The Compressor System

The system defined by the relation

y[n] = x[Mn], −∞ < n < ∞, (2.38)

with M a positive integer, is called a compressor. Specifically, it discards (M − 1)

samples out of M ; i.e., it creates the output sequence by selecting every Mth sample.
This system is not time invariant. We can show that it is not by considering the response
y 1[n] to the input x1[n] = x[n−n0]. For the system to be time invariant, the output of
the system when the input is x1[n] must be equal to y[n − n0]. The output y 1[n] that
results from the input x1[n] can be directly computed from Eq. (2.38) to be

y 1[n] = x1[Mn] = x[Mn − n0]. (2.39)

Delaying the output y[n] by n0 samples yields

y[n − n0] = x[M(n − n0)]. (2.40)

Comparing these two outputs, we see that y[n−n0] is not equal to y 1[n] for all M and
n0, and therefore, the system is not time invariant.

It is also possible to prove that a system is not time invariant by finding a single
counterexample that violates the time-invariance property. For instance, a counterex-
ample for the compressor is the case when M = 2, x[n] = δ[n], and x1[n] = δ[n − 1].
For this choice of inputs and M , y[n] = δ[n], but y 1[n] = 0; thus, it is clear that
y 1[n] �= y[n − 1] for this system.

22 Chapter 2 Discrete-Time Signals and Systems

2.2.4 Causality

A system is causal if, for every choice of n0, the output sequence value at the index n = n0
depends only on the input sequence values for n ≤ n0. This implies that if x1[n] = x2[n]
for n ≤ n0, then y 1[n] = y 2[n] for n ≤ n0. That is, the system is nonanticipative. The
system of Example 2.2 is causal for nd ≥ 0 and is noncausal for nd < 0. The system of
Example 2.3 is causal if −M 1 ≥ 0 and M 2 ≥ 0; otherwise it is noncausal. The system of
Example 2.4 is causal, as is the accumulator of Example 2.5 and the nonlinear system
in Example 2.6. However, the system of Example 2.8 is noncausal if M > 1, since
y[1] = x[M]. Another noncausal system is given in the following example.

Example 2.9 The Forward and Backward Difference Systems

The system defined by the relationship

y[n] = x[n + 1] − x[n] (2.41)

is referred to as the forward difference system. This system is not causal, since the
current value of the output depends on a future value of the input. The violation of
causality can be demonstrated by considering the two inputs x1[n] = δ[n − 1] and
x2[n] = 0 and their corresponding outputs y 1[n] = δ[n] − δ[n − 1] and y 2[n] = 0
for all n. Note that x1[n] = x2[n] for n ≤ 0, so the definition of causality requires
that y 1[n] = y 2[n] for n ≤ 0, which is clearly not the case for n = 0. Thus, by this
counterexample, we have shown that the system is not causal.

The backward difference system, defined as

y[n] = x[n] − x[n − 1], (2.42)

has an output that depends only on the present and past values of the input. Because
y[n0] depends only on x[n0] and x[n0 − 1], the system is causal by definition.

2.2.5 Stability

A number of somewhat different definitions are commonly used for stability of a system.
Throughout this text, we specifically use bounded-input bounded-output stability.

A system is stable in the bounded-input, bounded-output (BIBO) sense if and
only if every bounded input sequence produces a bounded output sequence. The input
x[n] is bounded if there exists a fixed positive finite value Bx such that

|x[n]| ≤ Bx < ∞, for all n. (2.43)

Stability requires that, for every bounded input, there exists a fixed positive finite value
By such that

|y[n]| ≤ By < ∞, for all n. (2.44)

It is important to emphasize that the properties we have defined in this section are
properties of systems, not of the inputs to a system. That is, we may be able to find
inputs for which the properties hold, but the existence of the property for some inputs
does not mean that the system has the property. For the system to have the property, it
must hold for all inputs. For example, an unstable system may have some bounded inputs
for which the output is bounded, but for the system to have the property of stability, it

Section 2.3 LTI Systems 23

must be true that for all bounded inputs, the output is bounded. If we can find just one
input for which the system property does not hold, then we have shown that the system
does not have that property. The following example illustrates the testing of stability
for several of the systems that we have defined.

Example 2.10 Testing for Stability or Instability

The system of Example 2.4 is stable. To see this, assume that the input x[n] is bounded
such that |x[n]| ≤ Bx for all n. Then |y[n]| = |x[n]|2 ≤ B 2

x . Thus, we can choose
By = B 2

x and prove that y[n] is bounded.
Likewise, we can see that the system defined in Example 2.6 is unstable, since

y[n] = log10(|x[n]|) = −∞ for any values of the time index n at which x[n] = 0, even
though the output will be bounded for any input samples that are not equal to zero.

The accumulator, as defined in Example 2.5 by Eq. (2.26), is also not stable. For
example, consider the case when x[n] = u[n], which is clearly bounded by Bx = 1. For
this input, the output of the accumulator is

y[n] =
n∑

k=−∞
u[k] (2.45)

=
{

0, n < 0,

(n + 1), n ≥ 0.
(2.46)

There is no finite choice for By such that (n + 1) ≤ By < ∞ for all n; thus, the system
is unstable.

Using similar arguments, it can be shown that the systems in Examples 2.2, 2.3,
2.8, and 2.9 are all stable.

2.3 LTI SYSTEMS

As in continuous time, a particularly important class of discrete-time systems consists of
those that are both linear and time invariant. These two properties in combination lead
to especially convenient representations for such systems. Most important, this class
of systems has significant signal-processing applications. The class of linear systems is
defined by the principle of superposition in Eq. (2.24). If the linearity property is com-
bined with the representation of a general sequence as a linear combination of delayed
impulses as in Eq. (2.5), it follows that a linear system can be completely characterized
by its impulse response. Specifically, let hk[n] be the response of the system to the input
δ[n − k], an impulse occurring at n = k. Then, using Eq. (2.5) to represent the input, it
follows that

y[n] = T

{ ∞∑
k=−∞

x[k]δ[n − k]
}

, (2.47)

and the principle of superposition in Eq. (2.24), we can write

y[n] =
∞∑

k=−∞
x[k]T {δ[n − k]} =

∞∑
k=−∞

x[k]hk[n]. (2.48)

24 Chapter 2 Discrete-Time Signals and Systems

According to Eq. (2.48), the system response to any input can be expressed in terms
of the responses of the system to the sequences δ[n − k]. If only linearity is imposed,
then hk[n] will depend on both n and k, in which case the computational usefulness
of Eq. (2.48) is somewhat limited. We obtain a more useful result if we impose the
additional constraint of time invariance.

The property of time invariance implies that if h[n] is the response to δ[n], then
the response to δ[n − k] is h[n − k]. With this additional constraint, Eq. (2.48) becomes

y[n] =
∞∑

k=−∞
x[k]h[n − k], for all n. (2.49)

As a consequence of Eq. (2.49), an LTI system is completely characterized by its impulse
response h[n] in the sense that, given the sequences x[n] and h[n] for all n, it is possible
to use Eq. (2.49) to compute each sample of the output sequence y[n].

Equation (2.49) is referred to as the convolution sum, and we represent this by
the operator notation

y[n] = x[n] ∗ h[n]. (2.50)

The operation of discrete-time convolution takes two sequences x[n] and h[n] and pro-
duces a third sequence y[n]. Equation (2.49) expresses each sample of the output se-
quence in terms of all of the samples of the input and impulse response sequences.

The notation of Eq. (2.50) for the operation of convolution as shorthand for
Eq. (2.49) is convenient and compact but needs to be used with caution. The basic
definition of the convolution of two sequences is embodied in Eq. (2.49) and any use
of the shorthand form in Eq. (2.50) should always be referred back to Eq. (2.49). For
example, consider y[n − n0]. From Eq. (2.49) we see that

y[n − n0] =
∞∑

k=−∞
x[k]h[n − n0 − k] (2.51)

or in short hand notation

y[n − n0] = x[n] ∗ h[n − n0] (2.52)

Substituting (n − n0) for n in Eq. (2.49) leads to the correct result and conclusion, but
blindly trying the same substitution in Eq. (2.50) does not. In fact, x[n − n0] ∗ h[n − n0]
results in y[n − 2n0].

The derivation of Eq. (2.49) suggests the interpretation that the input sample at
n = k, represented as x[k]δ[n−k], is transformed by the system into an output sequence
x[k]h[n − k], for −∞ < n < ∞, and that, for each k, these sequences are superimposed
(summed) to form the overall output sequence. This interpretation is illustrated in Fig-
ure 2.8, which shows an impulse response, a simple input sequence having three nonzero
samples, the individual outputs due to each sample, and the composite output due to all

0
3

–2

–2

x[n]

n 0 2

1
h[n]

n

0–2 n 0

y–2[n] = x[–2]h[n + 2]

y[n] = y–2[n] + y0[n] + y3[n]x[n] = x–2[n] + x0[n] + x3[n]

x–2[n] = x[–2]�[n + 2]

x3[n] = x[3]�[n – 3] y3[n] = x[3]h[n – 3]

x0[n] = x[0]�[n] y0[n] = x[0]h[n]

n

0 n 0 2 n

0
3

n 0
3 5

5

n

0
3

–2 –2n 0 n

Figure 2.8 Representation of the output of an LTI system as the superposition
of responses to individual samples of the input.

25

26 Chapter 2 Discrete-Time Signals and Systems

the samples in the input sequence. Specifically, x[n] can be decomposed as the sum of the
three sequences x[−2]δ[n+2], x[0]δ[n], and x[3]δ[n−3] representing the three nonzero
values in the sequence x[n]. The sequences x[−2]h[n + 2], x[0]h[n], and x[3]h[n − 3]
are the system responses to x[−2]δ[n + 2], x[0]δ[n], and x[3]δ[n − 3], respectively. The
response to x[n] is then the sum of these three individual responses.

Although the convolution-sum expression is analogous to the convolution integral
of continuous-time linear system theory, the convolution sum should not be thought of
as an approximation to the convolution integral. The convolution integral is mainly a
tool of mathematical analysis in continuous-time linear system theory; we will see that
the convolution sum, in addition to its analytical importance, often serves as an explicit
realization of a discrete-time linear system. Thus, it is important to gain some insight
into the properties of the convolution sum in actual calculations.

The preceding interpretation of Eq. (2.49) emphasizes that the convolution sum
is a direct result of linearity and time invariance. However, a slightly different way of
looking at Eq. (2.49) leads to a particularly useful computational interpretation. When
viewed as a formula for computing a single value of the output sequence, Eq. (2.49)
dictates that y[n] (i.e., the nth value of the output) is obtained by multiplying the input
sequence (expressed as a function of k) by the sequence whose values are h[n − k],
−∞ < k < ∞ for any fixed value of n, and then summing all the values of the products
x[k]h[n−k], with k a counting index in the summation process. Therefore, the operation
of convolving two sequences involves doing the computation specified by Eq. (2.49) for
each value of n, thus generating the complete output sequence y[n], −∞ < n < ∞. The
key to carrying out the computations of Eq. (2.49) to obtain y[n] is understanding how
to form the sequence h[n − k], −∞ < k < ∞, for all values of n that are of interest. To
this end, it is useful to note that

h[n − k] = h[−(k − n)]. (2.53)

To illustrate the interpretation of Eq. (2.53), suppose h[k] is the sequence shown in
Figure 2.9(a) and we wish to find h[n − k] = h[−(k − n)]. Define h1[k] to be h[−k],
which is shown in Figure 2.9(b). Next, define h2[k] to be h1[k], delayed, by n samples
on the k axis, i.e., h2[k] = h1[k − n]. Figure 2.9(c) shows the sequence that results from
delaying the sequence in Figure 2.9(b) by n samples. Using the relationship between
h1[k] and h[k], we can show that h2[k] = h1[k − n] = h[−(k − n)] = h[n − k], and thus,
the bottom figure is the desired signal. To summarize, to compute h[n − k] from h[k],
we first reverse h[k] in time about k = 0 and then delay the time-reversed signal by n

samples.
To implement discrete-time convolution, the two sequences x[k] and h[n − k] are

multiplied together sample by sample for −∞ < k < ∞, and the products are summed
to compute the output sample y[n]. To obtain another output sample, the origin of the
sequence h[−k] is shifted to the new sample position, and the process is repeated. This
computational procedure applies whether the computations are carried out numerically
on sampled data or analytically with sequences for which the sample values have simple
formulas. The following example illustrates discrete-time convolution for the latter case.

Section 2.3 LTI Systems 27

0

(a)

–3 6

h [k]

k

0

(b)

–6 3

h1[k] = h [–k] = h [0 – k]

k

0

(c)

n + 3n – 6

h2[k] = h1[k – n] = h [n – k] = h [–(k – n)]

kn

Figure 2.9 Forming the sequence h[n − k]. (a) The sequence h[k] as a function
of k . (b) The sequence h[−k] as a function of k . (c) The sequence h[n − k] =
h[− (k − n)] as a function of k for n = 4.

Example 2.11 Analytical Evaluation of the Convolution Sum

Consider a system with impulse response

h[n] = u[n] − u[n − N]

=
{

1, 0 ≤ n ≤ N − 1,

0, otherwise.

The input is

x[n] =
{

an, n ≥ 0,

0, n < 0,

or equivalently,

x[n] = anu[n].
To find the output at a particular index n, we must form the sums over all k of the
product x[k]h[n − k]. In this case, we can find formulas for y[n] for different sets
of values of n. To do this, it is helpful to sketch the sequences x[k] and h[n − k] as
functions of k for different representative values of n. For example, Figure 2.10(a)
shows the sequences x[k] and h[n − k], plotted for n a negative integer. Clearly, all

28 Chapter 2 Discrete-Time Signals and Systems

0
(a)

n
n – (N – 1)

k

0

(b)

n
n – (N – 1)

k

0

(c)

n
n – (N – 1)

k

0

(d)

N – 1
k

h [n – k]

x [k]

y [n]

Figure 2.10 Sequence involved in computing a discrete convolution. (a)–(c) The
sequences x [k] and h[n−k] as a function of k for different values of n. (Only nonzero
samples are shown.) (d) Corresponding output sequence as a function of n.

negative values of n give a similar picture; i.e., the nonzero portions of the sequences
x[k] and h[n − k] do not overlap, so

y[n] = 0, n < 0.

Figure 2.10(b) illustrates the two sequences when 0 ≤ n and n − N + 1 ≤ 0. These two
conditions can be combined into the single condition 0 ≤ n ≤ N − 1. By considering
Figure 2.10(b), we see that since

x[k]h[n − k] = ak, for 0 ≤ k ≤ n

when 0 ≤ n ≤ N − 1.

Section 2.3 LTI Systems 29

it follows that

y[n] =
n∑

k=0

ak, for 0 ≤ n ≤ N − 1. (2.54)

The limits on the sum can be seen directly from Figure 2.10(b). Equation (2.54) shows
that y[n] is the sum of n + 1 terms of a geometric series in which the ratio of terms is
a. This sum can be expressed in closed form using the general formula

N 2∑
k=N 1

αk = αN 1 − αN 2+1

1 − α
, N 2 ≥ N 1. (2.55)

Applying this formula to Eq. (2.54), we obtain

y[n] = 1 − an+1

1 − a
, 0 ≤ n ≤ N − 1. (2.56)

Finally, Figure 2.10(c) shows the two sequences when 0 < n − N + 1 or N − 1 < n. As
before,

x[k]h[n − k] = ak, n − N + 1 ≤ k ≤ n,

but now the lower limit on the sum is n − N + 1, as seen in Figure 2.10(c). Thus,

y[n] =
n∑

k= n−N+1

ak, for N − 1 < n. (2.57)

Using Eq. (2.55), we obtain

y[n] = an−N+1 − an+1

1 − a
,

or

y[n] = an−N+1

(
1 − aN

1 − a

)
. (2.58)

Thus, because of the piecewise-exponential nature of both the input and the unit
sample response, we have been able to obtain the following closed-form expression
for y[n] as a function of the index n:

y[n] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, n < 0,

1 − an+1

1 − a
, 0 ≤ n ≤ N − 1,

an−N+1

(
1 − aN

1 − a

)
, N − 1 < n.

(2.59)

This sequence is shown in Figure 2.10(d).

Example 2.11 illustrates how the convolution sum can be computed analytically
when the input and the impulse response are given by simple formulas. In such cases,
the sums may have a compact form that may be derived using the formula for the sum of
a geometric series or other “closed-form” formulas.2 When no simple form is available,

2Such results are discussed, for example, in Grossman (1992) and Jolley (2004).

30 Chapter 2 Discrete-Time Signals and Systems

the convolution sum can still be evaluated numerically using the technique illustrated
in Example 2.11 whenever the sums are finite, which will be the case if either the input
sequence or the impulse response is of finite length, i.e., has a finite number of nonzero
samples.

2.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

Since all LTI systems are described by the convolution sum of Eq. (2.49), the proper-
ties of this class of systems are defined by the properties of discrete-time convolution.
Therefore, the impulse response is a complete characterization of the properties of a
specific LTI system.

Some general properties of the class of LTI systems can be found by considering
properties of the convolution operation.3 For example, the convolution operation is
commutative:

x[n] ∗ h[n] = h[n] ∗ x[n]. (2.60)

This can be shown by applying a substitution of variables to the summation index in
Eq. (2.49). Specifically, with m = n − k,

y[n] =
−∞∑

m=∞
x[n − m]h[m] =

∞∑
m=−∞

h[m]x[n − m] = h[n] ∗ x[n], (2.61)

so the roles of x[n] and h[n] in the summation are interchanged. That is, the order of
the sequences in a convolution operator is unimportant; hence, the system output is
the same if the roles of the input and impulse response are reversed. Accordingly, an
LTI system with input x[n] and impulse response h[n] will have the same output as an
LTI system with input h[n] and impulse response x[n]. The convolution operation also
distributes over addition; i.e.,

x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n]. (2.62)

This follows in a straightforward way from Eq. (2.49) and is a direct result of the lin-
earity and commutativity of convolution. Equation (2.62) is represented pictorially in
Figure 2.11, where Figure 2.11(a) represents the right-hand side of Eq. (2.62) and Fig-
ure 2.11(b) the left-hand side.

The convolution operation also satisfies the associative property, i.e.,

y[n] = (x[n] ∗ h1[n]) ∗ h2[n] = x[n] ∗ (h1[n] ∗ h2[n]). (2.63)

Also since the convolution operation is commutative, Eq. (2.63) is equivalent to

y[n] = x[n] ∗ (h2[n] ∗ h1[n]) = (x[n] ∗ h2[n]) ∗ h1[n]. (2.64)

These equivalences are represented pictorially in Figure 2.12. Also, Eqs. (2.63) and
(2.64) clearly imply that if two LTI systems with impulse responses h1[n] and h2[n] are
cascaded in either order, the equivalent overall impulse response h[n] is

h[n] = h1[n] ∗ h2[n] = h2[n] ∗ h1[n]. (2.65)

3In our discussion below and throughout the text, we use the shorthand notation of Eq. (2.50) for
the operation of convolution, but again emphasize that the properties of convolution are derived from the
definition of Eq. (2.49).

Section 2.4 Properties of Linear Time-Invariant Systems 31

x [n] y [n]

h1[n]

h2[n]

x [n]
(b)

(a)

y [n]
h1[n] + h2[n]

+

Figure 2.11 (a) Parallel combination of
LTI systems. (b) An equivalent system.

x [n] y [n]
h1[n] h2[n]

x [n] y [n]
h2[n] h1[n]

x [n]

(a)

(b)

(c)
y [n]

h1[n]*h2[n] Figure 2.12 (a) Cascade combination
of two LTI systems. (b) Equivalent
cascade. (c) Single equivalent system.

In a parallel combination, the systems have the same input, and their outputs
are summed to produce an overall output. It follows from the distributive property of
convolution that the connection of two LTI systems in parallel is equivalent to a single
system whose impulse response is the sum of the individual impulse responses; i.e.,

h[n] = h1[n] + h2[n]. (2.66)

The constraints of linearity and time invariance define a class of systems with very
special properties. Stability and causality represent additional properties, and it is often
important to know whether an LTI system is stable and whether it is causal. Recall from
Section 2.2.5 that a stable system is a system for which every bounded input produces a
bounded output. LTI systems are stable if and only if the impulse response is absolutely
summable, i.e., if

Bh =
∞∑

k=−∞
|h[k]| < ∞. (2.67)

This can be shown as follows. From Eq. (2.61),

|y[n]| =
∣∣∣∣∣

∞∑
k=−∞

h[k]x[n − k]
∣∣∣∣∣ ≤

∞∑
k=−∞

|h[k]| |x[n − k]|. (2.68)

If x[n] is bounded, so that

|x[n]| ≤ Bx,

32 Chapter 2 Discrete-Time Signals and Systems

then substituting Bx for |x[n − k]| can only strengthen the inequality. Hence,

|y[n]| ≤ BxBh. (2.69)

Thus, y[n] is bounded if Eq. (2.67) holds; in other words, Eq. (2.67) is a sufficient con-
dition for stability. To show that it is also a necessary condition, we must show that if
Bh = ∞, then a bounded input can be found that will cause an unbounded output. Such
an input is the sequence with values

x[n] =
⎧⎨⎩

h∗[−n]
|h[−n]| , h[n] �= 0,

0, h[n] = 0,

(2.70)

where h∗[n] is the complex conjugate of h[n]. The sequence x[n] is clearly bounded by
unity. However, the value of the output at n = 0 is

y[0] =
∞∑

k=−∞
x[−k]h[k] =

∞∑
k=−∞

|h[k]|2
|h[k]| = Bh. (2.71)

Therefore, if Bh = ∞, it is possible for a bounded input sequence to produce an un-
bounded output sequence.

The class of causal systems was defined in Section 2.2.4 as comprising those systems
for which the output y[n0] depends only on the input samples x[n], for n ≤ n0. It follows
from Eq. (2.49) or Eq. (2.61) that this definition implies the condition

h[n] = 0, n < 0, (2.72)

for causality of LTI systems. (See Problem 2.69.) For this reason, it is sometimes conve-
nient to refer to a sequence that is zero for n < 0 as a causal sequence, meaning that it
could be the impulse response of a causal system.

To illustrate how the properties of LTI systems are reflected in the impulse re-
sponse, let us consider again some of the systems defined in Examples 2.2–2.9. First,
note that only the systems of Examples 2.2, 2.3, 2.5, and 2.9 are linear and time in-
variant. Although the impulse response of nonlinear or time-varying systems can be
found by simply using an impulse input, it is generally of limited interest, since the
convolution-sum formula and Eqs. (2.67) and (2.72), expressing stability and causality,
do not apply to such systems.

First, let us determine the impulse responses of the systems in Examples 2.2, 2.3,
2.5, and 2.9. We can do this by simply computing the response of each system to δ[n],
using the defining relationship for the system. The resulting impulse responses are as
follows:

Ideal Delay (Example 2.2)

h[n] = δ[n − nd], nd a positive fixed integer. (2.73)

Moving Average (Example 2.3)

h[n] = 1
M 1 + M 2 + 1

M 2∑
k=−M 1

δ[n − k]

=
⎧⎨⎩

1
M 1 + M 2 + 1

, −M 1 ≤ n ≤ M 2,

0, otherwise.

(2.74)

Section 2.4 Properties of Linear Time-Invariant Systems 33

Accumulator (Example 2.5)

h[n] =
n∑

k=−∞
δ[k] =

{
1, n ≥ 0,

0, n < 0,
= u[n]. (2.75)

Forward Difference (Example 2.9)

h[n] = δ[n + 1] − δ[n]. (2.76)

Backward Difference (Example 2.9)

h[n] = δ[n] − δ[n − 1]. (2.77)

Given the impulse responses of these basic systems [Eqs. (2.73)–(2.77)], we can
test the stability of each one by computing the sum

Bh =
∞∑

n=−∞
|h[n]|.

For the ideal delay, moving-average, forward difference, and backward difference ex-
amples, it is clear that Bh < ∞, since the impulse response has only a finite number of
nonzero samples. In general, a system with a finite-duration impulse response (hence-
forth referred to as an FIR system) will always be stable, as long as each of the impulse
response values is finite in magnitude. The accumulator, however, is unstable because

Bh =
∞∑

n=0

u[n] = ∞.

In Section 2.2.5, we also demonstrated the instability of the accumulator by giving an
example of a bounded input (the unit step) for which the output is unbounded.

The impulse response of the accumulator has infinite duration. This is an example
of the class of systems referred to as infinite-duration impulse response (IIR) systems.
An example of an IIR system that is stable is a system whose impulse response is
h[n] = anu[n] with |a| < 1. In this case,

Bh =
∞∑

n=0

|a|n. (2.78)

If |a| < 1, the formula for the sum of the terms of an infinite geometric series gives

Bh = 1
1 − |a| < ∞. (2.79)

If, on the other hand, |a| ≥ 1, then the sum is infinite and the system is unstable.
To test causality of the LTI systems in Examples 2.2, 2.3, 2.5, and 2.9, we can check

to see whether h[n] = 0 for n < 0. As discussed in Section 2.2.4, the ideal delay [nd ≥ 0
in Eq. (2.20)] is causal. If nd < 0, then the system is noncausal. For the moving average,
causality requires that −M 1 ≥ 0 and M 2 ≥ 0. The accumulator and backward difference
systems are causal, and the forward difference system is noncausal.

34 Chapter 2 Discrete-Time Signals and Systems

x [n] y [n]

(a)

Forward
difference

x [n]
Backward
difference

One-sample
delay

x [n] y [n]

y [n]

(b)

(c)

Forward
difference

One-sample
delay

Figure 2.13 Equivalent systems found
by using the commutative property of
convolution.

The concept of convolution as an operation between two sequences leads to the
simplification of many problems involving systems. A particularly useful result can be
stated for the ideal delay system. Since the output of the delay system is y[n] = x[n−nd],
and since the delay system has impulse response h[n] = δ[n − nd], it follows that

x[n] ∗ δ[n − nd] = δ[n − nd] ∗ x[n] = x[n − nd]. (2.80)

That is, the convolution of a shifted impulse sequence with any signal x[n] is easily
evaluated by simply shifting x[n] by the displacement of the impulse.

Since delay is a fundamental operation in the implementation of linear systems,
the preceding result is often useful in the analysis and simplification of interconnections
of LTI systems. As an example, consider the system of Figure 2.13(a), which consists
of a forward difference system cascaded with an ideal delay of one sample. According
to the commutative property of convolution, the order in which systems are cascaded
does not matter, as long as they are linear and time invariant. Therefore, we obtain
the same result when we compute the forward difference of a sequence and delay the
result (Figure 2.13a) as when we delay the sequence first and then compute the forward
difference (Figure 2.13b). Also, as indicated in Eq. (2.65) and in Figure 2.12, the overall
impulse response of each cascade system is the convolution of the individual impulse
responses. Consequently,

h[n] = (δ[n + 1] − δ[n]) ∗ δ[n − 1]
= δ[n − 1] ∗ (δ[n + 1] − δ[n]) (2.81)

= δ[n] − δ[n − 1].
Thus, h[n] is identical to the impulse response of the backward difference system; that
is, the cascaded systems of Figures 2.13(a) and 2.13(b) can be replaced by a backward
difference system, as shown in Figure 2.13(c).

Note that the noncausal forward difference systems in Figures 2.13(a) and (b)
have been converted to causal systems by cascading them with a delay. In general, any
noncausal FIR system can be made causal by cascading it with a sufficiently long delay.

Section 2.5 Linear Constant-Coefficient Difference Equations 35

x [n] x [n]

Accumulator
system

Backward-
difference

systemy [n]

Figure 2.14 An accumulator in
cascade with a backward difference.
Since the backward difference is the
inverse system for the accumulator, the
cascade combination is equivalent to
the identity system.

Another example of cascaded systems introduces the concept of an inverse system.
Consider the cascade of systems in Figure 2.14. The impulse response of the cascade
system is

h[n] = u[n] ∗ (δ[n] − δ[n − 1])
= u[n] − u[n − 1] (2.82)

= δ[n].
That is, the cascade combination of an accumulator followed by a backward differ-
ence (or vice versa) yields a system whose overall impulse response is the impulse.
Thus, the output of the cascade combination will always be equal to the input, since
x[n] ∗ δ[n] = x[n]. In this case, the backward difference system compensates exactly for
(or inverts) the effect of the accumulator; that is, the backward difference system is the
inverse system for the accumulator. From the commutative property of convolution, the
accumulator is likewise the inverse system for the backward difference system. Note
that this example provides a system interpretation of Eqs. (2.7) and (2.9). In general, if
an LTI system has impulse response h[n], then its inverse system, if it exists, has impulse
response hi[n] defined by the relation

h[n] ∗ hi[n] = hi[n] ∗ h[n] = δ[n]. (2.83)

Inverse systems are useful in many situations where it is necessary to compensate
for the effects of a system. In general, it is difficult to solve Eq. (2.83) directly for
hi[n], given h[n]. However, in Chapter 3, we will see that the z-transform provides a
straightforward method of finding the inverse of an LTI system.

2.5 LINEAR CONSTANT-COEFFICIENT DIFFERENCE
EQUATIONS

An important class of LTI systems consists of those systems for which the input x[n]
and the output y[n] satisfy an N th-order linear constant-coefficient difference equation
of the form

N∑
k=0

aky[n − k] =
M∑

m=0

bmx[n − m]. (2.84)

The properties discussed in Section 2.4 and some of the analysis techniques introduced
there can be used to find difference equation representations for some of the LTI systems
that we have defined.

36 Chapter 2 Discrete-Time Signals and Systems

Example 2.12 Difference Equation Representation of the
Accumulator

The accumulator system is defined by

y[n] =
n∑

k=−∞
x[k]. (2.85)

To show that the input and output satisfy a difference equation of the form of Eq. (2.84),
we rewrite Eq. (2.85) as

y[n] = x[n] +
n−1∑

k=−∞
x[k] (2.86)

Also, from Eq. (2.85)

y[n − 1] =
n−1∑

k=−∞
x[k]. (2.87)

Substituting Eq. (2.87) into Eq. (2.86) yields

y[n] = x[n] + y[n − 1], (2.88)

and equivalently,

y[n] − y[n − 1] = x[n]. (2.89)

Thus, in addition to satisfying the defining relationship of Eq. (2.85), the input
and output of an accumulator satisfy a linear constant-coefficient difference equation
of the form Eq. (2.84), with N = 1, a0 = 1, a1 = −1, M = 0, and b0 = 1.

The difference equation in the form of Eq. (2.88) suggests a simple implementation
of the accumulator system. According to Eq. (2.88), for each value of n, we add the
current input value x[n] to the previously accumulated sum y[n−1]. This interpretation
of the accumulator is represented in block diagram form in Figure 2.15.

Equation (2.88) and the block diagram in Figure 2.15 are referred to as a recursive
representation of the system, since each value is computed using previously computed
values. This general notion will be explored in more detail later in this section.

y [n – 1]

x [n]

One-sample
delay

y [n]
+

Figure 2.15 Block diagram of a
recursive difference equation
representing an accumulator.

Section 2.5 Linear Constant-Coefficient Difference Equations 37

Example 2.13 Difference Equation Representation of the
Moving-Average System

Consider the moving-average system of Example 2.3, with M 1 = 0 so that the system
is causal. In this case, from Eq. (2.74), the impulse response is

h[n] = 1
(M 2 + 1)

(
u[n] − u[n − M 2 − 1]), (2.90)

from which it follows that

y[n] = 1
(M 2 + 1)

M 2∑
k=0

x[n − k], (2.91)

which is a special case of Eq. (2.84), with N = 0, a0 = 1, M = M 2, and bk = 1/(M 2 +1)

for 0 ≤ k ≤ M 2.
Also, the impulse response can be expressed as

h[n] = 1
(M 2 + 1)

(
δ[n] − δ[n − M 2 − 1]) ∗ u[n], (2.92)

which suggests that the causal moving-average system can be represented as the cas-
cade system of Figure 2.16. We can obtain a difference equation for this block diagram
by noting first that

x1[n] = 1
(M 2 + 1)

(
x[n] − x[n − M 2 − 1]). (2.93)

From Eq. (2.89) of Example 2.12, the output of the accumulator satisfies the difference
equation

y[n] − y[n − 1] = x1[n],
so that

y[n] − y[n − 1] = 1
(M 2 + 1)

(x[n] − x[n − M 2 − 1]). (2.94)

Again, we have a difference equation in the form of Eq. (2.84), but this time N = 1,
a0 = 1, a1 = −1, M = M 2 +1 and b0 = −bM 2+1 = 1/(M 2 +1), and bk = 0 otherwise.

x1[n]x [n] y [n]

Accumulator
system

+
+

–

Attenuator
1

(M2 + 1)

(M2 + 1)
sample
delay

Figure 2.16 Block diagram of the recursive form of a moving-average system.

In Example 2.13, we showed two different difference-equation representations
of the moving-average system. In Chapter 6, we will see that many distinct difference
equations can be used to represent a given LTI input–output relation.

38 Chapter 2 Discrete-Time Signals and Systems

Just as in the case of linear constant-coefficient differential equations for contin-
uous-time systems, without additional constraints or other information, a linear constant-
coefficient difference equation for discrete-time systems does not provide a unique
specification of the output for a given input. Specifically, suppose that, for a given input
xp[n], we have determined by some means one output sequence yp[n], so that an equa-
tion of the form of Eq. (2.84) is satisfied. Then, the same equation with the same input
is satisfied by any output of the form

y[n] = yp[n] + yh[n], (2.95)

where yh[n] is any solution to Eq. (2.84) with x[n] = 0, i.e., a solution to the equation

N∑
k=0

akyh[n − k] = 0. (2.96)

Equation (2.96) is called the homogeneous difference equation and yh[n] the homoge-
neous solution. The sequence yh[n] is in fact a member of a family of solutions of the
form

yh[n] =
N∑

m= 1

Amzn
m, (2.97)

where the coefficients Am can be chosen to satisfy a set of auxiliary conditions on y[n].
Substituting Eq. (2.97) into Eq. (2.96) shows that the complex numbers zm must be roots
of the polynomial

A(z) =
N∑

k=0

akz
−k. (2.98)

i.e., A(zm) = 0 for m = 1, 2, . . . , N . Equation (2.97) assumes that all N roots of the
polynomial in Eq. (2.98) are distinct. The form of terms associated with multiple roots
is slightly different, but there are always N undetermined coefficients. An example of
the homogeneous solution with multiple roots is considered in Problem 2.50.

Since yh[n] has N undetermined coefficients, a set of N auxiliary conditions is
required for the unique specification of y[n] for a given x[n]. These auxiliary conditions
might consist of specifying fixed values of y[n] at specific values of n, such as y[−1],
y[−2], . . . , y[−N], and then solving a set of N linear equations for the N undetermined
coefficients.

Alternatively, if the auxiliary conditions are a set of auxiliary values of y[n], the
other values of y[n] can be generated by rewriting Eq. (2.84) as a recurrence formula,
i.e., in the form

y[n] = −
N∑

k=1

ak

a0
y[n − k] +

M∑
k=0

bk

a0
x[n − k]. (2.99)

If the input x[n] for all n, together with a set of auxiliary values, say, y[−1], y[−2], . . . ,
y[−N], is specified, then y[0] can be determined from Eq. (2.99). With y[0], y[−1], . . . ,
y[−N +1] now available, y[1] can then be calculated, and so on. When this procedure is
used, y[n] is said to be computed recursively; i.e., the output computation involves not
only the input sequence, but also previous values of the output sequence.

Section 2.5 Linear Constant-Coefficient Difference Equations 39

To generate values of y[n] for n < −N (again assuming that the values y[−1],
y[−2], . . . , y[−N] are given as auxiliary conditions), we can rearrange Eq. (2.84) in the
form

y[n − N] = −
N−1∑
k=0

ak

aN

y[n − k] +
M∑

k=0

bk

aN

x[n − k], (2.100)

from which y[−N − 1], y[−N − 2], . . . can be computed recursively in the backward
direction.

Our principal interest in this text is in systems that are linear and time invariant,
in which case the auxiliary conditions must be consistent with these additional require-
ments. In Chapter 3, when we discuss the solution of difference equations using the
z-transform, we implicitly incorporate conditions of linearity and time invariance. As
we will see in that discussion, even with the additional constraints of linearity and time
invariance, the solution to the difference equation, and therefore the system, is not
uniquely specified. In particular, there are, in general, both causal and noncausal LTI
systems consistent with a given difference equation.

If a system is characterized by a linear constant-coefficient difference equation and
is further specified to be linear, time invariant, and causal, then the solution is unique.
In this case, the auxiliary conditions are often stated as initial-rest conditions. In other
words, the auxiliary information is that if the input x[n] is zero for n less than some time
n0, then the output y[n] is constrained to be zero for n less than n0. This then provides
sufficient initial conditions to obtain y[n] for n ≥ n0 recursively using Eq. (2.99).

To summarize, for a system for which the input and output satisfy a linear constant-
coefficient difference equation:

• The output for a given input is not uniquely specified. Auxiliary information or
conditions are required.

• If the auxiliary information is in the form of N sequential values of the output,
later values can be obtained by rearranging the difference equation as a recursive
relation running forward in n, and prior values can be obtained by rearranging the
difference equation as a recursive relation running backward in n.

• Linearity, time invariance, and causality of the system will depend on the auxiliary
conditions. If an additional condition is that the system is initially at rest, then the
system will be linear, time invariant, and causal.

The preceding discussion assumed that N ≥ 1 in Eq. (2.84). If, instead, N = 0,

no recursion is required to use the difference equation to compute the output, and
therefore, no auxiliary conditions are required. That is,

y[n] =
M∑

k=0

(
bk

a0

)
x[n − k]. (2.101)

Equation (2.101) is in the form of a convolution, and by setting x[n] = δ[n], we see that
the corresponding impulse response is

h[n] =
M∑

k=0

(
bk

a0

)
δ[n − k],

40 Chapter 2 Discrete-Time Signals and Systems

or

h[n] =

⎧⎪⎨⎪⎩
(

bn

a0

)
, 0 ≤ n ≤ M,

0, otherwise.

(2.102)

The impulse response is obviously finite in duration. Indeed, the output of any FIR
system can be computed nonrecursively where the coefficients are the values of the
impulse response sequence. The moving-average system of Example 2.13 with M 1 = 0
is an example of a causal FIR system. An interesting feature of that system was that we
also found a recursive equation for the output. In Chapter 6 we will show that there are
many possible ways of implementing a desired signal transformation. Advantages of one
method over another depend on practical considerations, such as numerical accuracy,
data storage, and the number of multiplications and additions required to compute each
sample of the output.

2.6 FREQUENCY-DOMAIN REPRESENTATION OF
DISCRETE-TIME SIGNALS AND SYSTEMS

In the previous sections, we summarized some of the fundamental concepts of the theory
of discrete-time signals and systems. For LTI systems, we saw that a representation of the
input sequence as a weighted sum of delayed impulses leads to a representation of the
output as a weighted sum of delayed impulse responses. As with continuous-time signals,
discrete-time signals may be represented in a number of different ways. For example,
sinusoidal and complex exponential sequences play a particularly important role in
representing discrete-time signals. This is because complex exponential sequences are
eigenfunctions of LTI systems, and the response to a sinusoidal input is sinusoidal with
the same frequency as the input and with amplitude and phase determined by the system.
These fundamental properties of LTI systems make representations of signals in terms
of sinusoids or complex exponentials (i.e., Fourier representations) very useful in linear
system theory.

2.6.1 Eigenfunctions for Linear Time-Invariant Systems

The eigenfunction property of complex exponentials for discrete-time systems follows
directly from substitution into Eq. (2.61). Specifically, with input x[n] = ejωn for −∞ <

n < ∞, the corresponding output of an LTI system with impulse response h[n] is easily
shown to be

y[n] = H(ejω)ejωn, (2.103)

where

H(ejω) =
∞∑

k=−∞
h[k]e−jωk. (2.104)

Consequently, ejωn is an eigenfunction of the system, and the associated eigen-
value is H(ejω). From Eq. (2.103), we see that H(ejω) describes the change in complex
amplitude of a complex exponential input signal as a function of the frequency ω. The

Section 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 41

eigenvalue H(ejω) is the frequency response of the system. In general, H(ejω) is complex
and can be expressed in terms of its real and imaginary parts as

H(ejω) = HR(ejω) + jHI (e
jω) (2.105)

or in terms of magnitude and phase as

H(ejω) = |H(ejω)|ej � H(ejω). (2.106)

Example 2.14 Frequency Response of the Ideal Delay
System

As a simple and important example, consider the ideal delay system defined by

y[n] = x[n − nd], (2.107)

where nd is a fixed integer. With input x[n] = ejωn from Eq. (2.107), we have

y[n] = ejω(n−nd) = e−jωnd ejωn.

The frequency response of the ideal delay is therefore

H(ejω) = e−jωnd . (2.108)

As an alternative method of obtaining the frequency response, recall that the
impulse response for the ideal delay system is h[n] = δ[n − nd]. Using Eq. (2.104), we
obtain

H(ejω) =
∞∑

n=−∞
δ[n − nd]e−jωn = e−jωnd .

The real and imaginary parts of the frequency response are

HR(ejω) = cos(ωnd), (2.109a)

HI (ejω) = − sin(ωnd). (2.109b)

The magnitude and phase are

|H(ejω)| = 1, (2.110a)

� H(ejω) = −ωnd . (2.110b)

In Section 2.7, we will show that a broad class of signals can be represented as a
linear combination of complex exponentials in the form

x[n] =
∑

k

αke
jωkn. (2.111)

From the principle of superposition and Eq. (2.103), the corresponding output of an
LTI system is

y[n] =
∑

k

αkH(ejωk)ejωkn. (2.112)

Thus, if we can find a representation of x[n] as a superposition of complex exponential
sequences, as in Eq. (2.111), we can then find the output using Eq. (2.112) if we know the

42 Chapter 2 Discrete-Time Signals and Systems

frequency response of the system at all frequencies ωk . The following simple example
illustrates this fundamental property of LTI systems.

Example 2.15 Sinusoidal Response of LTI Systems

Let us consider a sinusoidal input

x[n] = A cos(ω 0n + φ) = A

2
ejφejω 0n + A

2
e−jφe−jω 0n. (2.113)

From Eq. (2.103), the response to x1[n] = (A /2)ejφejω 0n is

y 1[n] = H(ejω 0)
A

2
ejφejω 0n. (2.114a)

The response to x2[n] = (A /2)e−jφe−jω 0n is

y 2[n] = H(e−jω 0)
A

2
e−jφe−jω 0n. (2.114b)

Thus, the total response is

y[n] = A

2
[H(ejω 0)ejφejω 0n + H(e−jω 0)e−jφe−jω 0n]. (2.115)

If h[n] is real, it can be shown (see Problem 2.78) that H(e−jω 0) = H∗(ejω 0). Conse-
quently,

y[n] = A |H(ejω 0)| cos(ω 0n + φ + θ), (2.116)

where θ = � H(ejω 0) is the phase of the system function at frequency ω 0.
For the simple example of the ideal delay, |H(ejω 0)| = 1 and θ = −ω 0nd , as we

determined in Example 2.14. Therefore,

y[n] = A cos(ω 0n + φ − ω 0nd)

= A cos[ω 0(n − nd) + φ], (2.117)

which is identical to what we would obtain directly using the definition of the ideal
delay system.

The concept of the frequency response of LTI systems is essentially the same for
continuous-time and discrete-time systems. However, an important distinction arises
because the frequency response of discrete-time LTI systems is always a periodic func-
tion of the frequency variable ω with period 2π . To show this, we substitute ω + 2π into
Eq. (2.104) to obtain

H (ej(ω+2π)) =
∞∑

n=−∞
h[n]e−j (ω+2π)n. (2.118)

Using the fact that e±j2πn = 1 for n an integer, we have

e−j (ω+2π)n = e−jωne−j2πn = e−jωn.

Section 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 43

Therefore,

H(ej(ω+2π)) = H(ejω), for all ω, (2.119)

and, more generally,

H(ej(ω+2πr)) = H(ejω), for r an integer. (2.120)

That is, H(ejω) is periodic with period 2π . Note that this is obviously true for the ideal
delay system, since e−j (ω+2π)nd = e−jωnd when nd is an integer.

The reason for this periodicity is related directly to our earlier observation that
the sequence

{ejωn}, −∞ < n < ∞,

is indistinguishable from the sequence

{ej (ω+2π)n}, −∞ < n < ∞.

Because these two sequences have identical values for all n, the system must respond
identically to both input sequences. This condition requires that Eq. (2.119) hold.

Since H(ejω) is periodic with period 2π , and since the frequencies ω and ω+2π are
indistinguishable, it follows that we need only specify H(ejω) over an interval of length
2π , e.g., 0 ≤ ω ≤ 2π or −π < ω ≤ π . The inherent periodicity defines the frequency
response everywhere outside the chosen interval. For simplicity and for consistency with
the continuous-time case, it is generally convenient to specify H(ejω) over the interval
−π < ω ≤ π . With respect to this interval, the “low frequencies” are frequencies
close to zero, whereas the “high frequencies” are frequencies close to ±π . Recalling
that frequencies differing by an integer multiple of 2π are indistinguishable, we might
generalize the preceding statement as follows: The “low frequencies” are those that are
close to an even multiple of π , while the “high frequencies” are those that are close to
an odd multiple of π , consistent with our earlier discussion in Section 2.1.

An important class of LTI systems includes those systems for which the frequency
response is unity over a certain range of frequencies and is zero at the remaining fre-
quencies, corresponding to ideal frequency-selective filters. The frequency response of
an ideal lowpass filter is shown in Figure 2.17(a). Because of the inherent periodicity of
the discrete-time frequency response, it has the appearance of a multiband filter, since
frequencies around ω = 2π are indistinguishable from frequencies around ω = 0. In
effect, however, the frequency response passes only low frequencies and rejects high
frequencies. Since the frequency response is completely specified by its behavior over
the interval −π < ω ≤ π , the ideal lowpass filter frequency response is more typically
shown only in the interval −π < ω ≤ π, as in Figure 2.17(b). It is understood that
the frequency response repeats periodically with period 2π outside the plotted interval.
With this implicit assumption, the frequency responses for ideal highpass, bandstop, and
bandpass filters are as shown in Figures 2.18(a), (b), and (c), respectively.

1

(a)

–2� 2�–� �–2� + �c 2� – �c–�c �c �

Hlp(e j�)

1

(b)

–� �–�c �c �

Hlp(e j�)

Figure 2.17 Ideal lowpass filter showing (a) periodicity of the frequency response
and (b) one period of the periodic frequency response.

–�a

1

0

(a)

–� �–�c �c �

Hhp(e j�)

1

0

(b)

–� �–�b �b�a �

Hbs(e j�)

–�a

1

0

(c)

–� �–�b �b�a �

Hbp(e j�)

Figure 2.18 Ideal frequency-selective
filters. (a) Highpass filter. (b) Bandstop
filter. (c) Bandpass filter. In each case,
the frequency response is periodic with
period 2π. Only one period is shown.

44

Section 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 45

Example 2.16 Frequency Response of the Moving-Average
System

The impulse response of the moving-average system of Example 2.3 is

h[n] =

⎧⎪⎪⎨⎪⎪⎩
1

M 1 + M 2 + 1
, −M 1 ≤ n ≤ M 2,

0, otherwise.

Therefore, the frequency response is

H(ejω) = 1
M 1 + M 2 + 1

M 2∑
n=−M 1

e−jωn. (2.121)

For the causal moving average system, M1 = 0 and Eq. (2.121) can be expressed as

H(ejω) = 1
M2 + 1

M2∑
n=0

e−jωn. (2.122)

Using Eq. (2.55), Eq. (2.122) becomes

H(ejω) = 1
M2 + 1

(
1 − e−jω(M2+1)

1 − e−jω

)

= 1
M2 + 1

(ejω(M2+1)/2 − e−jω(M2+1)/2)e−jω(M2+1)/2

(ejω/2 − e−jω/2)e−jω/2

= 1
M2 + 1

sin[ω(M2 + 1)/2]
sin ω/2

e−jωM2/2. (2.123)

The magnitude and phase ofH(ejω) for this case, withM2 = 4, are shown in Figure 2.19.
If the moving-average filter is symmetric, i.e., if M1 = M2, then Eq. (2.123) is

replaced by

H(ejω) = 1
2M2 + 1

sin[ω(2M2 + 1)/2]
sin(ω/2)

. (2.124)

5
–2� –2�–� 2�

1

� �

|H(e j�)|

5
2�

–2� –�

–4�/5

�

4�/5

�

�H(e j�)

2�

Figure 2.19 (a) Magnitude and (b) phase of the frequency response of the
moving-average system for the case M 1 = 0 and M 2 = 4.

46 Chapter 2 Discrete-Time Signals and Systems

Note that in both cases H(ejω) is periodic, as is required of the frequency re-
sponse of a discrete-time system. Note also that |H(ejω)| falls off at “high frequencies”
and � H(ejω), i.e., the phase of H(ejω), varies linearly with ω. This attenuation of the
high frequencies suggests that the system will smooth out rapid variations in the in-
put sequence; in other words, the system is a rough approximation to a lowpass filter.
This is consistent with what we would intuitively expect about the behavior of the
moving-average system.

2.6.2 Suddenly Applied Complex Exponential Inputs

We have seen that complex exponential inputs of the form ejωn for −∞ < n < ∞
produce outputs of the form H(ejω)ejωn for LTI systems. Models of this kind are im-
portant in the mathematical representation of a wide range of signals, even those that
exist only over a finite domain. We can also gain additional insight into LTI systems by
considering inputs of the form

x[n] = ejωnu[n], (2.125)

i.e., complex exponentials that are suddenly applied at an arbitrary time, which for
convenience here we choose as n = 0. Using the convolution sum in Eq. (2.61), the
corresponding output of a causal LTI system with impulse response h[n] is

y[n] =

⎧⎪⎨⎪⎩
0, n < 0,(

n∑
k=0

h[k]e−jωk

)
ejωn, n ≥ 0.

If we consider the output for n ≥ 0, we can write

y[n] =
(∞∑

k=0

h[k]e−jωk

)
ejωn −

⎛⎝ ∞∑
k=n+1

h[k]e−jωk

⎞⎠ ejωn (2.126)

= H(ejω)ejωn −
⎛⎝ ∞∑

k=n+1

h[k]e−jωk

⎞⎠ ejωn. (2.127)

From Eq. (2.127), we see that the output consists of the sum of two terms, i.e., y[n] =
yss[n] + yt [n]. The first term,

yss[n] = H(ejω)ejωn,

is the steady-state response. It is identical to the response of the system when the input
is ejωn for all n. In a sense, the second term,

yt [n] = −
∞∑

k=n+1

h[k]e−jωkejωn,

is the amount by which the output differs from the eigenfunction result. This part corre-
sponds to the transient response, because it is clear that in some cases it may approach
zero. To see the conditions for which this is true, let us consider the size of the second
term. Its magnitude is bounded as follows:

|yt [n]| =
∣∣∣∣∣∣

∞∑
k=n+1

h[k]e−jωkejωn

∣∣∣∣∣∣ ≤
∞∑

k=n+1

|h[k]|. (2.128)

Section 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 47

From Eq. (2.128), it should be clear that if the impulse response has finite length, so that
h[n] = 0 except for 0 ≤ n ≤ M , then the term yt [n] = 0 for n + 1 > M, or n > M − 1.
In this case,

y[n] = yss[n] = H(ejω)ejωn, for n > M − 1.

When the impulse response has infinite duration, the transient response does not disap-
pear abruptly, but if the samples of the impulse response approach zero with increasing
n, then yt [n] will approach zero. Note that Eq. (2.128) can be written

|yt [n]| =
∣∣∣∣∣∣

∞∑
k=n+1

h[k]e−jωkejωn

∣∣∣∣∣∣ ≤
∞∑

k=n+1

|h[k]| ≤
∞∑

k=0

|h[k]|. (2.129)

That is, the transient response is bounded by the sum of the absolute values of all of the
impulse response samples. If the right-hand side of Eq. (2.129) is bounded, i.e., if

∞∑
k=0

|h[k]| < ∞,

then the system is stable. From Eq. (2.129), it follows that, for stable systems, the tran-
sient response must become increasingly smaller as n → ∞. Thus, a sufficient condition
for the transient response to decay asymptotically is that the system be stable.

Figure 2.20 shows the real part of a complex exponential signal with frequency
ω = 2π/10. The solid dots indicate the samples x[k] of the suddenly applied complex

0 n k
0

h [n – k]

h [n – k]

0

(a)

(b)

n k
0

Figure 2.20 Illustration of a real part of suddenly applied complex exponential
input with (a) FIR and (b) IIR.

48 Chapter 2 Discrete-Time Signals and Systems

exponential, while the open circles indicate the samples of the complex exponential that
are “missing,” i.e., that would be nonzero if the input were of the form ejωn for all n. The
shaded dots indicate the samples of the impulse response h[n − k] as a function of k for
n = 8. In the finite-length case shown in Figure 2.20(a), it is clear that the output would
consist only of the steady-state component for n ≥ 8, whereas in the infinite-length case,
it is clear that the “missing” samples have less and less effect as n increases, owing to
the decaying nature of the impulse response.

The condition for stability is also a sufficient condition for the existence of the
frequency response function. To see this, note that, in general,

|H(ejω)| =
∣∣∣∣∣

∞∑
k=−∞

h[k]e−jωk

∣∣∣∣∣ ≤
∞∑

k=−∞
|h[k]e−jωk| ≤

∞∑
k=−∞

|h[k]|,

so the general condition
∞∑

k=−∞
|h[k]| < ∞

ensures that H(ejω) exists. It is no surprise that the condition for existence of the fre-
quency response is the same as the condition for dominance of the steady-state solution.
Indeed, a complex exponential that exists for all n can be thought of as one that is ap-
plied at n = −∞. The eigenfunction property of complex exponentials depends on
stability of the system, since at finite n, the transient response must have become zero,
so that we only see the steady-state response H(ejω)ejωn for all finite n.

2.7 REPRESENTATION OF SEQUENCES BY FOURIER
TRANSFORMS

One of the advantages of the frequency-response representation of an LTI system is
that interpretations of system behavior such as the one we made in Example 2.16 often
follow easily. We will elaborate on this point in considerably more detail in Chapter 5.
At this point, however, let us return to the question of how we may find representations
of the form of Eq. (2.111) for an arbitrary input sequence.

Many sequences can be represented by a Fourier integral of the form

x[n] = 1
2π

∫ π

−π

X (ejω)ejωndω, (2.130)

where

X (ejω) =
∞∑

n=−∞
x[n]e−jωn. (2.131)

Equations (2.130) and (2.131) together form a Fourier representation for the sequence.
Equation (2.130), the inverse Fourier transform, is a synthesis formula. That is, it repre-
sents x[n] as a superposition of infinitesimally small complex sinusoids of the form

1
2π

X (ejω)ejωndω,

Section 2.7 Representation of Sequences by Fourier Transforms 49

with ω ranging over an interval of length 2π and with X (ejω) determining the relative
amount of each complex sinusoidal component. Although, in writing Eq. (2.130), we
have chosen the range of values for ω between −π and +π , any interval of length 2π

can be used. Equation (2.131), the Fourier transform,4 is an expression for computing
X (ejω) from the sequence x[n], i.e., for analyzing the sequence x[n] to determine how
much of each frequency component is required to synthesize x[n] using Eq. (2.130).

In general, the Fourier transform is a complex-valued function of ω. As with the
frequency response, we may either express X (ejω) in rectangular form as

X (ejω) = XR(ejω) + jXI (e
jω) (2.132a)

or in polar form as

X (ejω) = |X (ejω)|ej � X (ejω). (2.132b)

With |X (ejω)| representing the magnitude and � X (ejω) the phase.
The phase � X (ejω) is not uniquely specified by Eq. (2.132b), since any integer

multiple of 2π may be added to � X (ejω) at any value of ω without affecting the result
of the complex exponentiation. When we specifically want to refer to the principal value,
i.e., � X (ejω) restricted to the range of values between −π and +π , we denote this as
ARG[X (ejω)]. If we want to refer to a phase function that is a continuous function of
ω for 0 < ω < π , i.e., not evaluated modulo 2π , we use the notation arg[X (ejω)].

As is clear from comparing Eqs. (2.104) and (2.131), the frequency response of
an LTI system is the Fourier transform of the impulse response. The impulse response
can be obtained from the frequency response by applying the inverse Fourier transform
integral; i.e.,

h[n] = 1
2π

∫ π

−π

H(ejω)ejωndω. (2.133)

As discussed previously, the frequency response is a periodic function of ω. Like-
wise, the Fourier transform is periodic in ω with period 2π . A Fourier series is commonly
used to represent periodic signals, and it is worth noting that indeed, Eq. (2.131) is of the
form of a Fourier series for the periodic function X (ejω). Eq. (2.130), which expresses
the sequence values x[n] in terms of the periodic function X (ejω), is of the form of the
integral that would be used to obtain the coefficients in the Fourier series. Our use of
Eqs. (2.130) and (2.131) focuses on the representation of the sequence x[n]. Neverthe-
less, it is useful to be aware of the equivalence between the Fourier series representation
of continuous-variable periodic functions and the Fourier transform representation of
discrete-time signals, since all the familiar properties of Fourier series can be applied,
with appropriate interpretation of variables, to the Fourier transform representation of
a sequence. (Oppenheim and Willsky (1997), McClellan, Schafer and Yoder (2003).)

Determining the class of signals that can be represented by Eq. (2.130) is equiv-
alent to considering the convergence of the infinite sum in Eq. (2.131). That is, we
are concerned with the conditions that must be satisfied by the terms in the sum in
Eq. (2.131) such that

|X (ejω)| < ∞ for all ω,

4Eq. (2.131) is sometimes more explicitly referred to as the discrete-time Fourier transform, or DTFT,
particularly when it is important to distinguish it from the continuous-time Fourier transform.

50 Chapter 2 Discrete-Time Signals and Systems

where X (ejω) is the limit as M → ∞ of the finite sum

XM(ejω) =
M∑

n=−M

x[n]e−jωn. (2.134)

A sufficient condition for convergence can be found as follows:

|X (ejω)| =
∣∣∣∣∣

∞∑
n=−∞

x[n]e−jωn

∣∣∣∣∣
≤

∞∑
n=−∞

|x[n]| |e−jωn|

≤
∞∑

n=−∞
|x[n]| < ∞.

Thus, if x[n] is absolutely summable, then X (ejω) exists. Furthermore, in this case, the
series can be shown to converge uniformly to a continuous function of ω (Körner (1988),
Kammler (2000)). Since a stable sequence is, by definition, absolutely summable, all sta-
ble sequences have Fourier transforms. It also follows, then, that any stable system, i.e.,
one having an absolutely summable impulse response, will have a finite and continuous
frequency response.

Absolute summability is a sufficient condition for the existence of a Fourier trans-
form representation. In Examples 2.14 and 2.16, we computed the Fourier transforms
of the impulse response of the delay system and the moving average system. The im-
pulse responses are absolutely summable, since they are finite in length. Clearly, any
finite-length sequence is absolutely summable and thus will have a Fourier transform
representation. In the context of LTI systems, any FIR system will be stable and there-
fore will have a finite, continuous frequency response. However, when a sequence has
infinite length, we must be concerned about convergence of the infinite sum. The fol-
lowing example illustrates this case.

Example 2.17 Absolute Summability for a Suddenly-Applied
Exponential

Consider x[n] = anu[n]. The Fourier transform of this sequence is

X (ejω) =
∞∑

n=0

ane−jωn =
∞∑

n=0

(ae−jω)n

= 1
1 − ae−jω

if |ae−jω| < 1 or |a| < 1.

Clearly, the condition |a| < 1 is the condition for the absolute summability of x[n]; i.e.,

∞∑
n=0

|a|n = 1
1 − |a| < ∞ if |a| < 1. (2.135)

Absolute summability is a sufficient condition for the existence of a Fourier trans-
form representation, and it also guarantees uniform convergence. Some sequences are

Section 2.7 Representation of Sequences by Fourier Transforms 51

not absolutely summable, but are square summable, i.e.,
∞∑

n=−∞
|x[n]|2 < ∞. (2.136)

Such sequences can be represented by a Fourier transform if we are willing to relax the
condition of uniform convergence of the infinite sum defining X (ejω). Specifically, in
this case, we have mean-square convergence; that is, with

X (ejω) =
∞∑

n=−∞
x[n]e−jωn (2.137a)

and

XM(ejω) =
M∑

n=−M

x[n]e−jωn, (2.137b)

it follows that

lim
M→∞

∫ π

−π

|X (ejω) − XM(ejω)|2dω = 0. (2.138)

In other words, the error |X (ejω)−XM(ejω)|may not approach zero at each value of
ω as M → ∞, but the total “energy” in the error does. Example 2.18 illustrates this case.

Example 2.18 Square-Summability for the Ideal Lowpass
Filter

In this example we determine the impulse response of the ideal lowpass filter discussed
in Section 2.6. The frequency response is

H lp(ejω) =
{

1, |ω| < ωc,

0, ωc < |ω| ≤ π,
(2.139)

with periodicity 2π also understood. The impulse response hlp[n] can be found using
the Fourier transform synthesis equation (2.130):

hlp[n] = 1
2π

∫ ωc

−ωc

ejωndω

= 1
2πjn

[
ejωn
]ωc

−ωc

= 1
2πjn

(ejωcn − e−jωcn)

= sin ωcn

πn
, −∞ < n < ∞.

(2.140)

We note that, since hlp[n] is nonzero for n < 0, the ideal lowpass filter is noncausal.
Also, hlp[n] is not absolutely summable. The sequence values approach zero as n → ∞,

but only as 1/n. This is because H lp(ejω) is discontinuous at ω = ωc. Since hlp[n] is
not absolutely summable, the infinite sum

∞∑
n=−∞

sin ωcn

πn
e−jωn

does not converge uniformly for all values of ω. To obtain an intuitive feeling for this,
let us consider HM(ejω) as the sum of a finite number of terms:

HM(ejω) =
M∑

n=−M

sin ωcn

πn
e−jωn. (2.141)

52 Chapter 2 Discrete-Time Signals and Systems

The function HM(ejω) is evaluated in Figure 2.21 for several values of M . Note that
as M increases, the oscillatory behavior at ω = ωc (often referred to as the Gibbs
phenomenon) is more rapid, but the size of the ripples does not decrease. In fact,
it can be shown that as M → ∞, the maximum amplitude of the oscillations does
not approach zero, but the oscillations converge in location toward the points ω =
±ωc. Thus, the infinite sum does not converge uniformly to the discontinuous function
H lp(ejω) of Eq. (2.139). However, hlp[n], as given in Eq. (2.140), is square summable,

and correspondingly, HM(ejω) converges in the mean-square sense to H lp(ejω); i.e.,

lim
M→∞

∫ π

−π
|H lp(ejω) − HM(ejω)|2dω = 0.

Although the error between HM(ejω) and H lp(ejω) as M → ∞ might seem unimpor-
tant because the two functions differ only at ω = ωc, we will see in Chapter 7 that the
behavior of finite sums such as Eq. (2.141) has important implications in the design of
discrete-time systems for filtering.

–� –�c �c � �

HM (e j�), M = 1

0

(a)

–� –�c �c � �

HM (e j�), M = 3

0

(b)

–� –�c �c � �

HM (e j�), M = 7

0

(c)

–� –�c �c � �

HM (e j�), M = 19

0

(d)

Figure 2.21 Convergence of the Fourier transform. The oscillatory behavior at
ω = ωc is often called the Gibbs phenomenon.

It is sometimes useful to have a Fourier transform representation for certain se-
quences that are neither absolutely summable nor square summable. We illustrate sev-
eral of these in the following examples.

Example 2.19 Fourier Transform of a Constant

Consider the sequence x[n] = 1 for all n. This sequence is neither absolutely summable
nor square summable, and Eq. (2.131) does not converge in either the uniform or

Section 2.7 Representation of Sequences by Fourier Transforms 53

mean-square sense for this case. However, it is possible and useful to define the Fourier
transform of the sequence x[n] to be the periodic impulse train

X (ejω) =
∞∑

r=−∞
2πδ(ω + 2πr). (2.142)

The impulses in this case are functions of a continuous variable and therefore are of
“infinite height, zero width, and unit area,” consistent with the fact that Eq. (2.131) does
not converge in any regular sense. (See Oppenheim and Willsky (1997) for a discussion
of the definition and properties of the impulse function.) The use of Eq. (2.142) as a
Fourier representation of the sequence x[n] = 1 is justified principally because formal
substitution of Eq. (2.142) into Eq. (2.130) leads to the correct result. Example 2.20
represents a generalization of this example.

Example 2.20 Fourier Transform of Complex Exponential
Sequences

Consider a sequence x[n] whose Fourier transform is the periodic impulse train

X (ejω) =
∞∑

r=−∞
2πδ(ω − ω 0 + 2πr). (2.143)

We show in this example that x[n] is the complex exponential sequence ejω 0n, with
−π < ω 0 ≤ π .

We can determine x[n] by substituting X (ejω) into the inverse Fourier trans-
form integral of Eq. (2.130). Because the integration of X (ejω) extends only over one
period, from −π < ω < π , we need include only the r = 0 term from Eq. (2.143).
Consequently, we can write

x[n] = 1
2π

∫ π

−π
2πδ(ω − ω 0)ejωndω. (2.144)

From the definition of the impulse function, it follows that

x[n] = ejω 0n for any n.

For ω 0 = 0, this reduces to the sequence considered in Example 2.19.

Clearly,x[n] in Example 2.20 is not absolutely summable, nor is it square summable,
and |X (ejω)| is not finite for all ω. Thus, the mathematical statement

∞∑
n=−∞

ejω 0ne−jωn =
∞∑

r=−∞
2πδ(ω − ω 0 + 2πr) (2.145)

must be interpreted in the context of generalized functions (Lighthill, 1958). Using that
theory, the concept of a Fourier transform representation can be extended to the class
of sequences that can be expressed as a sum of discrete frequency components, such as

x[n] =
∑

k

ake
jωkn, −∞ < n < ∞. (2.146)

From the result of Example 2.20, it follows that

X (ejω) =
∞∑

r=−∞

∑
k

2πakδ(ω − ωk + 2πr) (2.147)

is a consistent Fourier transform representation of x[n] in Eq. (2.146).

54 Chapter 2 Discrete-Time Signals and Systems

Another sequence that is neither absolutely summable nor square summable is
the unit step sequence u[n]. Although it is not completely straightforward to show, this
sequence can be represented by the following Fourier transform:

U(ejω) = 1
1 − e−jω

+
∞∑

r=−∞
πδ(ω + 2πr). (2.148)

2.8 SYMMETRY PROPERTIES OF THE FOURIER
TRANSFORM

In using Fourier transforms, it is useful to have a detailed knowledge of the way that
properties of the sequence manifest themselves in the Fourier transform and vice versa.
In this section and Section 2.9, we discuss and summarize a number of such properties.

Symmetry properties of the Fourier transform are often very useful for simplifying
the solution of problems. The following discussion presents these properties. The proofs
are considered in Problems 2.79 and 2.80. Before presenting the properties, however,
we begin with some definitions.

A conjugate-symmetric sequence xe[n] is defined as a sequence for which
xe[n] = x∗

e [−n], and a conjugate-antisymmetric sequence xo[n] is defined as a sequence
for which xo[n] = −x∗

o [−n], where ∗ denotes complex conjugation. Any sequence x[n]
can be expressed as a sum of a conjugate-symmetric and conjugate-antisymmetric se-
quence. Specifically,

x[n] = xe[n] + xo[n], (2.149a)

where

xe[n] = 1
2 (x[n] + x∗[−n]) = x∗

e [−n] (2.149b)

and

xo[n] = 1
2 (x[n] − x∗[−n]) = −x∗

o [−n]. (2.149c)

Adding Eqs. (2.149b) and (2.149c) confirms that Eq. (2.149a) holds. A real sequence that
is conjugate symmetric such that xe[n] = xe[−n] is referred to as an even sequence, and
a real sequence that is conjugate antisymmetric such that xo[n] = −xo[−n] is referred
to as an odd sequence.

A Fourier transformX (ejω) can be decomposed into a sum of conjugate-symmetric
and conjugate-antisymmetric functions as

X (ejω) = Xe(e
jω) + Xo(e

jω), (2.150a)

where

Xe(e
jω) = 1

2 [X (ejω) + X∗(e−jω)] (2.150b)

and

Xo(e
jω) = 1

2 [X (ejω) − X∗(e−jω)]. (2.150c)

By substituting −ω for ω in Eqs. (2.150b) and (2.150c), it follows that Xe(e
jω) is conju-

gate symmetric and Xo(e
jω) is conjugate antisymmetric; i.e.,

Xe(e
jω) = X∗

e (e
−jω) (2.151a)

Section 2.8 Symmetry Properties of the Fourier Transform 55

and
Xo(e

jω) = −X∗
o(e

−jω). (2.151b)
If a real function of a continuous variable is conjugate symmetric, it is referred to as an
even function, and a real conjugate-antisymmetric function of a continuous variable is
referred to as an odd function.

The symmetry properties of the Fourier transform are summarized in Table 2.1.
The first six properties apply for a general complex sequence x[n] with Fourier trans-
form X (ejω). Properties 1 and 2 are considered in Problem 2.79. Property 3 follows from
properties 1 and 2, together with the fact that the Fourier transform of the sum of two
sequences is the sum of their Fourier transforms. Specifically, the Fourier transform of
Re{x[n]} = 1

2 (x[n]+x∗[n]) is the conjugate-symmetric part of X (ejω), or Xe(e
jω). Sim-

ilarly, jIm{x[n]} = 1
2 (x[n] − x∗[n]), or equivalently, jIm{x[n]} has a Fourier transform

that is the conjugate-antisymmetric component Xo(e
jω) corresponding to property 4.

By considering the Fourier transform of xe[n] and xo[n], the conjugate-symmetric and
conjugate-antisymmetric components, respectively, of x[n], it can be shown that prop-
erties 5 and 6 follow.

If x[n] is a real sequence, these symmetry properties become particularly straight-
forward and useful. Specifically, for a real sequence, the Fourier transform is conjugate
symmetric; i.e., X (ejω) = X∗(e−jω) (property 7). Expressing X (ejω) in terms of its real
and imaginary parts as

X (ejω) = XR(ejω) + jXI (e
jω), (2.152)

TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence Fourier Transform
x[n] X (ejω)

1. x∗[n] X∗(e−jω)

2. x∗[−n] X∗(ejω)

3. Re{x[n]} Xe(e
jω) (conjugate-symmetric part of X (ejω))

4. jIm{x[n]} Xo(ejω) (conjugate-antisymmetric part of X (ejω))

5. xe[n] (conjugate-symmetric part of x[n]) XR(ejω) = Re{X (ejω)}
6. xo[n] (conjugate-antisymmetric part of x[n]) jXI (ejω) = jIm{X (ejω)}

The following properties apply only when x[n] is real:

7. Any real x[n] X (ejω) = X∗(e−jω) (Fourier transform is conjugate symmetric)

8. Any real x[n] XR(ejω) = XR(e−jω) (real part is even)

9. Any real x[n] XI (ejω) = −XI (e−jω) (imaginary part is odd)

10. Any real x[n] |X (ejω)| = |X (e−jω)| (magnitude is even)

11. Any real x[n] � X (ejω) = −� X (e−jω) (phase is odd)

12. xe[n] (even part of x[n]) XR(ejω)

13. xo[n] (odd part of x[n]) jXI (ejω)

56 Chapter 2 Discrete-Time Signals and Systems

we can derive properties 8 and 9—specifically,

XR(ejω) = XR(e−jω) (2.153a)

and

XI (e
jω) = −XI (e

−jω). (2.153b)

In other words, the real part of the Fourier transform is an even function, and the imag-
inary part is an odd function, if the sequence is real. In a similar manner, by expressing
X (ejω) in polar form as

X (ejω) = |X (ejω)|ej � X (ejω), (2.154)

we can show that, for a real sequence x[n], the magnitude of the Fourier transform,
|X (ejω)|, is an even function of ω and the phase, � X (ejω), can be chosen to be an odd
function of ω (properties 10 and 11). Also, for a real sequence, the even part of x[n]
transforms to XR(ejω), and the odd part of x[n] transforms to jXI (e

jω) (properties 12
and 13).

Example 2.21 Illustration of Symmetry Properties

Let us return to the sequence of Example 2.17, where we showed that the Fourier
transform of the real sequence x[n] = anu[n] is

X (ejω) = 1
1 − ae−jω

if |a| < 1. (2.155)

Then, from the properties of complex numbers, it follows that

X (ejω) = 1
1 − ae−jω

= X∗(e−jω) (property 7),

XR(ejω) = 1 − a cos ω

1 + a2 − 2a cos ω
= XR(e−jω) (property 8),

XI (ejω) = −a sin ω

1 + a2 − 2a cos ω
= −XI (e−jω) (property 9),

|X (ejω)| = 1

(1 + a2 − 2a cos ω)1/2
= |X (e−jω)| (property 10),

� X (ejω) = tan−1
(−a sin ω

1 − a cos ω

)
= −� X (e−jω) (property 11).

These functions are plotted in Figure 2.22 for a > 0, specifically, a = 0.75 (solid curve)
and a = 0.5 (dashed curve). In Problem 2.32, we consider the corresponding plots for
a < 0.

Section 2.8 Symmetry Properties of the Fourier Transform 57

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Radian frequency (�)
(a)

–� �0
0

1

2

3

4

5

�
2– 2

�

Radian frequency (�)
(b)

–� �0
–2

–1

0

1

2

�
2– �

2

A
m

pl
it

ud
e

Radian frequency (�)
(c)

–� �0
0

1

2

3

4

5

�
2– �

2

P
ha

se
 (

ra
di

an
s)

Radian frequency (�)
(d)

–� �0
–1.0

–0.5

0

0.5

1.0

�
2– �

2

Figure 2.22 Frequency response for a system with impulse response
h[n] = anu[n]. (a) Real part. a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed
curve). (b) Imaginary part. (c) Magnitude. a > 0; a = 0.75 (solid curve) and
a = 0.5 (dashed curve). (d) Phase.

58 Chapter 2 Discrete-Time Signals and Systems

2.9 FOURIER TRANSFORM THEOREMS

In addition to the symmetry properties, a variety of theorems (presented in Sections
2.9.1–2.9.7) relate operations on the sequence to operations on the Fourier transform.
We will see that these theorems are quite similar in most cases to corresponding theo-
rems for continuous-time signals and their Fourier transforms. To facilitate the statement
of the theorems, we introduce the following operator notation:

X (ejω) = F{x[n]},
x[n] = F−1{X (ejω)},
x[n] F←→ X (ejω).

That is, F denotes the operation of “taking the Fourier transform of x[n],” and F−1 is the
inverse of that operation. Most of the theorems will be stated without proof. The proofs,
which are left as exercises (Problem 2.81), generally involve only simple manipulations
of variables of summation or integration. The theorems in this section are summarized
in Table 2.2.

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform

x[n] X (ejω)

y[n] Y (ejω)

1. ax[n] + by[n] aX (ejω) + bY (ejω)

2. x[n − nd] (nd an integer) e−jωnd X (ejω)

3. ejω 0nx[n] X (ej (ω−ω 0))

4. x[−n] X (e−jω)

X∗(ejω) if x[n] real.

5. nx[n] j
dX (ejω)

dω

6. x[n] ∗ y[n] X (ejω)Y (ejω)

7. x[n]y[n] 1
2π

∫ π

−π
X (ejθ)Y (ej (ω−θ))dθ

Parseval’s theorem:

8.
∞∑

n=−∞
|x[n]|2 = 1

2π

∫ π

−π
|X (ejω)|2dω

9.
∞∑

n=−∞
x[n]y∗[n] = 1

2π

∫ π

−π
X (ejω)Y ∗(ejω)dω

Section 2.9 Fourier Transform Theorems 59

2.9.1 Linearity of the Fourier Transform

If

x1[n] F←→ X1(e
jω)

and

x2[n] F←→ X2(e
jω),

then it follows by substitution into the definition of the DTFT that

ax1[n] + bx2[n] F←→ aX1(e
jω) + bX2(e

jω). (2.156)

2.9.2 Time Shifting and Frequency Shifting Theorem

If

x[n] F←→ X (ejω),

then, for the time-shifted sequence x[n − nd], a simple transformation of the index of
summation in the DTFT yields

x[n − nd] F←→ e−jωnd X (ejω). (2.157)

Direct substitution proves the following result for the frequency-shifted Fourier trans-
form:

ejω 0nx[n] F←→ X (ej(ω−ω 0)). (2.158)

2.9.3 Time Reversal Theorem

If

x[n] F←→ X (ejω),

then if the sequence is time reversed,

x[−n] F←→ X (e−jω). (2.159)

If x[n] is real, this theorem becomes

x[−n] F←→ X∗(ejω). (2.160)

2.9.4 Differentiation in Frequency Theorem

If

x[n] F←→ X (ejω),

then, by differentiating the DTFT, it is seen that

nx[n] F←→ j
dX (ejω)

dω
. (2.161)

60 Chapter 2 Discrete-Time Signals and Systems

2.9.5 Parseval’s Theorem

If

x[n] F←→ X (ejω),

then

E =
∞∑

n=−∞
|x[n]|2 = 1

2π

∫ π

−π

|X (ejω)|2dω. (2.162)

The function |X (ejω)|2 is called the energy density spectrum, since it determines how the
energy is distributed in the frequency domain. Necessarily, the energy density spectrum
is defined only for finite-energy signals. A more general form of Parseval’s theorem is
shown in Problem 2.84.

2.9.6 The Convolution Theorem

If

x[n] F←→ X (ejω)

and

h[n] F←→ H (ejω),

and if

y[n] =
∞∑

k=−∞
x[k]h[n − k] = x[n] ∗ h[n], (2.163)

then

Y (ejω) = X (ejω)H(ejω). (2.164)

Thus, convolution of sequences implies multiplication of the corresponding Fourier
transforms. Note that the time-shifting property is a special case of the convolution
property, since

δ[n − nd] F←→ e−jωnd (2.165)

and if h[n] = δ[n − nd], then y[n] = x[n] ∗ δ[n − nd] = x[n − nd]. Therefore,

H(ejω) = e−jωnd and Y (ejω) = e−jωnd X (ejω).

A formal derivation of the convolution theorem is easily achieved by applying the
definition of the Fourier transform to y[n] as expressed in Eq. (2.163). This theorem can
also be interpreted as a direct consequence of the eigenfunction property of complex
exponentials for LTI systems. Recall that H(ejω) is the frequency response of the LTI
system whose impulse response is h[n]. Also, if

x[n] = ejωn,

then

y[n] = H(ejω)ejωn.

Section 2.9 Fourier Transform Theorems 61

That is, complex exponentials are eigenfunctions of LTI systems, where H(ejω), the
Fourier transform of h[n], is the eigenvalue. From the definition of integration, the
Fourier transform synthesis equation corresponds to the representation of a sequence
x[n] as a superposition of complex exponentials of infinitesimal size; that is,

x[n] = 1
2π

∫ π

−π

X (ejω)ejωndω = lim
	ω→0

1
2π

∑
k

X (ejk	ω)ejk	ωn	ω.

By the eigenfunction property of linear systems and by the principle of superposition,
the corresponding output will be

y[n] = lim
	ω→0

1
2π

∑
k

H(ejk	ω)X (ejk	ω)ejk	ωn	ω = 1
2π

∫ π

−π

H(ejω)X (ejω)ejωndω.

Thus, we conclude that

Y (ejω) = H(ejω)X (ejω),

as in Eq. (2.164).

2.9.7 The Modulation or Windowing Theorem

If

x[n] F←→ X (ejω)

and

w[n] F←→ W (ejω),

and if

y[n] = x[n]w[n], (2.166)

then

Y (ejω) = 1
2π

∫ π

−π

X (ejθ)W(ej (ω−θ))dθ. (2.167)

Equation (2.167) is a periodic convolution, i.e., a convolution of two periodic functions
with the limits of integration extending over only one period. The duality inherent in
most Fourier transform theorems is evident when we compare the convolution and
modulation theorems. However, in contrast to the continuous-time case, where this du-
ality is complete, in the discrete-time case fundamental differences arise because the
Fourier transform is a sum, whereas the inverse transform is an integral with a pe-
riodic integrand. Although for continuous time, we can state that convolution in the
time domain is represented by multiplication in the frequency domain and vice versa;
in discrete time, this statement must be modified somewhat. Specifically, discrete-time
convolution of sequences (the convolution sum) is equivalent to multiplication of cor-
responding periodic Fourier transforms, and multiplication of sequences is equivalent
to periodic convolution of corresponding Fourier transforms.

The theorems of this section and a number of fundamental Fourier transform pairs
are summarized in Tables 2.2 and 2.3, respectively. One of the ways that knowledge of
Fourier transform theorems and properties is useful is in determining Fourier transforms

62 Chapter 2 Discrete-Time Signals and Systems

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence Fourier Transform

1. δ[n] 1

2. δ[n − n0] e−jωn0

3. 1 (−∞ < n < ∞)

∞∑
k=−∞

2πδ(ω + 2πk)

4. anu[n] (|a| < 1)
1

1 − ae−jω

5. u[n] 1

1 − e−jω
+

∞∑
k=−∞

πδ(ω + 2πk)

6. (n + 1)anu[n] (|a| < 1)
1

(1 − ae−jω)2

7.
rn sin ωp(n + 1)

sin ωp
u[n] (|r| < 1)

1

1 − 2r cos ωpe−jω + r2e−j2ω

8.
sin ωcn

πn
X (ejω) =

{
1, |ω| < ωc,

0, ωc < |ω| ≤ π

9. x[n] =
{

1, 0 ≤ n ≤ M

0, otherwise
sin[ω(M + 1)/2]

sin(ω/2)
e−jωM/2

10. ejω 0n
∞∑

k=−∞
2πδ(ω − ω 0 + 2πk)

11. cos(ω 0n + φ)

∞∑
k =−∞

[πejφδ(ω − ω 0 + 2πk) + πe−jφδ(ω + ω 0 + 2πk)]

or inverse transforms. Often, by using the theorems and known transform pairs, it is
possible to represent a sequence in terms of operations on other sequences for which
the transform is known, thereby simplifying an otherwise difficult or tedious problem.
Examples 2.22–2.25 illustrate this approach.

Example 2.22 Determining a Fourier Transform Using
Tables 2.2 and 2.3

Suppose we wish to find the Fourier transform of the sequence x[n] = anu[n−5]. This
transform can be computed by exploiting Theorems 1 and 2 of Table 2.2 and transform
pair 4 of Table 2.3. Let x1[n] = anu[n]. We start with this signal because it is the most
similar signal to x[n] in Table 2.3. The table states that

X 1(ejω) = 1
1 − ae−jω

. (2.168)

To obtain x[n] from x1[n], we first delay x1[n] by five samples, i.e.,
x2[n] = x1[n − 5]. Theorem 2 of Table 2.2 gives the corresponding frequency-domain
relationship, X2(ejω) = e−j5ωX 1(ejω), so

X 2(ejω) = e−j5ω

1 − ae−jω
. (2.169)

Section 2.9 Fourier Transform Theorems 63

To get from x2[n] to the desired x[n], we need only multiply by the constant a5, i.e.,
x[n] = a5x2[n]. The linearity property of the Fourier transform, Theorem 1 of Table 2.2,
then yields the desired Fourier transform,

X (ejω) = a5e−j5ω

1 − ae−jω
. (2.170)

Example 2.23 Determining an Inverse Fourier Transform
Using Tables 2.2 and 2.3

Suppose that

X (ejω) = 1
(1 − ae−jω)(1 − be−jω)

. (2.171)

Direct substitution of X (ejω) into Eq. (2.130) leads to an integral that is difficult to
evaluate by ordinary real integration techniques. However, using the technique of
partial fraction expansion, which we discuss in detail in Chapter 3, we can expand
X (ejω) into the form

X (ejω) = a/(a − b)

1 − ae−jω
− b/(a − b)

1 − be−jω
. (2.172)

From Theorem 1 of Table 2.2 and transform pair 4 of Table 2.3, it follows that

x[n] =
(

a

a − b

)
anu[n] −

(
b

a − b

)
bnu[n]. (2.173)

Example 2.24 Determining the Impulse Response from the
Frequency Response

The frequency response of a highpass filter with linear phase is

H(ejω) =
{

e−jωnd , ωc < |ω| < π,

0, |ω| < ωc,
(2.174)

where a period of 2π is understood. This frequency response can be expressed as

H(ejω) = e−jωnd (1 − H lp(ejω)) = e−jωnd − e−jωnd H lp(ejω),

where H lp(ejω) is periodic with period 2π and

H lp(ejω) =
{

1, |ω| < ωc,

0, ωc < |ω| < π.

Using the result of Example 2.18 to obtain the inverse transform of H lp(ejω), together
with properties 1 and 2 of Table 2.2, we have

h[n] = δ[n − nd] − h lp[n − nd]

= δ[n − nd] − sin ωc(n − nd)

π(n − nd)
.

64 Chapter 2 Discrete-Time Signals and Systems

Example 2.25 Determining the Impulse Response for a
Difference Equation

In this example, we determine the impulse response for a stable LTI system for which
the input x[n] and output y[n] satisfy the linear constant-coefficient difference equation

y[n] − 1
2 y[n − 1] = x[n] − 1

4x[n − 1]. (2.175)

In Chapter 3, we will see that the z-transform is more useful than the Fourier transform
for dealing with difference equations. However, this example offers a hint of the utility
of transform methods in the analysis of linear systems. To find the impulse response,
we set x[n] = δ[n]; with h[n] denoting the impulse response, Eq. (2.175) becomes

h[n] − 1
2 h[n − 1] = δ[n] − 1

4 δ[n − 1]. (2.176)

Applying the Fourier transform to both sides of Eq. (2.176) and using properties 1 and
2 of Table 2.2, we obtain

H(ejω) − 1
2 e−jωH(ejω) = 1 − 1

4 e−jω, (2.177)

or

H(ejω) = 1 − 1
4 e−jω

1 − 1
2 e−jω

. (2.178)

To obtain h[n], we want to determine the inverse Fourier transform of H(ejω). Toward
this end, we rewrite Eq. (2.178) as

H(ejω) = 1

1 − 1
2 e−jω

−
1
4 e−jω

1 − 1
2 e−jω

. (2.179)

From transform 4 of Table 2.3,(
1
2

)n
u[n] F←→ 1

1 − 1
2 e−jω

.

Combining this transform with property 2 of Table 2.2, we obtain

−
(

1
4

)(
1
2

)n−1
u[n − 1] F←→ −

1
4 e−jω

1 − 1
2 e−jω

. (2.180)

Based on property 1 of Table 2.2, then,

h[n] =
(

1
2

)n
u[n] −

(
1
4

)(
1
2

)n−1
u[n − 1]. (2.181)

2.10 DISCRETE-TIME RANDOM SIGNALS

The preceding sections have focused on mathematical representations of discrete-time
signals and systems and the insights that derive from such mathematical representations.
Discrete-time signals and systems have both a time-domain and a frequency-domain
representation, each with an important place in the theory and design of discrete-time
signal-processing systems. Until now, we have assumed that the signals are deterministic,

Section 2.10 Discrete-Time Random Signals 65

i.e., that each value of a sequence is uniquely determined by a mathematical expression,
a table of data, or a rule of some type.

In many situations, the processes that generate signals are so complex as to make
precise description of a signal extremely difficult or undesirable, if not impossible.
In such cases, modeling the signal as a random process is analytically useful.5 As an
example, we will see in Chapter 6 that many of the effects encountered in implementing
digital signal-processing algorithms with finite register length can be represented by
additive noise, i.e., a random sequence. Many mechanical systems generate acoustic or
vibratory signals that can be processed to diagnose potential failure; again, signals of
this type are often best modeled in terms of random signals. Speech signals to be pro-
cessed for automatic recognition or bandwidth compression and music to be processed
for quality enhancement are two more of many examples.

A random signal is considered to be a member of an ensemble of discrete-time
signals that is characterized by a set of probability density functions. More specifically,
for a particular signal at a particular time, the amplitude of the signal sample at that
time is assumed to have been determined by an underlying scheme of probabilities.
That is, each individual sample x[n] of a particular signal is assumed to be an outcome
of some underlying random variable xn. The entire signal is represented by a collection
of such random variables, one for each sample time, −∞ < n < ∞. This collection of
random variables is referred to as a random process, and we assume that a particular
sequence of samples x[n] for −∞ < n < ∞ has been generated by the random process
that underlies the signal. To completely describe the random process, we need to specify
the individual and joint probability distributions of all the random variables.

The key to obtaining useful results from such models of signals lies in their de-
scription in terms of averages that can be computed from assumed probability laws or
estimated from specific signals. While random signals are not absolutely summable or
square summable and, consequently, do not directly have Fourier transforms, many (but
not all) of the properties of such signals can be summarized in terms of averages such as
the autocorrelation or autocovariance sequence, for which the Fourier transform often
exists. As we will discuss in this section, the Fourier transform of the autocorrelation
sequence has a useful interpretation in terms of the frequency distribution of the power
in the signal. The use of the autocorrelation sequence and its transform has another
important advantage: The effect of processing random signals with a discrete-time lin-
ear system can be conveniently described in terms of the effect of the system on the
autocorrelation sequence.

In the following discussion, we assume that the reader is familiar with the basic
concepts of random processes, such as averages, correlation and covariance functions,
and the power spectrum. A brief review and summary of notation and concepts is
provided in Appendix A. A more detailed presentation of the theory of random signals
can be found in a variety of excellent texts, such as Davenport (1970), and Papoulis
(2002), Gray and Davidson (2004), Kay (2006) and Bertsekas and Tsitsiklis (2008).

Our primary objective in this section is to present a specific set of results that
will be useful in subsequent chapters. Therefore, we focus on wide-sense stationary
random signals and their representation in the context of processing with LTI systems.

5It is common in the signal processing literature to use the terms “random” and “stochastic” inter-
changeably. In this text, we primarily refer to this class of signals as random signals or random processes.

66 Chapter 2 Discrete-Time Signals and Systems

Although, for simplicity, we assume that x[n] and h[n] are real valued, the results can
be generalized to the complex case.

Consider a stable LTI system with real impulse response h[n]. Let x[n] be a real-
valued sequence that is a sample sequence of a wide-sense stationary discrete-time
random process. Then, the output of the linear system is also a sample sequence of a
discrete-time random process related to the input process by the linear transformation

y[n] =
∞∑

k=−∞
h[n − k]x[k] =

∞∑
k=−∞

h[k]x[n − k].

As we have shown, since the system is stable, y[n] will be bounded if x[n] is bounded.
We will see shortly that if the input is stationary,6 then so is the output. The input signal
may be characterized by its mean mx and its autocorrelation function φxx[m], or we may
also have additional information about 1st- or even 2nd-order probability distributions.
In characterizing the output random process y[n] we desire similar information. For
many applications, it is sufficient to characterize both the input and output in terms of
simple averages, such as the mean, variance, and autocorrelation. Therefore, we will
derive input–output relationships for these quantities.

The means of the input and output processes are, respectively,

mxn = E{xn}, myn = E{yn}, (2.182)

where E{·} denotes the expected value of a random variable. In most of our discussion,
it will not be necessary to carefully distinguish between the random variables xn and
yn and their specific values x[n] and y[n]. This will simplify the mathematical notation
significantly. For example, Eqs. (2.182) will alternatively be written

mx[n] = E{x[n]}, my[n] = E{y[n]}. (2.183)

If x[n] is stationary, then mx[n] is independent of n and will be written as mx , with similar
notation for my[n] if y[n] is stationary.

The mean of the output process is

my[n] = E{y[n]} =
∞∑

k=−∞
h[k]E{x[n − k]},

where we have used the fact that the expected value of a sum is the sum of the expected
values. Since the input is stationary, mx[n − k] = mx, and consequently,

my[n] = mx

∞∑
k=−∞

h[k]. (2.184)

From Eq. (2.184), we see that the mean of the output is also constant. An equivalent
expression to Eq. (2.184) in terms of the frequency response is

my = H(ej0)mx. (2.185)

6In the remainder of the text, we will use the term stationary to mean “wide-sense stationary,” i.e., that
E{x[n1]x[n2]} for all n1, n2 depends only on the difference (n1 − n2). Equivalently, the autocorrelation is
only a function of the time difference (n1 − n2).

Section 2.10 Discrete-Time Random Signals 67

Assuming temporarily that the output is nonstationary, the autocorrelation func-
tion of the output process for a real input is

φyy[n, n + m] = E{y[n]y[n + m]}

= E
{ ∞∑

k=−∞

∞∑
r=−∞

h[k]h[r]x[n − k]x[n + m − r]
}

=
∞∑

k=−∞
h[k]

∞∑
r=−∞

h[r]E{x[n − k]x[n + m − r]}.

Since x[n] is assumed to be stationary, E{x[n−k]x[n+m− r]} depends only on the time
difference m + k − r . Therefore,

φyy[n, n + m] =
∞∑

k=−∞
h[k]

∞∑
r=−∞

h[r]φxx[m + k − r] = φyy[m]. (2.186)

That is, the output autocorrelation sequence also depends only on the time difference
m. Thus, for an LTI system having a wide-sense stationary input, the output is also
wide-sense stationary.

By making the substitution
 = r − k, we can express Eq. (2.186) as

φyy[m] =
∞∑

=−∞
φxx[m −
]

∞∑
k=−∞

h[k]h[
 + k]

=
∞∑

=−∞
φxx[m −
]chh[
],

(2.187)

where we have defined

chh[
] =
∞∑

k=−∞
h[k]h[
 + k]. (2.188)

The sequence chh[
] is referred to as the deterministic autocorrelation sequence or,
simply, the autocorrelation sequence of h[n]. It should be emphasized that chh[
] is the
autocorrelation of an aperiodic—i.e., finite-energy—sequence and should not be con-
fused with the autocorrelation of an infinite-energy random sequence. Indeed, it can be
seen that chh[
] is simply the discrete convolution of h[n] with h[−n]. Equation (2.187),
then, can be interpreted to mean that the autocorrelation of the output of a linear system
is the convolution of the autocorrelation of the input with the aperiodic autocorrelation
of the system impulse response.

Equation (2.187) suggests that Fourier transforms may be useful in characteriz-
ing the response of an LTI system to a random input. Assume, for convenience, that
mx = 0; i.e., the autocorrelation and autocovariance sequences are identical. Then, with
�xx(e

jω), �yy(e
jω), and Chh(e

jω) denoting the Fourier transforms of φxx[m], φyy[m],
and chh[
], respectively, from Eq. (2.187),

�yy(e
jω) = Chh(e

jω)�xx(e
jω). (2.189)

Also, from Eq. (2.188),

Chh(e
jω) = H(ejω)H ∗(ejω)

= |H(ejω)|2,

68 Chapter 2 Discrete-Time Signals and Systems

so

�yy(e
jω) = |H(ejω)|2�xx(e

jω). (2.190)

Equation (2.190) provides the motivation for the term power density spectrum.
Specifically,

E{y2[n]} = φyy[0] = 1
2π

∫ π

−π

�yy(e
jω) dω

= total average power in output.
(2.191)

Substituting Eq. (2.190) into Eq. (2.191), we have

E{y2[n]} = φyy[0] = 1
2π

∫ π

−π

|H(ejω)|2�xx(e
jω) dω. (2.192)

Suppose that H(ejω) is an ideal bandpass filter, as shown in Figure 2.18(c). Since φxx[m]
is a real, even sequence, its Fourier transform is also real and even, i.e.,

�xx(e
jω) = �xx(e

−jω).

Likewise, |H(ejω)|2 is an even function of ω. Therefore, we can write

φyy[0] = average power in output

= 1
2π

∫ ωb

ωa

�xx(e
jω) dω + 1

2π

∫ −ωa

−ωb

�xx(e
jω) dω.

(2.193)

Thus, the area under �xx(e
jω) for ωa ≤ |ω| ≤ ωb can be taken to represent the mean-

square value of the input in that frequency band. We observe that the output power
must remain nonnegative, so

lim
(ωb−ωa)→0

φyy[0] ≥ 0.

This result, together with Eq. (2.193) and the fact that the band ωa ≤ ω ≤ ωb can be
arbitrarily small, implies that

�xx(e
jω) ≥ 0 for all ω. (2.194)

Hence, we note that the power density function of a real signal is real, even, and non-
negative.

Section 2.10 Discrete-Time Random Signals 69

Example 2.26 White Noise

The concept of white noise is exceedingly useful in a wide variety of contexts in the
design and analysis of signal processing and communications systems. A white-noise
signal is a signal for which φxx [m] = σ 2

x δ[m]. We assume in this example that the signal
has zero mean. The power spectrum of a white-noise signal is a constant, i.e.,

�xx(ejω) = σ 2
x for all ω.

The average power of a white-noise signal is therefore

φxx [0] = 1
2π

∫ π

−π
�xx(ejω) dω = 1

2π

∫ π

−π
σ 2
x dω = σ 2

x .

The concept of white noise is also useful in the representation of random signals
whose power spectra are not constant with frequency. For example, a random signal
y[n] with power spectrum �yy(ejω) can be assumed to be the output of an LTI system
with a white-noise input. That is, we use Eq. (2.190) to define a system with frequency
response H(ejω) to satisfy the equation

�yy(ejω) = |H(ejω)|2σ 2
x ,

where σ 2
x is the average power of the assumed white-noise input signal. We adjust

the average power of this input signal to give the correct average power for y[n]. For
example, suppose that h[n] = anu[n]. Then,

H(ejω) = 1
1 − ae−jω

,

and we can represent all random signals whose power spectra are of the form

�yy(ejω) =
∣∣∣∣ 1
1 − ae−jω

∣∣∣∣2 σ 2
x = σ 2

x

1 + a2 − 2a cos ω
.

Another important result concerns the cross-correlation between the input and
output of an LTI system:

φyx[m] = E{x[n]y[n + m]}

= E
{

x[n]
∞∑

k=−∞
h[k]x[n + m − k]

}
(2.195)

=
∞∑

k=−∞
h[k]φxx[m − k].

In this case, we note that the cross-correlation between input and output is the convo-
lution of the impulse response with the input autocorrelation sequence.

The Fourier transform of Eq. (2.195) is

�yx(e
jω) = H(ejω)�xx(e

jω). (2.196)

This result has a useful application when the input is white noise, i.e., when
φxx[m] = σ 2

x δ[m]. Substituting into Eq. (2.195), we note that

φyx[m] = σ 2
x h[m]. (2.197)

70 Chapter 2 Discrete-Time Signals and Systems

That is, for a zero-mean white-noise input, the cross-correlation between input and
output of a linear system is proportional to the impulse response of the system. Similarly,
the power spectrum of a white-noise input is

�xx(e
jω) = σ 2

x , −π ≤ ω ≤ π. (2.198)
Thus, from Eq. (2.196),

�yx(e
jω) = σ 2

x H(ejω). (2.199)
In other words, the cross power spectrum is in this case proportional to the frequency re-
sponse of the system. Equations (2.197) and (2.199) may serve as the basis for estimating
the impulse response or frequency response of an LTI system if it is possible to observe
the output of the system in response to a white-noise input. An example application is
in the measurement of the acoustic impulse response of a room or concert hall.

2.11 SUMMARY

In this chapter, we have reviewed and discussed a number of basic definitions relating
to discrete-time signals and systems. We considered the definition of a set of basic
sequences, the definition and representation of LTI systems in terms of the convolution
sum, and some implications of stability and causality. The class of systems for which
the input and output satisfy a linear constant-coefficient difference equation with initial
rest conditions was shown to be an important subclass of LTI systems. The recursive
solution of such difference equations was discussed and the classes of FIR and IIR
systems defined.

An important means for the analysis and representation of LTI systems lies in their
frequency-domain representation. The response of a system to a complex exponential
input was considered, leading to the definition of the frequency response. The relation
between impulse response and frequency response was then interpreted as a Fourier
transform pair.

We called attention to many properties of Fourier transform representations and
discussed a variety of useful Fourier transform pairs. Tables 2.1 and 2.2 summarize the
properties and theorems, and Table 2.3 contains some useful Fourier transform pairs.

The chapter concluded with an introduction to discrete-time random signals. These
basic ideas and results will be developed further and used in later chapters.

Problems

Basic Problems with Answers

2.1. For each of the following systems, determine whether the system is (1) stable, (2) causal,
(3) linear, (4) time invariant, and (5) memoryless:

(a) T (x[n]) = g[n]x[n] with g[n] given
(b) T (x[n]) =∑n

k=n0
x[k] n �= 0

(c) T (x[n]) =∑n+n0
k=n−n0

x[k]
(d) T (x[n]) = x[n − n0]

Chapter 2 Problems 71

(e) T (x[n]) = ex[n]
(f) T (x[n]) = ax[n] + b

(g) T (x[n]) = x[−n]
(h) T (x[n]) = x[n] + 3u[n + 1].

2.2. (a) The impulse response h[n] of an LTI system is known to be zero, except in the interval
N 0 ≤ n ≤ N 1. The input x[n] is known to be zero, except in the interval N 2 ≤ n ≤ N 3.
As a result, the output is constrained to be zero, except in some interval N 4 ≤ n ≤ N 5.
Determine N 4 and N 5 in terms of N 0, N 1, N 2, and N 3.

(b) If x[n] is zero, except for N consecutive points, and h[n] is zero, except for M consecutive
points, what is the maximum number of consecutive points for which y[n] can be
nonzero?

2.3. By direct evaluation of the convolution sum, determine the unit step response (x[n] = u[n])
of an LTI system whose impulse response is

h[n] = a−nu[−n], 0 < a < 1.

2.4. Consider the linear constant-coefficient difference equation

y[n] − 3
4y[n − 1] + 1

8y[n − 2] = 2x[n − 1].
Determine y[n] for n ≥ 0 when x[n] = δ[n] and y[n] = 0, n < 0.

2.5. A causal LTI system is described by the difference equation

y[n] − 5y[n − 1] + 6y[n − 2] = 2x[n − 1].
(a) Determine the homogeneous response of the system, i.e., the possible outputs if

x[n] = 0 for all n.
(b) Determine the impulse response of the system.
(c) Determine the step response of the system.

2.6. (a) Determine the frequency response H(ejω) of the LTI system whose input and output
satisfy the difference equation

y[n] − 1
2 y[n − 1] = x[n] + 2x[n − 1] + x[n − 2].

(b) Write a difference equation that characterizes a system whose frequency response is

H(ejω) = 1 − 1
2 e−jω + e−j3ω

1 + 1
2 e−jω + 3

4 e−j2ω
.

2.7. Determine whether each of the following signals is periodic. If the signal is periodic, state
its period.

(a) x[n] = ej (πn/6)

(b) x[n] = ej (3πn/4)

(c) x[n] = [sin(πn/5)]/(πn)

(d) x[n] = ejπn/
√

2.

2.8. An LTI system has impulse response h[n] = 5(−1/2)nu[n]. Use the Fourier transform to
find the output of this system when the input is x[n] = (1/3)nu[n].

72 Chapter 2 Discrete-Time Signals and Systems

2.9. Consider the difference equation

y[n] − 5
6
y[n − 1] + 1

6
y[n − 2] = 1

3
x[n − 1].

(a) What are the impulse response, frequency response, and step response for the causal
LTI system satisfying this difference equation?

(b) What is the general form of the homogeneous solution of the difference equation?
(c) Consider a different system satisfying the difference equation that is neither causal nor

LTI, but that has y[0] = y[1] = 1. Find the response of this system to x[n] = δ[n].
2.10. Determine the output of an LTI system if the impulse response h[n] and the input x[n] are

as follows:

(a) x[n] = u[n] and h[n] = anu[−n − 1], with a > 1.
(b) x[n] = u[n − 4] and h[n] = 2nu[−n − 1].
(c) x[n] = u[n] and h[n] = (0.5)2nu[−n].
(d) h[n] = 2nu[−n − 1] and x[n] = u[n] − u[n − 10].
Use your knowledge of linearity and time invariance to minimize the work in parts (b)–(d).

2.11. Consider an LTI system with frequency response

H(ejω) = 1 − e−j2ω

1 + 1
2 e−j4ω

, −π < ω ≤ π.

Determine the output y[n] for all n if the input x[n] for all n is

x[n] = sin
(πn

4

)
.

2.12. Consider a system with input x[n] and output y[n] that satisfy the difference equation

y[n] = ny[n − 1] + x[n].
The system is causal and satisfies initial-rest conditions; i.e., if x[n] = 0 for n < n0, then
y[n] = 0 for n < n0.

(a) If x[n] = δ[n], determine y[n] for all n.
(b) Is the system linear? Justify your answer.
(c) Is the system time invariant? Justify your answer.

2.13. Indicate which of the following discrete-time signals are eigenfunctions of stable, LTI
discrete-time systems:

(a) ej2πn/3

(b) 3n

(c) 2nu[−n − 1]
(d) cos(ω0n)

(e) (1/4)n

(f) (1/4)nu[n] + 4nu[−n − 1].
2.14. A single input–output relationship is given for each of the following three systems:

(a) System A: x[n] = (1/3)n, y[n] = 2(1/3)n.

(b) System B: x[n] = (1/2)n, y[n] = (1/4)n.

(c) System C: x[n] = (2/3)nu[n], y[n] = 4(2/3)nu[n] − 3(1/2)nu[n].
Based on this information, pick the strongest possible conclusion that you can make about
each system from the following list of statements:

(i) The system cannot possibly be LTI.
(ii) The system must be LTI.

Chapter 2 Problems 73

(iii) The system can be LTI, and there is only one LTI system that satisfies this input–output
constraint.

(iv) The system can be LTI, but cannot be uniquely determined from the information in
this input–output constraint.

If you chose option (iii) from this list, specify either the impulse response h[n] or the
frequency response H(ejω) for the LTI system.

2.15. Consider the system illustrated in Figure P2.15. The output of an LTI system with an impulse

response h[n] =
(

1
4

)n
u[n+10] is multiplied by a unit step function u[n] to yield the output of

the overall system. Answer each of the following questions, and briefly justify your answers:

u [n]

v [n]x [n] y [n]
h [n] = (1/4)nu [n + 10] �

Figure P2.15

(a) Is the overall system LTI?
(b) Is the overall system causal?
(c) Is the overall system stable in the BIBO sense?

2.16. Consider the following difference equation:

y[n] − 1
4
y[n − 1] − 1

8
y[n − 2] = 3x[n].

(a) Determine the general form of the homogeneous solution to this difference equation.
(b) Both a causal and an anticausal LTI system are characterized by this difference equa-

tion. Find the impulse responses of the two systems.
(c) Show that the causal LTI system is stable and the anticausal LTI system is unstable.
(d) Find a particular solution to the difference equation when x[n] = (1/2)nu[n].

2.17. (a) Determine the Fourier transform of the sequence

r[n] =
{

1, 0 ≤ n ≤ M,

0, otherwise.

(b) Consider the sequence

w[n] =
⎧⎨⎩

1
2

[
1 − cos

(
2πn

M

)]
, 0 ≤ n ≤ M,

0, otherwise.

Sketch w[n] and express W(ejω), the Fourier transform of w[n], in terms of R (ejω),
the Fourier transform of r[n]. (Hint: First express w[n] in terms of r[n] and the complex
exponentials ej (2πn/M) and e−j (2πn/M).)

(c) Sketch the magnitude of R (ejω) and W (ejω) for the case when M = 4.

74 Chapter 2 Discrete-Time Signals and Systems

2.18. For each of the following impulse responses of LTI systems, indicate whether or not the
system is causal:

(a) h[n] = (1/2)nu[n]
(b) h[n] = (1/2)nu[n − 1]
(c) h[n] = (1/2)|n|
(d) h[n] = u[n + 2] − u[n − 2]
(e) h[n] = (1/3)nu[n] + 3nu[−n − 1].

2.19. For each of the following impulse responses of LTI systems, indicate whether or not the
system is stable:

(a) h[n] = 4nu[n]
(b) h[n] = u[n] − u[n − 10]
(c) h[n] = 3nu[−n − 1]
(d) h[n] = sin(πn/3)u[n]
(e) h[n] = (3/4)|n| cos(πn/4 + π/4)

(f) h[n] = 2u[n + 5] − u[n] − u[n − 5].

2.20. Consider the difference equation representing a causal LTI system

y[n] + (1/a)y[n − 1] = x[n − 1].
(a) Find the impulse response of the system, h[n], as a function of the constant a.
(b) For what range of values of a will the system be stable?

Basic Problems

2.21. A discrete-time signal x[n] is shown in Figure P2.21.

1

1

1
2

2 3 40–2 –1

x[n]

Figure P2.21

Sketch and label carefully each of the following signals:

(a) x[n − 2]
(b) x[4 − n]
(c) x[2n]
(d) x[n]u[2 − n]
(e) x[n − 1]δ[n − 3].

2.22. Consider a discrete-time LTI system with impulse response h[n]. If the input x[n] is a
periodic sequence with period N (i.e., if x[n] = x[n + N]), show that the output y[n] is also
a periodic sequence with period N .

Chapter 2 Problems 75

2.23. For each of the following systems, determine whether the system is (1) stable, (2) causal,
(3) linear, and (4) time invariant.
(a) T (x[n]) = (cos πn)x[n]
(b) T (x[n]) = x[n2]
(c) T (x[n]) = x[n]

∞∑
k=0

δ[n − k]

(d) T (x[n]) =
∞∑

k=n−1

x[k].

2.24. Consider an arbitrary linear system with input x[n] and output y[n]. Show that if x[n] = 0
for all n, then y[n] must also be zero for all n.

2.25. Consider a system for which the input x[n] and the output y[n] satisfy the following relation.
8y[n] + 2y[n − 1] − 3y[n − 2] = x[n] (P2.25-1)

(a) For x[n] = δ[n], show that a particular sequence satisfying the difference equation is

yp[n] = 3
40

(
− 3

4

)n
u[n] + 1

20

(
1
2

)n
u[n].

(b) Determine the homogeneous solution(s) to the difference equation specified in
Eq. (P2.25-1).

(c) Determine y[n] for −2 ≤ n ≤ 2 when x[n] is equal to δ[n] in Eq. (P2.25-1) and the
initial rest condition is assumed in solving the difference equation. Note that the initial
rest condition implies the system described by Eq. (P2.25-1) is causal.

2.26. For each of the systems in Figure P2.26, pick the strongest valid conclusion that you can
make about each system from the following list of statements:
(i) The system must be LTI and is uniquely specified by the information given.

(ii) The system must be LTI, but cannot be uniquely determined from the information
given.

(iii) The system could be LTI and if it is, the information given uniquely specifies the system.
(iv) The system could be LTI, but cannot be uniquely determined from the information

given.
(v) The system could not possibly be LTI.
For each system for which you choose option (i) or (iii), give the impulse response h[n] for
the uniquely specified LTI system. One example of an input and its corresponding output
are shown for each system.

System A:
1
2

n
System A

System B

System C

1
4

n

System B:
cos

π

3
n 3j sin

π

3
n

System C:

1
5

1
5

n

u[n] − 6
1
2

n

u[−n − 1] − 6
1
3

n

u[n]

Figure P2.26

76 Chapter 2 Discrete-Time Signals and Systems

2.27. For each of the systems in Figure P2.27, pick the strongest valid conclusion that you can
make about each system from the following list of statements:

(i) The system must be LTI and is uniquely specified by the information given.
(ii) The system must be LTI, but cannot be uniquely determined from the information

given.
(iii) The system could be LTI, and if it is, the information given uniquely specifies the

system.
(iv) The system could be LTI, but cannot be uniquely determined from the information

given.
(v) The system could not possibly be LTI.

x[n]
System E

y[n] = 0.2y[n + 1] + x[n]

cos π
3 n

System D
3 cos π

3 n + 1
2 sin π

2 n + π
5

x[n] + αy[n]

For all choices of x[n], y[n], and the constant α

System C
T (x[n]) + αT (y[n])

1
3

n

u[n]
System B

δ[n]

δ[n]
System A

2ej n
4 u[n]

Figure P2.27

2.28. Four input–output pairs of a particular system S are specified in Figure P2.28-1:

S

S

S

S

1 1
2

1 1

1 1

11

1

0

0 1 2

0 1 2

0 1 2 0 1 2 3 4

1 2 3 4 50

1 2 3 4 50

1 2 3 4 50

(1)

(2)

(3)

(4)

21

1

1

1 1 1 1

1 1

Figure P2.28–1

Chapter 2 Problems 77

(a) Can system S be time-invariant? Explain.
(b) Can system S be linear? Explain.
(c) Suppose (2) and (3) are input–output pairs of a particular system S2, and the system

is known to be LTI. What is h[n], the impulse response of the system?
(d) Suppose (1) is the input–output pair of an LTI system S3. What is the output of this

system for the input in Figure P2.28-2:

1 1

2 2 2

0 1 2 3 4 Figure P2.28–2

2.29. An LTI system has impulse response defined by

h[n] =

⎧⎪⎪⎨⎪⎪⎩
0 n < 0
1 n = 0, 1, 2, 3
−2 n = 4, 5
0 n > 5

Determine and plot the output y[n] when the input x[n] is:

(a) u[n]
(b) u[n − 4]
(c) u[n] − u[n − 4].

2.30. Consider the cascade connection of two LTI systems in Figure P2.30:

x [n] y[n]

LTI
System 2

h2[n]

LTI
System 1

h1[n] w[n]

h1[n] h2[n]

nn3 −3

11

00

Figure P2.30

(a) Determine and sketch w[n] if x[n] = (−1)nu[n]. Also, determine the overall output
y[n].

(b) Determine and sketch the overall impulse response of the cascade system; i.e., plot the
output y[n] = h[n] when x[n] = δ[n].

(c) Now consider the input x[n] = 2δ[n] + 4δ[n − 4] − 2δ[n − 12]. Sketch w[n].
(d) For the input of part (c), write an expression for the output y[n] in terms of the overall

impulse response h[n] as defined in part (b). Make a carefully labeled sketch of your
answer.

78 Chapter 2 Discrete-Time Signals and Systems

2.31. If the input and output of a causal LTI system satisfy the difference equation

y[n] = ay[n − 1] + x[n],
then the impulse response of the system must be h[n] = anu[n].
(a) For what values of a is this system stable?
(b) Consider a causal LTI system for which the input and output are related by the differ-

ence equation

y[n] = ay[n − 1] + x[n] − aNx[n − N],
where N is a positive integer. Determine and sketch the impulse response of this system.
Hint: Use linearity and time-invariance to simplify the solution.

(c) Is the system in part (b) an FIR or an IIR system? Explain.
(d) For what values of a is the system in part (b) stable? Explain.

2.32. For X (ejω) = 1/(1 − ae−jω), with −1 < a < 0, determine and sketch the following as a
function of ω:

(a) Re{X (ejω)}
(b) Im{X (ejω)}
(c) |X (ejω)|
(d) � X (ejω).

2.33. Consider an LTI system defined by the difference equation

y[n] = −2x[n] + 4x[n − 1] − 2x[n − 2].
(a) Determine the impulse response of this system.
(b) Determine the frequency response of this system. Express your answer in the form

H(ejω) = A(ejω)e−jωnd ,

where A(ejω) is a real function of ω. Explicitly specify A(ejω) and the delay nd of this
system.

(c) Sketch a plot of the magnitude |H(ejω)| and a plot of the phase � H(ejω).
(d) Suppose that the input to the system is

x1[n] = 1 + ej0.5πn − ∞ < n < ∞.

Use the frequency response function to determine the corresponding output y1[n].
(e) Now suppose that the input to the system is

x2[n] = (1 + ej0.5πn)u[n] − ∞ < n < ∞.

Use the defining difference equation or discrete convolution to determine the corre-
sponding output y2[n] for −∞ < n < ∞. Compare y1[n] and y2[n]. They should be
equal for certain values of n. Over what range of values of n are they equal?

2.34. An LTI system has the frequency response

H(ejω) = 1 − 1.25e−jω

1 − 0.8e−jω
= 1 − 0.45e−jω

1 − 0.8e−jω
.

(a) Specify the difference equation that is satisfied by the input x[n] and the output y[n].
(b) Use one of the above forms of the frequency response to determine the impulse re-

sponse h[n].
(c) Show that |H(ejω)|2 = G2, where G is a constant. Determine the constant G. (This is

an example of an allpass filter to be discussed in detail in Chapter 5.)
(d) If the input to the above system is x[n] = cos(0.2πn), the output should be of the form

y[n] = A cos(0.2πn + θ). What are A and θ?

Chapter 2 Problems 79

2.35. An LTI system has impulse response given by the following plot:

h[n]

n4

3

210

1

−1 Figure P2.35-1

The input to the system, x[n], is plotted below as a function of n.

x[n]

n432
1

0

1

−1 Figure P2.35-2

(a) Use discrete convolution to determine the output of the system y[n] = x[n] ∗ h[n] for
the above input. Give your answer as a carefully labeled sketch of y[n] over a range
sufficient to define it completely.

(b) The deterministic autocorrelation of a signal x[n] is defined in Eq. (2.188) as cxx [n] =
x[n] ∗ x[−n]. The system defined by Figure P2.35-1 is a matched filter for the input in
Figure P2.35-2. Noting that h[n] = x[−(n − 4)], express the output in part (a) in terms
of cxx [n].

(c) Determine the output of the system whose impulse response is h[n] when the input is
x[n] = u[n + 2]. Sketch your answer.

2.36. An LTI discrete-time system has frequency response given by

H(ejω) = (1 − je−jω)(1 + je−jω)

1 − 0.8e−jω
= 1 + e−j2ω

1 − 0.8e−jω
= 1

1 − 0.8e−jω
+ e−j2ω

1 − 0.8e−jω
.

(a) Use one of the above forms of the frequency response to obtain an equation for the
impulse response h[n] of the system.

(b) From the frequency response, determine the difference equation that is satisfied by
the input x[n] and the output y[n] of the system.

(c) If the input to this system is

x[n] = 4 + 2 cos(ω0n) for − ∞ < n < ∞,

for what value of ω0 will the output be of the form

y[n] = A = constant

for −∞ < n < ∞? What is the constant A?

80 Chapter 2 Discrete-Time Signals and Systems

2.37. Consider the cascade of LTI discrete-time systems shown in Figure P2.37.

LTI
System 1

h1[n], H1(ejω)

LTI
System 2

h2[n], H2(ejω)

x[n] w[n] y[n]

Figure P2.37

The first system is described by the frequency response

H1(ejω) = e−jω

{
0 |ω| ≤ 0.25π

1 0.25π < |ω| ≤ π

and the second system is described by

h2[n] = 2
sin(0.5πn)

πn

(a) Determine an equation that defines the frequency response, H(ejω), of the overall
system over the range −π ≤ ω ≤ π .

(b) Sketch the magnitude, |H(ejω)|, and the phase, � H(ejω), of the overall frequency
response over the range −π ≤ ω ≤ π .

(c) Use any convenient means to determine the impulse response h[n] of the overall cas-
cade system.

2.38. Consider the cascade of two LTI systems shown in Figure P2.38.

LTI
System 1

h1[n]

LTI
System 2

h2[n]

x[n] w[n] y[n]

Figure P2.38

The impulse responses of the two systems are:

h1[n] = u[n − 5] and h2[n] =
{

1 0 ≤ n ≤ 4
0 otherwise.

(a) Make a sketch showing both h2[k] and h1[n−k] (for some arbitrary n < 0) as functions
of k.

(b) Determine h[n] = h1[n] ∗h2[n], the impulse response of the overall system. Give your
answer as an equation (or set of equations) that define h[n] for −∞ < n < ∞ or as a
carefully labelled plot of h[n] over a range sufficient to define it completely.

2.39. Using the definition of linearity (Eqs. (2.23a)–(2.23b)), show that the ideal delay system
(Example 2.2) and the moving-average system (Example 2.3) are both linear systems.

2.40. Determine which of the following signals is periodic. If a signal is periodic, determine its
period.

(a) x[n] = ej (2πn/5)

(b) x[n] = sin(πn/19)

(c) x[n] = nejπn

(d) x[n] = ejn.

Chapter 2 Problems 81

2.41. Consider an LTI system with |H(ejω)| = 1, and let arg[H(ejω)] be as shown in Figure P2.41.
If the input is

x[n] = cos
(

3π

2
n + π

4

)
,

determine the output y[n].

–�

5�/6

–5�/6

�/2

–�/2

� �

Slope = – 1/3

Slope = – 1/3

arg[H(e j�)]

Figure P2.41

2.42. The sequences s[n], x[n], and w[n] are sample sequences of wide-sense stationary random
processes where

s[n] = x[n]w[n].
The sequences x[n] and w[n] are zero-mean and statistically independent. The autocorre-
lation function of w[n] is

E {w[n]w[n + m]} = σ 2
wδ[m],

and the variance of x[n] is σ 2
x .

Show that s[n] is white, with variance σ 2
x σ 2

w .

Advanced Problems

2.43. The operator T represents an LTI system. As shown in the following figures, if the input
to the system T is (1

3)nu[n], the output of the system is g[n]. If the input is x[n], the output
is y[n].

(1
3)nu[n] g[n]

x[n] y[n]T

T

Figure P2.43

Express y[n] in terms of g[n] and x[n].

82 Chapter 2 Discrete-Time Signals and Systems

2.44. X(ejω) denotes the Fourier transform of the complex-valued signal x[n], where the real
and imaginary parts of x[n] are given in Figure P2.44. (Note: The sequence is zero outside
the interval shown.)

n−5 −4 −3 −2 −1 0 1 2

1

2

3 3

2

1

n−5
−4

−3
−2

−1
0

1 2

−3

1

−2

2

−1

3

Figure P2.44

Perform the following calculations without explicitly evaluating X(ejω).

(a) Evaluate X(ejω)|ω=0.
(b) Evaluate X(ejω)|ω=π .
(c) Evaluate

∫ π
−π X(ejω) dω.

(d) Determine and sketch the signal (in the time domain) whose Fourier transform is
X(e−jω).

(e) Determine and sketch the signal (in the time domain) whose Fourier transform is
jIm{X(ejω)}.

2.45. Consider the cascade of LTI discrete-time systems shown in Figure P2.45.

x[n] y[n]

LTI
System 2

h2[n], H2(e jω)

LTI
System 1

h1[n], H1(e jω) w[n]

Figure P2.45

System 1 is described by the difference equation

w[n] = x[n] − x[n − 1],
and System 2 is described by

h2[n] = sin(0.5πn)

πn
⇐⇒ H2(ejω) =

{
1 |ω| < 0.5π

0 0.5π < |ω| < π.

The input x[n] is

x[n] = cos(0.4πn) + sin(.6πn) + 5δ[n − 2] + 2u[n].
Determine the overall output y[n].
(With careful thought, you will be able to use the properties of LTI systems to write down the
answer by inspection.)

Chapter 2 Problems 83

2.46. The DTFT pair

anu[n] ⇐⇒ 1
1 − ae−jω

|a| < 1 (P2.46-1)

is given.

(a) Using Eq. (P2.46-1), determine the DTFT, X(ejω), of the sequence

x[n] = −bnu[−n − 1] =
{−bn n ≤ −1

0 n ≥ 0.

What restriction on b is necessary for the DTFT of x[n] to exist?
(b) Determine the sequence y[n] whose DTFT is

Y (ejω) = 2e−jω

1 + 2e−jω
.

2.47. Consider a “windowed cosine signal”

x[n] = w[n] cos(ω0n).

(a) Determine an expression for X(ejω) in terms of W(ejω).
(b) Suppose that the sequence w[n] is the finite-length sequence

w[n] =
{

1 −L ≤ n ≤ L

0 otherwise.

Determine the DTFT W(ejω). Hint: Use Tables 2.2 and 2.3 to obtain a “closed form”
solution. You should find that W(ejω) is a real function of ω.

(c) Sketch the DTFT X(ejω) for the window in (b). For a given ω0, how should L be chosen
so that your sketch shows two distinct peaks?

2.48. The system T in Figure P2.48 is known to be time invariant. When the inputs to the system
are x1[n], x2[n], and x3[n], the responses of the system are y 1[n], y 2[n], and y 3[n], as shown.

–1–2 0

T 2
3 y3[n]

n

T

T

0 1 2 3 4

1

x3[n]

n

0 1

2

x2[n]

n

0 1

1
2

x1[n]

n

0 1 2

2

4

2

3

3

y2[n]

n

0 1 2

y1[n]

n

Figure P2.48

84 Chapter 2 Discrete-Time Signals and Systems

(a) Determine whether the system T could be linear.
(b) If the input x[n] to the system T is δ[n], what is the system response y[n]?
(c) What are all possible inputs x[n] for which the response of the system T can be deter-

mined from the given information alone?

2.49. The system L in Figure P2.49 is known to be linear. Shown are three output signals y 1[n],
y 2[n], and y3[n] in response to the input signals x1[n], x2[n], and x3[n], respectively.

–1

–3

1 2–2

0
1

2 2

L

y3[n]

n

L

L

x3[n]

x2[n]

x1[n]

y2[n]

y1[n]

0

–1
1

1 2 3

–1

–3

–1
n

–1

–1

0

3 3

1

1 2 3 n

1

1 1

0 n

0

1

–2

–1

n

–1 1
1

0

–2 –2

n

Figure P2.49

(a) Determine whether the system L could be time invariant.
(b) If the input x[n] to the system L is δ[n], what is the system response y[n]?

2.50. In Section 2.5, we stated that the solution to the homogeneous difference equation

N∑
k=0

akyh[n − k] = 0

is of the form

yh[n] =
N∑

m= 1

Amzn
m, (P2.50-1)

with the Am’s arbitrary and the zm’s the N roots of the polynomial

A(z) =
N∑

k=0

akz
−k; (P2.50-2)

Chapter 2 Problems 85

i.e.,

A(z) =
N∑

k=0

akz
−k =

N∏
m= 1

(1 − zmz−1).

(a) Determine the general form of the homogeneous solution to the difference equation

y[n] − 3
4y[n − 1] + 1

8y[n − 2] = 2x[n − 1].
(b) Determine the coefficients Am in the homogeneous solution if y[−1] = 1 and y[0] = 0.
(c) Now consider the difference equation

y[n] − y[n − 1] + 1
4y[n − 2] = 2x[n − 1]. (P2.50-3)

If the homogeneous solution contains only terms of the form of Eq. (P2.50-1), show
that the initial conditions y[−1] = 1 and y[0] = 0 cannot be satisfied.

(d) If Eq. (P2.50-2) has two roots that are identical, then, in place of Eq. (P2.50-1), yh[n]
will take the form

yh[n] =
N−1∑
m= 1

Amzn
m + nB 1z n

1 , (P2.50-4)

where we have assumed that the double root is z 1. Using Eq. (P2.50-4), determine
the general form of yh[n] for Eq. (P2.50-3). Verify explicitly that your answer satisfies
Eq. (P2.50-3) with x[n] = 0.

(e) Determine the coefficients A 1 and B 1 in the homogeneous solution obtained in part (d)
if y[−1] = 1 and y[0] = 0.

2.51. Consider a system with input x[n] and output y[n]. The input–output relation for the system
is defined by the following two properties:

1. y[n] − ay[n − 1] = x[n],
2. y[0] = 1.

(a) Determine whether the system is time invariant.
(b) Determine whether the system is linear.
(c) Assume that the difference equation (property 1) remains the same, but the value y[0]

is specified to be zero. Does this change your answer to either part (a) or part (b)?

2.52. Consider the LTI system with impulse response

h[n] =
(

j

2

)n

u[n], where j =
√

−1.

Determine the steady-state response, i.e., the response for large n, to the excitation

x[n] = cos(πn)u[n].
2.53. An LTI system has frequency response

H(ejω) =

⎧⎪⎪⎨⎪⎪⎩
e−jω3, |ω| <

2π

16

(
3
2

)
,

0,
2π

16

(
3
2

)
≤ |ω| ≤ π.

86 Chapter 2 Discrete-Time Signals and Systems

The input to the system is a periodic unit-impulse train with period N = 16; i.e.,

x[n] =
∞∑

k=−∞
δ[n + 16k].

Determine the output of the system.

2.54. Consider the system in Figure P2.54.

h[n]

x[n] y [n]
+ h2[n] = �nu[n]

h1[n] = � � [n – 1]

Figure P2.54

(a) Determine the impulse response h[n] of the overall system.
(b) Determine the frequency response of the overall system.
(c) Specify a difference equation that relates the output y[n] to the input x[n].
(d) Is this system causal? Under what condition would the system be stable?

2.55. Let X (ejω) denote the Fourier transform of the signal x[n] shown in Figure P2.55. Perform
the following calculations without explicitly evaluating X (ejω):

86

7

543210–1
–1 –1

–2

–3

x [n]

n

2 2

1

2 2

1

Figure P2.55

(a) Evaluate X (ejω)|ω=0.
(b) Evaluate X (ejω)|ω=π .
(c) Find � X (ejω).
(d) Evaluate

∫ π
−π X (ejω)dω.

(e) Determine and sketch the signal whose Fourier transform is X (e−jω).
(f) Determine and sketch the signal whose Fourier transform is Re{X (ejω)}.

2.56. For the system in Figure P2.56, determine the output y[n] when the input x[n] is δ[n] and
H(ejω) is an ideal lowpass filter as indicated, i.e.,

H(ejω) =
{

1, |ω| < π/2,

0, π/2 < |ω| ≤ π.

Chapter 2 Problems 87

H(e j�)

H(e j�)

...

–� –
2
�

1

� �–2� 2�
2
�

x [n]

w [n]

y [n]

�

+

(–1)nw[n]

(–1)n

Figure P2.56

2.57. A sequence has the DTFT

X (ejω) = 1 − a2

(1 − ae−jω)(1 − aejω)
, |a| < 1.

(a) Find the sequence x[n].
(b) Calculate 1/2π

∫ π
−π X (ejω) cos(ω)dω.

2.58. An LTI system is described by the input–output relation

y[n] = x[n] + 2x[n − 1] + x[n − 2].
(a) Determine h[n], the impulse response of the system.
(b) Is this a stable system?
(c) Determine H(ejω), the frequency response of the system. Use trigonometric identities

to obtain a simple expression for H(ejω).
(d) Plot the magnitude and phase of the frequency response.
(e) Now consider a new system whose frequency response is H 1(ejω) = H(ej (ω+π)).

Determine h1[n], the impulse response of the new system.

2.59. Let the real discrete-time signal x[n] with Fourier transform X (ejω) be the input to a system
with the output defined by

y[n] =
{

x[n], if n is even,
0, otherwise.

(a) Sketch the discrete-time signal s[n] = 1 + cos(πn) and its (generalized) Fourier trans-
form S(ejω).

(b) Express Y (ejω), the Fourier transform of the output, as a function of X (ejω) and
S(ejω).

(c) Suppose that it is of interest to approximate x[n] by the interpolated signal w[n] =
y[n]+(1/2)(y[n+1]+y[n−1]). Determine the Fourier transform W(ejω) as a function
of Y (ejω).

(d) Sketch X (ejω), Y (ejω), and W(ejω) for the case when x[n] = sin(πn/a)/(πn/a) and
a > 1. Under what conditions is the proposed interpolated signal w[n] a good approx-
imation for the original x[n]?

88 Chapter 2 Discrete-Time Signals and Systems

2.60. Consider a discrete-time LTI system with frequency response H(ejω) and corresponding
impulse response h[n].
(a) We are first given the following three clues about the system:

(i) The system is causal.
(ii) H(ejω) = H ∗(e−jω).

(iii) The DTFT of the sequence h[n + 1] is real.

Using these three clues, show that the system has an impulse response of finite duration.
(b) In addition to the preceding three clues, we are now given two more clues:

(iv)
1

2π

∫ π

−π
H(ejω)dω = 2.

(v) H(ejπ) = 0.

Is there enough information to identify the system uniquely? If so, determine the
impulse response h[n]. If not, specify as much as you can about the sequence h[n].

2.61. Consider the three sequences

v[n] = u[n] − u[n − 6],
w[n] = δ[n] + 2δ[n − 2] + δ[n − 4],
q[n] = v[n] ∗ w[n].

(a) Find and sketch the sequence q[n].

(b) Find and sketch the sequence r[n] such that r[n] ∗ v[n] =
n−1∑

k=−∞
q[k].

(c) Is q[−n] = v[−n] ∗ w[−n]? Justify your answer.

2.62. Consider an LTI system with frequency response

H(ejω) = e−j [(ω/2) + (π/4)], −π < ω ≤ π.

Determine y[n], the output of this system, if the input is

x[n] = cos
(

15πn

4
− π

3

)
for all n.

2.63. Consider a system S with input x[n] and output y[n] related according to the block diagram
in Figure P2.63-1.

�x [n] y [n]

e–j�0 n

LTI system
h [n]

Figure P2.63–1

The input x[n] is multiplied by e−jω 0n, and the product is passed through a stable LTI
system with impulse response h[n].
(a) Is the system S linear? Justify your answer.
(b) Is the system S time invariant? Justify your answer.
(c) Is the system S stable? Justify your answer.
(d) Specify a system C such that the block diagram in Figure P2.63-2 represents an al-

ternative way of expressing the input–output relationship of the system S. (Note: The
system C does not have to be an LTI system.)

Chapter 2 Problems 89

x [n] y [n]h [n]e j�0 n C
Figure P2.63–2

2.64. Consider an ideal lowpass filter with impulse response hlp[n] and frequency response

H lp(ejω) =
{

1, |ω| < 0.2π,

0, 0.2π ≤ |ω| ≤ π.

(a) A new filter is defined by the equation h1[n] = (−1)nhlp[n] = ejπnhlp[n]. Determine

an equation for the frequency response of H 1(ejω), and plot the equation for |ω| < π .
What kind of filter is this?

(b) A second filter is defined by the equation h2[n] = 2hlp[n] cos(0.5πn). Determine the

equation for the frequency response H 2(ejω), and plot the equation for |ω| < π . What
kind of filter is this?

(c) A third filter is defined by the equation

h3[n] = sin(0.1πn)

πn
hlp[n].

Determine the equation for the frequency response H 3(ejω), and plot the equation
for |ω| < π . What kind of filter is this?

2.65. The LTI system

H(ejω) =
{−j, 0 < ω < π,

j, −π < ω < 0,

is referred to as a 90◦ phase shifter and is used to generate what is referred to as an analytic
signal w[n] as shown in Figure P2.65-1. Specifically, the analytic signal w[n] is a complex-
valued signal for which

Re{w[n]} = x[n],
Im{w[n]} = y[n].

x [n]

y [n]

Re {w [n] }

Im {w [n] }H(e j�)
Figure P2.65–1

If Re{X (ejω)} is as shown in Figure P2.65-2 and Im{X (ejω)} = 0, determine and
sketch W(ejω), the Fourier transform of the analytic signal w[n] = x[n] + jy[n].

–�r–� ��r �

Re {X(e j�) }

1

Figure P2.65–2

90 Chapter 2 Discrete-Time Signals and Systems

2.66. The autocorrelation sequence of a signal x[n] is defined as

Rx [n] =
∞∑

k=−∞
x∗[k]x[n + k].

(a) Show that for an appropriate choice of the signal g[n], Rx [n] = x[n]∗g[n], and identify
the proper choice for g[n].

(b) Show that the Fourier transform of Rx [n] is equal to |X (ejω)|2.

2.67. The signals x[n] and y[n] shown in Figure P2.67-1 are the input and corresponding output
for an LTI system.

y [n]

n0

–1

1x [n]

n

0

1 2 3 1

2 3

–1

1

Figure P2.67-1

(a) Find the response of the system to the sequence x2[n] in Figure P2.67-2.

x2[n]

n0

5

–1

1

Figure P2.67-2

(b) Find the impulse response h[n] for this LTI system.

2.68. Consider a system for which the input x[n] and output y[n] satisfy the difference equation

y[n] − 1
2
y[n − 1] = x[n]

and for which y[−1] is constrained to be zero for every input. Determine whether or not
the system is stable. If you conclude that the system is stable, show your reasoning. If you
conclude that the system is not stable, give an example of a bounded input that results in
an unbounded output.

Extension Problems

2.69. The causality of a system was defined in Section 2.2.4. From this definition, show that, for an
LTI system, causality implies that the impulse response h[n] is zero for n < 0. One approach
is to show that if h[n] is not zero for n < 0, then the system cannot be causal. Show also
that if the impulse response is zero for n < 0, then the system will necessarily be causal.

2.70. Consider a discrete-time system with input x[n] and output y[n]. When the input is

x[n] =
(

1
4

)n

u[n],

Chapter 2 Problems 91

the output is

y[n] =
(

1
2

)n

for all n.

Determine which of the following statements is correct:
• The system must be LTI.
• The system could be LTI.
• The system cannot be LTI.

If your answer is that the system must or could be LTI, give a possible impulse response. If
your answer is that the system could not be LTI, explain clearly why not.

2.71. Consider an LTI system whose frequency response is

H(ejω) = e−jω/2, |ω| < π.

Determine whether or not the system is causal. Show your reasoning.

2.72. In Figure P2.72, two sequences x1[n] and x2[n] are shown. Both sequences are zero for all
n outside the regions shown. The Fourier transforms of these sequences are X 1(ejω) and
X 2(ejω), which, in general, can be expected to be complex and can be written in the form

X 1(ejω) = A 1(ω)ejθ1(ω),

X 2(ejω) = A 2(ω)ejθ2(ω),

where A 1(ω), θ 1(ω), A 2(ω), and θ 2(ω) are all real functions chosen so that both A 1(ω)

and A 2(ω) are nonnegative at ω = 0, but otherwise can take on both positive and negative
values. Determine appropriate choices for θ 1(ω) and θ 2(ω), and sketch these two phase
functions in the range 0 < ω < 2π .

x2[n]

x1[n]

10

98

7

654

4 4

32

2 2

1

1 1

0

–1

–1 –1–2

–2 –2

–3–4

–4 –4

–4 –4

n

65

43

2

2 2

1

1 1
0–1

–1–1
–2–3 n

Figure P2.72

2.73. Consider the cascade of discrete-time systems in Figure P2.73. The time-reversal systems
are defined by the equations f [n] = e[−n] and y[n] = g[−n]. Assume throughout the
problem that x[n] and h1[n] are real sequences.

92 Chapter 2 Discrete-Time Signals and Systems

x[n] e [n] f [n] g [n] y [n]

LTI
system
h1[n]

H1(e j�)

LTI
system
h1[n]

H1(e j�)

Time-
reversal
system

Time-
reversal
system

Figure P2.73

(a) Express E (ejω), F (ejω), G (ejω), and Y (ejω) in terms of X (ejω) and H 1(ejω).
(b) The result from part (a) should convince you that the overall system is LTI. Find the

frequency response H(ejω) of the overall system.
(c) Determine an expression for the impulse response h[n] of the overall system in terms

of h1[n].
2.74. The overall system in the dotted box in Figure P2.74 can be shown to be linear and time

invariant.

(a) Determine an expression for H(ejω), the frequency response of the overall system
from the input x[n] to the output y[n], in terms of H 1(ejω), the frequency response of
the internal LTI system. Remember that (−1)n = ejπn.

(b) Plot H(ejω) for the case when the frequency response of the internal LTI system is

H 1(ejω) =
{

1, |ω| < ωc,

0, ωc < |ω| ≤ π.

x [n] w [n] y [n]
�

v[n]
�

Causal LTI
system
h1[n]

(–1)–n (–1)n

Figure P2.74

2.75. Figure P2.75-1 shows the input–output relationships of Systems A and B, while Figure
P2.75-2 contains two possible cascade combinations of these systems.

xA[n] yA[n] = xA[–n]System A

xB[n] yB[n] = xB[n + 2]System B
Figure P2.75-1

x1[n] System A

x2[n]

w1[n]

w2[n]System B

System B

System A
Figure P2.75-2

Chapter 2 Problems 93

If x1[n] = x2[n], will w1[n] and w2[n] necessarily be equal? If your answer is yes, clearly and
concisely explain why and demonstrate with an example. If your answer is not necessarily,
demonstrate with a counterexample.

2.76. Consider the system in Figure P2.76, where the subsystems S1 and S2 are LTI.

x [n]

y1[n]
S1

S2
y2[n]

y [n]
�

Figure P2.76

(a) Is the overall system enclosed by the dashed box, with input x[n] and output y[n] equal
to the product of y 1[n] and y 2[n], guaranteed to be an LTI system? If so, explain your
reasoning. If not, provide a counterexample.

(b) Suppose S1 and S2 have frequency responses H 1(ejω) and H 2(ejω) that are known to
be zero over certain regions. Let

H 1(ejω) =
{

0, |ω| ≤ 0.2π,

unspecified, 0.2π < |ω| ≤ π,

H 2(ejω) =
{

unspecified, |ω| ≤ 0.4π,

0, 0.4π < |ω| ≤ π.

Suppose also that the input x[n] is known to be bandlimited to 0.3π , i.e.,

X (ejω) =
{

unspecified, |ω| < 0.3π,

0, 0.3π ≤ |ω| ≤ π.

Over what region of −π ≤ ω < π is Y (ejω), the DTFT of y[n], guaranteed to be zero?

2.77. A commonly used numerical operation called the first backward difference is defined as

y[n] = ∇(x[n]) = x[n] − x[n − 1],
where x[n] is the input and y[n] is the output of the first-backward-difference system.

(a) Show that this system is linear and time invariant.
(b) Find the impulse response of the system.
(c) Find and sketch the frequency response (magnitude and phase).
(d) Show that if

x[n] = f [n] ∗ g[n],
then

∇(x[n]) = ∇(f [n]) ∗ g[n] = f [n] ∗ ∇(g[n]).
(e) Find the impulse response of a system that could be cascaded with the first-difference

system to recover the input; i.e., find hi [n], where

hi [n] ∗ ∇(x[n]) = x[n].

94 Chapter 2 Discrete-Time Signals and Systems

2.78. Let H(ejω) denote the frequency response of an LTI system with impulse response h[n],
where h[n] is, in general, complex.

(a) Using Eq. (2.104), show that H ∗(e−jω) is the frequency response of a system with
impulse response h∗[n].

(b) Show that if h[n] is real, the frequency response is conjugate symmetric, i.e.,
H(e−jω) = H ∗(ejω).

2.79. Let X (ejω) denote the Fourier transform of x[n]. Using the Fourier transform synthesis or
analysis equations (Eqs. (2.130) and (2.131)), show that

(a) the Fourier transform of x∗[n] is X∗(e−jω),
(b) the Fourier transform of x∗[−n] is X∗(ejω).

2.80. Show that for x[n] real, property 7 in Table 2.1 follows from property 1 and that properties
8–11 follow from property 7.

2.81. In Section 2.9, we stated a number of Fourier transform theorems without proof. Using the
Fourier synthesis or analysis equations (Eqs. (2.130) and (2.131)), demonstrate the validity
of Theorems 1–5 in Table 2.2.

2.82. In Section 2.9.6, it was argued intuitively that

Y (ejω) = H(ejω)X (ejω), (P2.82-1)

when Y (ejω), H(ejω), and X (ejω) are, respectively, the Fourier transforms of the output
y[n], impulse response h[n], and input x[n] of an LTI system; i.e.,

y[n] =
∞∑

k=−∞
x[k]h[n − k]. (P2.82-2)

Verify Eq. (P2.82-1) by applying the Fourier transform to the convolution sum given in
Eq. (P2.82-2).

2.83. By applying the Fourier synthesis equation (Eq. (2.130)) to Eq. (2.167) and using Theorem 3
in Table 2.2, demonstrate the validity of the modulation theorem (Theorem 7, Table 2.2).

2.84. Let x[n] and y[n] denote complex sequences and X (ejω) and Y (ejω) their respective
Fourier transforms.

(a) By using the convolution theorem (Theorem 6 in Table 2.2) and appropriate properties
from Table 2.2, determine, in terms of x[n] and y[n], the sequence whose Fourier
transform is X (ejω)Y ∗(ejω).

(b) Using the result in part (a), show that
∞∑

n=−∞
x[n]y∗[n] = 1

2π

∫ π

−π
X (ejω)Y ∗(ejω)dω. (P2.84-1)

Equation (P2.84-1) is a more general form of Parseval’s theorem, as given in Sec-
tion 2.9.5.

(c) Using Eq. (P2.84-1), determine the numerical value of the sum
∞∑

n=−∞
sin(πn/4)

2πn

sin(πn/6)

5πn
.

2.85. Let x[n] and X (ejω) represent a sequence and its Fourier transform, respectively. Deter-
mine, in terms of X (ejω), the transforms of ys [n], yd [n], and ye[n] as defined below. In each
case, sketch the corresponding output Fourier transform Ys (ejω), Yd (ejω), and Ye (ejω),
respectively for X (ejω) as shown in Figure P2.85.

Chapter 2 Problems 95

X(e j�)

......

–�

1

� �–2� 2� Figure P2.85

(a) Sampler:

ys [n] =
{

x[n], n even,

0, n odd.

Note that ys [n] = 1
2 {x[n] + (−1)nx[n]} and −1 = ejπ .

(b) Compressor:

yd [n] = x[2n].
(c) Expander:

ye[n] =
{

x[n/2], n even,

0, n odd.

2.86. The two-frequency correlation function �x(N, ω) is often used in radar and sonar to evalu-
ate the frequency and travel-time resolution of a signal. For discrete-time signals, we define

�x(N, ω) =
∞∑

n=−∞
x[n + N]x∗[n − N]e−jωn.

(a) Show that

�x(−N,−ω) = �∗
x(N, ω).

(b) If

x[n] = A anu[n], 0 < a < 1,

find �x(N, ω). (Assume that N ≥ 0.)
(c) The function �x(N, ω) has a frequency domain dual. Show that

�x(N, ω) = 1
2π

∫ π

−π
X
(
ej [v+(ω/2)])X∗(ej [v−(ω/2)])ej2vNdv.

2.87. Let x[n] and y[n] be stationary, uncorrelated random signals. Show that if

w[n] = x[n] + y[n],
then

mw = mx + my and σ 2
w = σ 2

x + σ 2
y .

2.88. Let e[n] denote a white-noise sequence, and let s[n] denote a sequence that is uncorrelated
with e[n]. Show that the sequence

y[n] = s[n]e[n]
is white, i.e., that

E{y[n]y[n + m]} = A δ[m],
where A is a constant.

96 Chapter 2 Discrete-Time Signals and Systems

2.89. Consider a random signal x[n] = s[n] + e[n], where both s[n] and e[n] are independent
zero-mean stationary random signals with autocorrelation functions φss[m] and φee[m],
respectively.

(a) Determine expressions for φxx [m] and �xx(ejω).
(b) Determine expressions for φxe[m] and �xe(e

jω).
(c) Determine expressions for φxs [m] and �xs(e

jω).

2.90. Consider an LTI system with impulse response h[n] = anu[n] with |a| < 1.

(a) Compute the deterministic autocorrelation function φhh[m] for this impulse response.
(b) Determine the magnitude-squared function |H(ejω)|2 for the system.
(c) Use Parseval’s theorem to evaluate the integral

1
2π

∫ π

−π
|H(ejω)|2dω

for the system.

2.91. The input to the first-backward-difference system (Example 2.9) is a zero-mean white-noise
signal whose autocorrelation function is φxx [m] = σ 2

x δ[m].
(a) Determine and plot the autocorrelation function and the power spectrum of the cor-

responding output of the system.
(b) What is the average power of the output of the system?
(c) What does this problem tell you about the first backward difference of a noisy signal?

2.92. Let x[n] be a real, stationary, white-noise process, with zero mean and variance σ 2
x . Let y[n]

be the corresponding output when x[n] is the input to an LTI system with impulse response
h[n]. Show that

(a) E{x[n]y[n]} = h[0]σ 2
x ,

(b) σ 2
y = σ 2

x

∑∞
n=−∞ h2[n].

2.93. Let x[n] be a real stationary white-noise sequence, with zero mean and variance σ 2
x . Let x[n]

be the input to the cascade of two causal LTI discrete-time systems, as shown in Figure P2.93.

x [n] y [n] w [n]
h1[n] h2[n]

Figure P2.93

(a) Is σ 2
y = σ 2

x

∑∞
k=0 h2

1[k]?
(b) Is σ 2

w = σ 2
y

∑∞
k=0 h2

2[k]?
(c) Let h1[n] = anu[n] and h2[n] = bnu[n]. Determine the impulse response of the overall

system in Figure P2.93, and, from this, determine σ 2
w . Are your answers to parts (b)

and (c) consistent?

2.94. Sometimes we are interested in the statistical behavior of an LTI system when the input is
a suddenly applied random signal. Such a situation is depicted in Figure P2.94.

x [n]

(switch closed at n = 0)

w [n] y [n]
h [n]

Figure P2.94

Chapter 2 Problems 97

Let x[n] be a stationary white-noise process. The input to the system, w[n], given by

w[n] =
{

x[n], n ≥ 0,

0, n < 0,

is a nonstationary process, as is the output y[n].
(a) Derive an expression for the mean of the output in terms of the mean of the input.
(b) Derive an expression for the autocorrelation sequence φyy [n1, n2] of the output.
(c) Show that, for large n, the formulas derived in parts (a) and (b) approach the results

for stationary inputs.
(d) Assume that h[n] = anu[n]. Find the mean and mean-square values of the output in

terms of the mean and mean-square values of the input. Sketch these parameters as a
function of n.

2.95. Let x[n] and y[n] respectively denote the input and output of a system. The input–output
relation of a system sometimes used for the purpose of noise reduction in images is given
by

y[n] = σ 2
s [n]

σ 2
x [n] (x[n] − mx [n]) + mx [n],

where

σ 2
x [n] = 1

3

n+1∑
k=n−1

(x[k] − mx [n])2,

mx [n] = 1
3

n+1∑
k=n−1

x[k],

σ 2
s [n] =

{
σ 2
x [n] − σ 2

w, σ 2
x [n] ≥ σ 2

w,

0, otherwise,

and σ 2
w is a known constant proportional to the noise power.

(a) Is the system linear?
(b) Is the system shift invariant?
(c) Is the system stable?
(d) Is the system causal?
(e) For a fixed x[n], determine y[n] when σ 2

w is very large (large noise power) and when
σ 2
w is very small (small noise power). Does y[n] make sense for these extreme cases?

2.96. Consider a random process x[n] that is the response of the LTI system shown in Fig-
ure P2.96. In the figure, w[n] represents a real zero-mean stationary white-noise process
with E{w2[n]} = σ 2

w .

x [n]w [n]
H(e j�) = 1

1 – 0.5 e–j�

Figure P2.96

(a) Express E{x2[n]} in terms of φxx [n] or �xx(ejω).
(b) Determine �xx(ejω), the power density spectrum of x[n].
(c) Determine φxx [n], the correlation function of x[n].

98 Chapter 2 Discrete-Time Signals and Systems

2.97. Consider an LTI system whose impulse response is real and is given by h[n]. Suppose the
responses of the system to the two inputs x[n] and v[n] are, respectively, y[n] and z[n], as
shown in Figure P2.97.

y [n]x [n]
h [n]

z [n]v [n]
h [n]

Figure P2.97

The inputs x[n] and v[n] in the figure represent real zero-mean stationary random processes
with autocorrelation functions φxx [n] and φvv[n], cross-correlation function φxv[n], power
spectra �xx(ejω) and �vv(ejω), and cross power spectrum �xv(ejω).

(a) Given φxx [n], φvv[n], φxv[n], �xx(ejω), �vv(ejω), and �xv(ejω), determine �yz(e
jω),

the cross power spectrum of y[n] and z[n], where �yz(e
jω) is defined by

φyz[n] F←→ �yz(e
jω),

with φyz[n] = E{y[k]z[k − n]}.
(b) Is the cross power spectrum �xv(ejω) always nonnegative; i.e., is �xv(ejω) ≥ 0 for all

ω? Justify your answer.

2.98. Consider the LTI system shown in Figure P2.98. The input to this system, e[n], is a station-
ary zero-mean white-noise signal with average power σ 2

e . The first system is a backward-
difference system as defined by f [n] = e[n]−e[n−1]. The second system is an ideal lowpass
filter with frequency response

H 2(ejω) =
{

1, |ω| < ωc,

0, ωc < |ω| ≤ π.

e [n] f [n] g [n]

LTI system
1

LTI system
2

Figure P2.98

(a) Determine an expression for �ff (ejω), the power spectrum of f [n], and plot this
expression for −2π < ω < 2π .

(b) Determine an expression for φff [m], the autocorrelation function of f [n].
(c) Determine an expression for �gg(ejω), the power spectrum of g[n], and plot this

expression for −2π < ω < 2π .
(d) Determine an expression for σ 2

g , the average power of the output.

3

The z-Transform

3.0 INTRODUCTION

In this chapter, we develop the z-transform representation of a sequence and study
how the properties of a sequence are related to the properties of its z-transform. The
z-transform for discrete-time signals is the counterpart of the Laplace transform for
continuous-time signals, and they each have a similar relationship to the corresponding
Fourier transform. One motivation for introducing this generalization is that the Fourier
transform does not converge for all sequences, and it is useful to have a generalization of
the Fourier transform that encompasses a broader class of signals. A second advantage
is that in analytical problems, the z-transform notation is often more convenient than
the Fourier transform notation.

3.1 z -TRANSFORM

The Fourier transform of a sequence x[n] was defined in Chapter 2 as

X(ejω) =
∞∑

n=−∞
x[n]e−jωn. (3.1)

The z-transform of a sequence x[n] is defined as

X(z) =
∞∑

n=−∞
x[n]z−n. (3.2)

99

100 Chapter 3 The z -Transform

This equation is, in general, an infinite sum or infinite power series, with z considered to
be a complex variable. Sometimes it is useful to consider Eq. (3.2) as an operator that
transforms a sequence into a function. That is, the z-transform operator Z{·}, defined as

Z{x[n]} =
∞∑

n=−∞
x[n]z−n = X(z), (3.3)

transforms the sequence x[n] into the function X(z), where z is a continuous complex
variable. The unique correspondence between a sequence and its z-transform will be
indicated by the notation

x[n] Z←→ X(z). (3.4)

The z-transform, as we have defined it in Eq. (3.2), is often referred to as the
two-sided or bilateral z-transform, in contrast to the one-sided or unilateral z-transform,
which is defined as

X (z) =
∞∑

n=0

x[n]z−n. (3.5)

Clearly, the bilateral and unilateral transforms are identical if x[n] = 0 for n < 0, but
they differ otherwise. We shall give a brief introduction to the properties of the unilateral
z-transform in Section 3.6.

It is evident from a comparison of Eqs. (3.1) and (3.2) that there is a close rela-
tionship between the Fourier transform and the z-transform. In particular, if we replace
the complex variable z in Eq. (3.2) with the complex quantity ejω, then the z-transform
reduces to the Fourier transform. This is the motivation for the notation X(ejω) for the
Fourier transform. When it exists, the Fourier transform is simply X(z) with z = ejω. This
corresponds to restricting z to have unity magnitude; i.e., for |z| = 1, the z-transform cor-
responds to the Fourier transform. More generally, we can express the complex variable
z in polar form as

z = rejω.

With z expressed in this form, Eq. (3.2) becomes

X(rejω) =
∞∑

n=−∞
x[n](rejω)−n,

or

X(rejω) =
∞∑

n=−∞
(x[n]r−n)e−jωn. (3.6)

Equation (3.6) can be interpreted as the Fourier transform of the product of the original
sequence x[n] and the exponential sequence r−n. For r = 1, Eq. (3.6) reduces to the
Fourier transform of x[n].

Since the z-transform is a function of a complex variable, it is convenient to de-
scribe and interpret it using the complex z-plane. In the z-plane, the contour corre-
sponding to |z| = 1 is a circle of unit radius, as illustrated in Figure 3.1. This contour,
referred to as the unit circle, is the set of points z = ejω for 0 ≤ ω < 2π . The z-transform
evaluated on the unit circle corresponds to the Fourier transform. Note that ω is the
angle between the vector from the origin to a point z on the unit circle and the real axis

Section 3.1 z -Transform 101

1 Re

Im

�

z = e j�
Unit circle

z-plane

Figure 3.1 The unit circle in the
complex z -plane.

of the complex z-plane. If we evaluate X(z) at points on the unit circle in the z-plane
beginning at z = 1 (i.e., ω = 0) through z = j (i.e., ω = π/2) to z = −1 (i.e., ω = π), we
obtain the Fourier transform for 0 ≤ ω ≤ π . Continuing around the unit circle would
correspond to examining the Fourier transform from ω = π to ω = 2π or, equivalently,
from ω = −π to ω = 0. In Chapter 2, the Fourier transform was displayed on a linear
frequency axis. Interpreting the Fourier transform as the z-transform on the unit circle
in the z-plane corresponds conceptually to wrapping the linear frequency axis around
the unit circle with ω = 0 at z = 1 and ω = π at z = −1. With this interpretation, the
inherent periodicity in frequency of the Fourier transform is captured naturally, since
a change of angle of 2π radians in the z-plane corresponds to traversing the unit circle
once and returning to exactly the same point.

As we discussed in Chapter 2, the power series representing the Fourier transform
does not converge for all sequences; i.e., the infinite sum may not always be finite.
Similarly, the z-transform does not converge for all sequences or for all values of z.
For any given sequence, the set of values of z for which the z-transform power series
converges is called the region of convergence (ROC), of the z-transform. As we stated
in Section 2.7, if the sequence is absolutely summable, the Fourier transform converges
to a continuous function of ω. Applying this criterion to Eq. (3.6) leads to the condition

|X(rejω)| ≤
∞∑

n=−∞
|x[n]r−n| < ∞ (3.7)

for convergence of the z-transform. From Eq. (3.7) it follows that, because of the mul-
tiplication of the sequence by the real exponential r−n, it is possible for the z-transform
to converge even if the Fourier transform (r = 1) does not. For example, the sequence
x[n] = u[n] is not absolutely summable, and therefore, the Fourier transform power
series does not converge absolutely. However, r−nu[n] is absolutely summable if r > 1.
This means that the z-transform for the unit step exists with an ROC r = |z| > 1.

Convergence of the power series of Eq. (3.2) for a given sequence depends only
on |z|, since |X(z)| < ∞ if

∞∑
n=−∞

|x[n]||z|−n < ∞, (3.8)

i.e., the ROC of the power series in Eq. (3.2) consists of all values of z such that the
inequality in Eq. (3.8) holds. Thus, if some value of z, say, z = z1, is in the ROC,

102 Chapter 3 The z -Transform

Re

Im z-plane

Figure 3.2 The ROC as a ring in the
z -plane. For specific cases, the inner
boundary can extend inward to the
origin, and the ROC becomes a disc. For
other cases, the outer boundary can
extend outward to infinity.

then all values of z on the circle defined by |z| = |z1| will also be in the ROC. As
one consequence of this, the ROC will consist of a ring in the z-plane centered about
the origin. Its outer boundary will be a circle (or the ROC may extend outward to
infinity), and its inner boundary will be a circle (or it may extend inward to include the
origin). This is illustrated in Figure 3.2. If the ROC includes the unit circle, then this of
course implies convergence of the z-transform for |z| = 1, or equivalently, the Fourier
transform of the sequence converges. Conversely, if the ROC does not include the unit
circle, the Fourier transform does not converge absolutely.

A power series of the form of Eq. (3.2) is a Laurent series. Therefore, a number
of elegant and powerful theorems from the theory of functions of a complex variable
can be employed in the study of the z-transform. (See Brown and Churchill (2007).)
For example, a Laurent series, and therefore the z-transform, represents an analytic
function at every point inside the ROC; hence, the z-transform and all its derivatives
must be continuous functions of z within the ROC. This implies that if the ROC includes
the unit circle, then the Fourier transform and all its derivatives with respect to ω must
be continuous functions of ω. Also, from the discussion in Section 2.7, the sequence
must be absolutely summable, i.e., a stable sequence.

Uniform convergence of the z-transform requires absolute summability of the
exponentially weighted sequence, as stated in Eq. (3.7). Neither of the sequences

x1[n] = sin ωcn

πn
, −∞ < n < ∞, (3.9)

and

x2[n] = cos ω0n, −∞ < n < ∞, (3.10)

is absolutely summable. Furthermore, neither of these sequences multiplied by r−n

would be absolutely summable for any value of r . Thus, neither of these sequences has a
z-transform that converges absolutely for any z. However, we showed in Section 2.7 that
even though a sequence such as x1[n] in Eq. (3.9) is not absolutely summable, it does have
finite energy (i.e., it is square-summable), and the Fourier transform converges in the
mean-square sense to a discontinuous periodic function. Similarly, the sequence x2[n]
in Eq. (3.10) is neither absolutely nor square summable, but a useful Fourier transform
for x2[n] can be defined using impulse functions (i.e., generalized functions or Dirac
delta functions). In both cases, the Fourier transforms are not continuous, infinitely

Section 3.1 z -Transform 103

differentiable functions, so they cannot result from evaluating a z-transform on the unit
circle. Thus, in such cases it is not strictly correct to think of the Fourier transform as
being the z-transform evaluated on the unit circle, although we nevertheless continue
to use the notation X(ejω) always to denote the discrete-time Fourier transform.

The z-transform is most useful when the infinite sum can be expressed in closed
form, i.e., when it can be “summed” and expressed as a simple mathematical formula.
Among the most important and useful z-transforms are those for which X(z) is equal
to a rational function inside the ROC, i.e.,

X(z) = P(z)

Q(z)
, (3.11)

where P(z) and Q(z) are polynomials in z. In general, the values of z for which X(z) = 0
are the zeros of X(z), and the values of z for which X(z) is infinite are the poles of X(z).
In the case of a rational function as in Eq. (3.11), the zeros are the roots of the numer-
ator polynomial and the poles (for finite values of z) are the roots of the denominator
polynomial. For rational z-transforms, a number of important relationships exist be-
tween the locations of poles of X(z) and the ROC of the z-transform. We discuss these
more specifically in Section 3.2. However, we first illustrate the z-transform with several
examples.

Example 3.1 Right-Sided Exponential Sequence

Consider the signal x[n] = anu[n], where a denotes a real or complex number. Because
it is nonzero only for n ≥ 0, this is an example of the class of right-sided sequences,
which are sequences that begin at some time N1 and have nonzero values only for
N1 ≤ n < ∞; i.e., they occupy the right side of a plot of the sequence. From Eq. (3.2),

X(z) =
∞∑

n=−∞
anu[n]z−n =

∞∑
n=0

(az−1)n.

For convergence of X(z), we require that
∞∑

n=0

|az−1|n < ∞.

Thus, the ROC is the range of values of z for which |az−1| < 1 or, equivalently, |z| > |a|.
Inside the ROC, the infinite series converges to

X(z) =
∞∑

n=0

(az−1)n = 1

1 − az−1
= z

z − a
, |z| > |a|. (3.12)

To obtain this closed-form expression, we have used the familiar formula for the sum
of terms of a geometric series (see Jolley, 1961). The z-transform of the sequence
x[n] = anu[n] has an ROC for any finite value of |a|. For a = 1, x[n] is the unit step
sequence with z-transform

X(z) = 1

1 − z−1
, |z| > 1. (3.13)

If |a| < 1, the Fourier transform of x[n] = anu[n] converges to

X(ejω) = 1

1 − ae−jω
. (3.14)

104 Chapter 3 The z -Transform

However, if a ≥ 1, the Fourier transform of the right-sided exponential sequence does
not converge.

1

Unit circle

Re

Im z-plane

a

Figure 3.3 Pole–zero plot and ROC for Example 3.1.

In Example 3.1, the infinite sum is equal to a rational function of z inside the ROC.
For most purposes, this rational function is a much more convenient representation
than the infinite sum. We will see that any sequence that can be represented as a sum
of exponentials can equivalently be represented by a rational z-transform. Such a z-
transform is determined to within a constant multiplier by its zeros and its poles. For
this example, there is one zero, at z = 0, and one pole, at z = a. The pole–zero plot
and the ROC for Example 3.1 are shown in Figure 3.3 where the symbol “◦” denotes
the zero and the symbol “×” the pole. For |a| ≥ 1, the ROC does not include the unit
circle, consistent with the fact that, for these values of a, the Fourier transform of the
exponentially growing sequence anu[n] does not converge.

Example 3.2 Left-Sided Exponential Sequence

Now let

x[n] = −anu[−n − 1] =
{−an n ≤ −1

0 n > −1.

Since the sequence is nonzero only for n ≤ −1, this is a left-sided sequence. The
z-transform in this case is

X(z) = −
∞∑

n=−∞
anu[−n − 1]z−n = −

−1∑
n=−∞

anz−n

= −
∞∑

n=1

a−nzn = 1 −
∞∑

n=0

(a−1z)n.

(3.15)

If |a−1z| < 1 or, equivalently, |z| < |a|, the last sum in Eq. (3.15) converges, and using
again the formula for the sum of terms in a geometric series,

X(z) = 1 − 1

1 − a−1z
= 1

1 − az−1
= z

z − a
, |z| < |a|. (3.16)

The pole–zero plot and ROC for this example are shown in Figure 3.4.

Section 3.1 z -Transform 105

Note that for |a| < 1, the sequence −anu[−n−1] grows exponentially as n → −∞, and
thus, the Fourier transform does not exist. However, if |a| > 1 the Fourier transform
is

X(ejω) = 1

1 − ae−jω
, (3.17)

which is identical in form to Eq. (3.14). At first glance, this would appear to violate the
uniqueness of the Fourier transform. However, this ambiguity is resolved if we recall
that Eq. (3.14) is the Fourier transform of anu[n] if |a| < 1, while Eq. (3.17) is the
Fourier transform of −anu[−n − 1] when |a| > 1.

1

Unit circle

Re

Im z-plane

a

Figure 3.4 Pole–zero plot and ROC for Example 3.2.

Comparing Eqs. (3.12) and (3.16) and Figures 3.3 and 3.4, we see that the sequences
and, therefore, the infinite sums are different; however, the algebraic expressions for
X(z) and the corresponding pole–zero plots are identical in Examples 3.1 and 3.2. The
z-transforms differ only in the ROC. This emphasizes the need for specifying both the
algebraic expression and the ROC for the bilateral z-transform of a given sequence.
Also, in both examples, the sequences were exponentials and the resulting z-transforms
were rational. In fact, as is further suggested by the next example, X(z) will be rational
whenever x[n] is a linear combination of real or complex exponentials.

Example 3.3 Sum of Two Exponential Sequences

Consider a signal that is the sum of two real exponentials:

x[n] =
(

1
2

)n

u[n] +
(

− 1
3

)n

u[n]. (3.18)

The z-transform is

X(z) =
∞∑

n=−∞

{(
1
2

)n

u[n] +
(

− 1
3

)n

u[n]
}

z−n

=
∞∑

n=−∞

(
1
2

)n

u[n]z−n +
∞∑

n=−∞

(
− 1

3

)n

u[n]z−n (3.19)

106 Chapter 3 The z -Transform

=
∞∑

n=0

(
1
2
z−1
)n

+
∞∑

n=0

(
− 1

3
z−1
)n

= 1

1 − 1
2 z−1

+ 1

1 + 1
3z−1

=
2
(

1 − 1
12 z−1

)
(

1 − 1
2 z−1
) (

1 + 1
3z−1
)

=
2z
(
z − 1

12

)
(
z − 1

2

) (
z + 1

3

) . (3.20)

For convergence of X(z), both sums in Eq. (3.19) must converge, which requires that

both
∣∣∣ 1

2 z−1
∣∣∣ < 1 and

∣∣∣(− 1
3

)
z−1
∣∣∣ < 1 or, equivalently, |z| > 1

2 and |z| > 1
3 . Thus, the

ROC is the region of overlap, |z| > 1
2 . The pole–zero plot and ROC for the z-transform

of each of the individual terms and for the combined signal are shown in Figure 3.5.

1

(a)

Re

Im z-plane

1
2

1

(b)

Re

Im z-plane

1

(c)

1
2

Re

Im z-plane

1
12

1
3

–

1
3

–

Figure 3.5 Pole–zero plot and ROC for the individual terms and the sum of terms
in Examples 3.3 and 3.4. (a) 1/(1 − 1

2 z−1), |z | > 1
2 . (b) 1/(1 + 1

3 z−1), |z | > 1
3 .

(c) 1/(1 − 1
2 z−1) + 1/(1 + 1

3 z−1), |z | > 1
2 .

Section 3.1 z -Transform 107

In each of the preceding examples, we started with the definition of the sequence
and manipulated each of the infinite sums into a form whose sum could be recognized.
When the sequence is recognized as a sum of exponential sequences of the form of
Examples 3.1 and 3.2, the z-transform can be obtained much more simply using the
fact that the z-transform operator is linear. Specifically, from the definition of the z-
transform in Eq. (3.2), if x[n] is the sum of two terms, then X(z) will be the sum of the
corresponding z-transforms of the individual terms. The ROC will be the intersection of
the individual ROCs, i.e., the values of z for which both individual sums converge. We
have already demonstrated the linearity property in obtaining Eq. (3.19) in Example
3.3. Example 3.4 shows how the z-transform in Example 3.3 can be obtained in a much
more straightforward manner by expressing x[n] as the sum of two sequences.

Example 3.4 Sum of Two Exponentials (Again)

Again, let x[n] be given by Eq. (3.18). Then using the general result of Example 3.1
with a = 1

2 and a = − 1
3 , the z-transforms of the two individual terms are easily seen

to be (
1
2

)n

u[n] Z←→ 1

1 − 1
2 z−1

, |z| >
1
2
, (3.21)

(
− 1

3

)n

u[n] Z←→ 1

1 + 1
3z−1

, |z| >
1
3
, (3.22)

and, consequently,(
1
2

)n

u[n] +
(

− 1
3

)n

u[n] Z←→ 1

1 − 1
2 z−1

+ 1

1 + 1
3z−1

, |z| >
1
2
, (3.23)

as determined in Example 3.3. The pole–zero plot and ROC for the z-transform of
each of the individual terms and for the combined signal are shown in Figure 3.5.

All the major points of Examples 3.1–3.4 are summarized in Example 3.5.

Example 3.5 Two-Sided Exponential Sequence

Consider the sequence

x[n] =
(

− 1
3

)n

u[n] −
(

1
2

)n

u[−n − 1]. (3.24)

Note that this sequence grows exponentially as n → −∞. Using the general result of
Example 3.1 with a = − 1

3 , we obtain(
− 1

3

)n

u[n] Z←→ 1

1 + 1
3z−1

, |z| >
1
3
,

and using the result of Example 3.2 with a = 1
2 yields

−
(

1
2

)n

u[−n − 1] Z←→ 1

1 − 1
2 z−1

, |z| <
1
2
.

108 Chapter 3 The z -Transform

Thus, by the linearity of the z-transform,

X (z) = 1

1 + 1
3z−1

+ 1

1 − 1
2 z−1

,
1
3

< |z| and |z| <
1
2
,

=
2
(

1 − 1
12 z−1

)
(

1 + 1
3z−1
) (

1 − 1
2 z−1
) =

2z
(
z − 1

12

)
(
z + 1

3

) (
z − 1

2

) . (3.25)

In this case, the ROC is the annular region 1
3 < |z| < 1

2 . Note that the rational function
in this example is identical to the rational function in Example 3.4, but the ROC is
different in this case. The pole–zero plot and the ROC for this example are shown in
Figure 3.6.

Since the ROC does not contain the unit circle, the sequence in Eq. (3.24) does
not have a Fourier transform.

Re

Im z-plane

1
2

1
12

1
3

–

Figure 3.6 Pole–zero plot and ROC for Example 3.5.

In each of the preceding examples, we expressed the z-transform both as a ratio
of polynomials in z and as a ratio of polynomials in z−1. From the form of the definition
of the z-transform as given in Eq. (3.2), we see that, for sequences that are zero for
n < 0, X(z) involves only negative powers of z. Thus, for this class of signals, it is
particularly convenient for X(z) to be expressed in terms of polynomials in z−1 rather
than z; however, even when x[n] is nonzero for n < 0, X(z) can still be expressed in
terms of factors of the form (1 − az−1). It should be remembered that such a factor
introduces both a pole and a zero, as illustrated by the algebraic expressions in the
preceding examples.

These examples show that infinitely long exponential sequences have z-transforms
that can be expressed as rational functions of either z or z−1. The case where the se-
quence has finite length also has a rather simple form. If the sequence is nonzero only
in the interval N1 ≤ n ≤ N2, the z-transform

X(z) =
N2∑

n=N1

x[n]z−n (3.26)

has no problems of convergence, as long as each of the terms |x[n]z−n| is finite. In
general, it may not be possible to express the sum of a finite set of terms in a closed

Section 3.1 z -Transform 109

form, but in such cases it may be unnecessary. For example, if x[n] = δ[n]+δ[n−5], then
X(z) = 1 + z−5, which is finite for |z| > 0. An example of a case where a finite number
of terms can be summed to produce a more compact representation of the z-transform
is given in Example 3.6.

Example 3.6 Finite-Length Truncated Exponential Sequence

Consider the signal

x[n] =
{

an, 0 ≤ n ≤ N − 1,

0, otherwise.

Then

X(z) =
N−1∑
n=0

anz−n =
N−1∑
n=0

(az−1)n = 1 − (az−1)N

1 − az−1
= 1

zN−1
zN − aN

z − a
, (3.27)

where we have used the general formula in Eq. (2.55) to obtain a closed-form expres-
sion for the sum of the finite series. The ROC is determined by the set of values of z

for which
N−1∑
n=0

|az−1|n < ∞.

Since there are only a finite number of nonzero terms, the sum will be finite as long
as az−1 is finite, which in turn requires only that |a| < ∞ and z �= 0. Thus, assuming
that |a| is finite, the ROC includes the entire z-plane, with the exception of the origin
(z = 0). The pole–zero plot for this example, with N = 16 and a real and between zero
and unity, is shown in Figure 3.7. Specifically, the N roots of the numerator polynomial
are at z-plane locations

zk = aej (2πk/N), k = 0, 1, . . . , N − 1. (3.28)

(Note that these values satisfy the equation zN = aN , and when a = 1, these complex
values are the N th roots of unity.) The zero corresponding to k = 0 cancels the pole at
z = a. Consequently, there are no poles other than the N − 1 poles at the origin. The
remaining zeros are at z-plane locations

zk = aej (2πk/N), k = 1, . . . , N − 1. (3.29)

Re

Im

15th-order pole Unit circle

�

8

z-plane

a

Figure 3.7 Pole–zero plot for Example 3.6 with N = 16 and a real such that
0 < a < 1. The ROC in this example consists of all values of z except z = 0.

110 Chapter 3 The z -Transform

TABLE 3.1 SOME COMMON z -TRANSFORM PAIRS

Sequence Transform ROC

1. δ[n] 1 All z

2. u[n] 1
1 − z−1

|z| > 1

3. −u[−n − 1] 1
1 − z−1

|z| < 1

4. δ[n − m] z−m All z except 0 (if m > 0) or ∞ (if m < 0)

5. anu[n] 1
1 − az−1

|z| > |a|

6. −anu[−n − 1] 1
1 − az−1

|z| < |a|

7. nanu[n] az−1

(1 − az−1)2
|z| > |a|

8. −nanu[−n − 1] az−1

(1 − az−1)2
|z| < |a|

9. cos(ω0n)u[n] 1 − cos(ω0)z
−1

1 − 2 cos(ω0)z
−1 + z−2

|z| > 1

10. sin(ω0n)u[n] sin(ω0)z
−1

1 − 2 cos(ω0)z
−1 + z−2

|z| > 1

11. rn cos(ω0n)u[n] 1 − r cos(ω0)z
−1

1 − 2r cos(ω0)z
−1 + r2z−2

|z| > r

12. rn sin(ω0n)u[n] r sin(ω0)z
−1

1 − 2r cos(ω0)z
−1 + r2z−2

|z| > r

13.
{

an, 0 ≤ n ≤ N − 1,

0, otherwise
1 − aNz−N

1 − az−1
|z| > 0

The transform pairs corresponding to some of the preceding examples, as well as a
number of other commonly encountered z-transform pairs, are summarized in Table 3.1.
We will see that these basic transform pairs are very useful in finding z-transforms given
a sequence or, conversely, in finding the sequence corresponding to a given z-transform.

3.2 PROPERTIES OF THE ROC FOR THE z -TRANSFORM

The examples of the previous section suggest that the properties of the ROC depend
on the nature of the signal. These properties are summarized in this section with some
discussion and intuitive justification. We assume specifically that the algebraic expres-
sion for the z-transform is a rational function and that x[n] has finite amplitude, except
possibly at n = ∞ or n = −∞.

Section 3.2 Properties of the ROC for the z -Transform 111

Property 1: The ROC will either be of the form 0 ≤ rR < |z|, or |z| < rL ≤ ∞, or,
in general the annulus, i.e., 0 ≤ rR < |z| < rL ≤ ∞.

Property 2: The Fourier transform of x[n] converges absolutely if and only if the
ROC of the z-transform of x[n] includes the unit circle.

Property 3: The ROC cannot contain any poles.

Property 4: If x[n] is a finite-duration sequence, i.e., a sequence that is zero except
in a finite interval −∞ < N1 ≤ n ≤ N2 < ∞, then the ROC is the entire z-plane,
except possibly z = 0 or z = ∞.

Property 5: If x[n] is a right-sided sequence, i.e., a sequence that is zero for
n < N1 < ∞, the ROC extends outward from the outermost (i.e., largest mag-
nitude) finite pole in X(z) to (and possibly including) z = ∞.

Property 6: If x[n] is a left-sided sequence, i.e., a sequence that is zero for
n > N2 > −∞, the ROC extends inward from the innermost (smallest magni-
tude) nonzero pole in X(z) to (and possibly including) z = 0.

Property 7: A two-sided sequence is an infinite-duration sequence that is neither
right sided nor left sided. If x[n] is a two-sided sequence, the ROC will consist
of a ring in the z-plane, bounded on the interior and exterior by a pole and,
consistent with Property 3, not containing any poles.

Property 8: The ROC must be a connected region.

Property 1 summarizes the general shape of the ROC. As discussed in Section 3.1,
it results from the fact that the condition for convergence of Eq. (3.2) is given by Eq. (3.7)
repeated here as

∞∑
n=−∞

|x[n]|r−n < ∞ (3.30)

where r = |z|. Equation (3.30) shows that for a given x[n], convergence is dependent
only on r = |z| (i.e., not on the angle of z). Note that if the z-transform converges for
|z| = r0, then we may decrease r until the z-transform does not converge. This is the
value |z| = rR such that |x[n]|r−n grows too fast (or decays too slowly) as n → ∞,
so that the series is not absolutely summable. This defines rR . The z-transform cannot
converge for r ≤ rR since r−n will grow even faster. Similarly, the outer boundary rL
can be found by increasing r from r0 and considering what happens when n → −∞.

Property 2 is a consequence of the fact that Eq. (3.2) reduces to the Fourier
transform when |z| = 1. Property 3 follows from the recognition that X(z) is infinite at
a pole and therefore, by definition, does not converge.

Property 4 follows from the fact that the z-transform of a finite-length sequence
is a finite sum of finite powers of z, i.e.,

X(z) =
N2∑

n=N1

x[n]z−n.

Therefore, |X(z)| < ∞ for all z except z = 0 when N2 > 0 and/or z = ∞ when N1 < 0.

112 Chapter 3 The z -Transform

Properties 5 and 6 are special cases of Property 1. To interpret Property 5 for
rational z-transforms, note that a sequence of the form

x[n] =
N∑

k=1

Ak(dk)
nu[n] (3.31)

is an example of a right-sided sequence composed of exponential sequences with am-
plitudes Ak and exponential factors dk . While this is not the most general right-sided
sequence, it will suffice to illustrate Property 5. More general right-sided sequences
can be formed by adding finite-length sequences or shifting the exponential sequences
by finite amounts; however, such modifications to Eq. (3.31) would not change our
conclusions. Invoking the linearity property, the z-transform of x[n] in Eq. (3.31) is

X(z) =
N∑

k=1

Ak

1 − dkz−1︸ ︷︷ ︸
|z| > |dk|

. (3.32)

Note that for values of z that lie in all of the individual ROCs, |z| > |dk|, the terms can
be combined into one rational function with common denominator

N∏
k=1

(1 − dkz
−1);

i.e., the poles of X(z) are located at z = d1, . . . , dN . Assume for convenience that the
poles are ordered so that d1 has the smallest magnitude, corresponding to the innermost
pole, and dN has the largest magnitude, corresponding to the outermost pole. The least
rapidly increasing of these exponentials, as n increases, is the one corresponding to the
innermost pole, i.e., d1, and the most slowly decaying (or most rapidly growing) is the
one corresponding to the outermost pole, i.e., dN . Not surprisingly, dN determines the
inner boundary of the ROC which is the intersection of the regions |z| > |dk|. That is,
the ROC of the z-transform of a right-sided sum of exponential sequences is

|z| > |dN | = max
k

|dk| = rR, (3.33)

i.e., the ROC is outside the outermost pole, extending to infinity. If a right-sided se-
quence begins at n = N1 < 0, then the ROC will not include |z| = ∞.

Another way of arriving at Property 5 is to apply Eq. (3.30) to Eq. (3.31) obtaining
∞∑

n=0

∣∣∣∣∣
N∑

k=1

Ak(dk)
n

∣∣∣∣∣ r−n ≤
N∑

k=1

|Ak|
(∞∑

n=0

|dk/r|n
)

< ∞, (3.34)

which shows that convergence is guaranteed if all the sequences |dk/r|n are absolutely
summable. Again, since |dN | is the largest pole magnitude, we choose |dN/r| < 1, or
r > |dN |.

For Property 6, which is concerned with left-sided sequences, an exactly parallel
argument can be carried out for a sum of left-sided exponential sequences to show
that the ROC will be defined by the pole with the smallest magnitude. With the same
assumption on the ordering of the poles, the ROC will be

|z| < |d1| = min
k

|dk| = rL, (3.35)

Section 3.2 Properties of the ROC for the z -Transform 113

i.e., the ROC is inside the innermost pole. If the left-sided sequence has nonzero values
for positive values of n, then the ROC will not include the origin, z = 0. Since x[n] now
extends to −∞ along the negative n-axis, r must be restricted so that for each dk , the
exponential sequence (dkr

−1)n decays to zero as n decreases toward −∞.
For right-sided sequences, the ROC is dictated by the exponential weighting r−n

required to have all exponential terms decay to zero for increasing n; for left-sided
sequences, the exponential weighting must be such that all exponential terms decay to
zero for decreasing n. Property 7 follows from the fact that for two-sided sequences, the
exponential weighting needs to be balanced, since if it decays too fast for increasing n,
it may grow too quickly for decreasing n and vice versa. More specifically, for two-sided
sequences, some of the poles contribute only for n > 0 and the rest only for n < 0. The
ROC is bounded on the inside by the pole with the largest magnitude that contributes
for n > 0 and on the outside by the pole with the smallest magnitude that contributes
for n < 0.

Property 8 is intuitively suggested by our discussion of Properties 4 through 7.
Any infinite two-sided sequence can be represented as a sum of a right-sided part (say,
for n ≥ 0) and a left-sided part that includes everything not included in the right-sided
part. The right-sided part will have an ROC given by Eq. (3.33), while the ROC of the
left-sided part will be given by Eq. (3.35). The ROC of the entire two-sided sequence
must be the intersection of these two regions. Thus, if such an intersection exists, it will
always be a simply connected annular region of the form

rR < |z| < rL.

There is a possibility of no overlap between the ROCs of the right- and left-sided
parts; i.e., rL < rR . In such cases, the z-transform of the sequence simply does not exist.

Example 3.7 Non-Overlapping Regions of Convergence

An example is the sequence

x[n] =
(

1
2

)n

u[n] −
(

−1
3

)n

u[−n − 1].

Applying the corresponding entries from Table 3.1 separately to each part leads to

X(z) = 1

1 − 1
2 z−1︸ ︷︷ ︸

|z| > 1
2

+ 1

1 + 1
3z−1︸ ︷︷ ︸

|z| < 1
3

.

Since there is no overlap between |z| > 1
2 and |z| < 1

3 , we conclude that x[n] has no
z-transform (nor Fourier transform) representation.

As we indicated in comparing Examples 3.1 and 3.2, the algebraic expression or
pole–zero pattern does not completely specify the z-transform of a sequence; i.e., the
ROC must also be specified. The properties considered in this section limit the possible
ROCs that can be associated with a given pole–zero pattern. To illustrate, consider the
pole–zero pattern shown in Figure 3.8(a). From Properties 1, 3, and 8, there are only
four possible choices for the ROC. These are indicated in Figures 3.8(b), (c), (d), and (e),
each being associated with a different sequence. Specifically, Figure 3.8(b) corresponds

Re

Im

Unit circle

z-plane

Re

Im z-plane

Re

Im z-plane

a cb

(a)

(b) (c)

(d) (e)

a cb

a cbRe

Im z-plane

a cb

Re

Im z-plane

a cb

Figure 3.8 Examples of four z -transforms with the same pole–zero locations,
illustrating the different possibilities for the ROC, each of which corresponds to
a different sequence: (b) to a right-sided sequence, (c) to a left-sided sequence,
(d) to a two-sided sequence, and (e) to a two-sided sequence.

114

Section 3.3 The Inverse z -Transform 115

to a right-sided sequence, Figure 3.8(c) to a left-sided sequence, and Figures 3.8(d) and
3.8(e) to two different two-sided sequences. If we assume, as indicated in Figure 3.8(a),
that the unit circle falls between the pole at z = b and the pole at z = c, then the
only one of the four cases for which the Fourier transform would converge is that in
Figure 3.8(e).

In representing a sequence through its z-transform, it is sometimes convenient
to specify the ROC implicitly through an appropriate time-domain property of the
sequence. This is illustrated in Example 3.8.

Example 3.8 Stability, Causality, and the ROC

Consider an LTI system with impulse response h[n]. As we will discuss in more detail
in Section 3.5, the z-transform of h[n] is called the system function of the LTI system.
Suppose that H(z) has the pole–zero plot shown in Figure 3.9. There are three possible
ROCs consistent with Properties 1–8 that can be associated with this pole–zero plot;
i.e., |z| < 1

2 , 1
2 < |z| < 2, and |z| > 2. However, if we state in addition that the system

is stable (or equivalently, that h[n] is absolutely summable and therefore has a Fourier
transform), then the ROC must include the unit circle. Thus, stability of the system
and Properties 1–8 imply that the ROC is the region 1

2 < |z| < 2. Note that as a
consequence, h[n] is two sided; therefore, the system is not causal.

Re

Im

Unit circle

z-plane

1–2
2

Figure 3.9 Pole–zero plot for the system function in Example 3.8.

If we state instead that the system is causal, and therefore that h[n] is right sided,
Property 5 would require that the ROC be the region |z| > 2. Under this condition,
the system would not be stable; i.e., for this specific pole–zero plot, there is no ROC
that would imply that the system is both stable and causal.

3.3 THE INVERSE z -TRANSFORM

In using the z-transform for analysis of discrete-time signals and systems, we must be
able to move back and forth between time-domain and z-domain representations. Often,
this analysis involves finding the z-transform of sequences and, after some manipulation

116 Chapter 3 The z -Transform

of the algebraic expressions, finding the inverse z-transform. The inverse z-transform is
the following complex contour integral:

x[n] = 1
2πj

∮
C

X(z)zn−1dz, (3.36)

where C represents a closed contour within the ROC of the z-transform. This integral
expression can be derived using the Cauchy integral theorem from the theory of complex
variables. (See Brown and Churchill, 2007 for a discussion of the topics of Laurent series
and complex integration theorems, all of which are relevant to an in-depth study of fun-
damental mathematical foundations of the z-transform.) However, for the typical kinds
of sequences and z-transforms that we will encounter in the analysis of discrete LTI sys-
tems, less formal procedures are sufficient and preferable to techniques based on evalu-
ation of Eq. (3.36). In Sections 3.3.1–3.3.3, we consider some of these procedures, specif-
ically the inspection method, partial fraction expansion, and power series expansion.

3.3.1 Inspection Method

The inspection method consists simply of becoming familiar with, or recognizing “by
inspection,” certain transform pairs. For example, in Section 3.1, we evaluated the z-
transform for sequences of the form x[n] = anu[n], where a can be either real or com-
plex. Sequences of this form arise quite frequently, and consequently, it is particularly
useful to make direct use of the transform pair

anu[n] Z←→ 1
1 − az−1

, |z| > |a|. (3.37)

If we need to find the inverse z-transform of

X(z) =
(

1

1 − 1
2z−1

)
, |z| >

1
2
, (3.38)

and we recall the z-transform pair of Eq. (3.37), we would recognize “by inspection” the

associated sequence as x[n] =
(

1
2

)n
u[n]. If the ROC associated with X(z) in Eq. (3.38)

had been |z| < 1
2 , we can recall transform pair 6 in Table 3.1 to find by inspection that

x[n] = −
(

1
2

)n
u[−n − 1].

Tables of z-transforms, such as Table 3.1, are invaluable in applying the inspection
method. If the table is extensive, it may be possible to express a given z-transform as
a sum of terms, each of whose inverse is given in the table. If so, the inverse transform
(i.e., the corresponding sequence) can be written from the table.

3.3.2 Partial Fraction Expansion

As already described, inverse z-transforms can be found by inspection if the z-transform
expression is recognized or tabulated. Sometimes, X(z) may not be given explicitly
in an available table, but it may be possible to obtain an alternative expression for
X(z) as a sum of simpler terms, each of which is tabulated. This is the case for any
rational function, since we can obtain a partial fraction expansion and easily identify
the sequences corresponding to the individual terms.

Section 3.3 The Inverse z -Transform 117

To see how to obtain a partial fraction expansion, let us assume that X(z) is ex-
pressed as a ratio of polynomials in z−1; i.e.,

X(z) =

M∑
k=0

bkz
−k

N∑
k=0

akz
−k

. (3.39)

Such z-transforms arise frequently in the study of LTI systems. An equivalent expression
is

X(z) =
zN

M∑
k=0

bkz
M−k

zM

N∑
k=0

akz
N−k

. (3.40)

Equation (3.40) explicitly shows that for such functions, there will be M zeros and N

poles at nonzero locations in the finite z-plane assuming a0, b0, aN , and bM are nonzero.
In addition, there will be either M −N poles at z = 0 if M > N or N −M zeros at z = 0
if N > M . In other words, z-transforms of the form of Eq. (3.39) always have the same
number of poles and zeros in the finite z-plane, and there are no poles or zeros at z = ∞.
To obtain the partial fraction expansion of X(z) in Eq. (3.39), it is most convenient to
note that X(z) could be expressed in the form

X(z) = b0

a0

M∏
k=1

(1 − ckz
−1)

N∏
k=1

(1 − dkz
−1)

, (3.41)

where the cks are the nonzero zeros of X(z) and the dks are the nonzero poles of X(z).
If M < N and the poles are all 1st-order, then X(z) can be expressed as

X(z) =
N∑

k=1

Ak

1 − dkz−1
. (3.42)

Obviously, the common denominator of the fractions in Eq. (3.42) is the same as the
denominator in Eq. (3.41). Multiplying both sides of Eq. (3.42) by (1 − dkz

−1) and
evaluating for z = dk shows that the coefficients, Ak , can be found from

Ak = (1 − dkz
−1)X(z)

∣∣
z=dk

. (3.43)

118 Chapter 3 The z -Transform

Example 3.9 2nd-Order z-Transform

Consider a sequence x[n] with z-transform

X(z) = 1(
1 − 1

4 z−1
) (

1 − 1
2 z−1
) , |z| >

1
2
. (3.44)

The pole–zero plot for X(z) is shown in Figure 3.10. From the ROC and Property
5, Section 3.2, we see that x[n] is a right-sided sequence. Since the poles are both
1st-order, X(z) can be expressed in the form of Eq. (3.42); i.e.,

X(z) = A1(
1 − 1

4 z−1
) + A2(

1 − 1
2 z−1
) .

From Eq. (3.43),

A1 =
(

1 − 1
4
z−1
)

X(z)

∣∣∣∣
z=1/4

= (1 − 1
4 z−1)

(1 − 1
4 z−1)(1 − 1

2 z−1)

∣∣∣∣∣
z=1/4

= −1,

A2 =
(

1 − 1
2
z−1
)

X(z)

∣∣∣∣
z=1/2

= (1 − 1
2 z−1)

(1 − 1
4 z−1)(1 − 1

2 z−1)

∣∣∣∣∣
z=1/2

= 2 .

(Observe that the common factors between the numerator and denominator must be
canceled before evaluating the above expressions for A1 and A2.) Therefore,

X(z) = −1(
1 − 1

4 z−1
) + 2(

1 − 1
2 z−1
) .

Since x[n] is right sided, the ROC for each term extends outward from the outermost
pole. From Table 3.1 and the linearity of the z-transform, it then follows that

x[n] = 2
(

1
2

)n

u[n] −
(

1
4

)n

u[n] .

1
2

1
4

Re

Im z-plane

Figure 3.10 Pole–zero plot and ROC for Example 3.9.

Section 3.3 The Inverse z -Transform 119

Clearly, the numerator that would result from adding the terms in Eq. (3.42) would
be at most of degree (N − 1) in the variable z−1. If M ≥ N , then a polynomial must
be added to the right-hand side of Eq. (3.42), the order of which is (M − N). Thus, for
M ≥ N , the complete partial fraction expansion would have the form

X(z) =
M−N∑
r=0

Brz
−r +

N∑
k=1

Ak

1 − dkz−1
. (3.45)

If we are given a rational function of the form of Eq. (3.39), with M ≥ N , the Brs can
be obtained by long division of the numerator by the denominator, with the division
process terminating when the remainder is of lower degree than the denominator. The
Aks can still be obtained with Eq. (3.43).

If X(z) has multiple-order poles and M ≥ N , Eq. (3.45) must be further modified.
In particular, if X(z) has a pole of order s at z = di and all the other poles are 1st-order,
then Eq. (3.45) becomes

X(z) =
M−N∑
r=0

Brz
−r +

N∑
k=1,k �=i

Ak

1 − dkz−1
+

s∑
m=1

Cm

(1 − diz−1)m
. (3.46)

The coefficients Ak and Br are obtained as before. The coefficients Cm are obtained
from the equation

Cm = 1
(s − m)!(−di)s−m

{
ds−m

dws−m
[(1 − diw)sX(w−1)]

}
w=d−1

i

. (3.47)

Equation (3.46) gives the most general form for the partial fraction expansion of a
rational z-transform expressed as a function of z−1 for the case M ≥ N and for di a pole
of order s. If there are several multiple-order poles, then there will be a term like the
third sum in Eq. (3.46) for each multiple-order pole. If there are no multiple-order poles,
Eq. (3.46) reduces to Eq. (3.45). If the order of the numerator is less than the order of
the denominator (M < N), then the polynomial term disappears from Eqs. (3.45) and
(3.46) leading to Eq. (3.42).

It should be noted that we could have achieved the same results by assuming that
the rational z-transform was expressed as a function of z instead of z−1. That is, instead
of factors of the form (1 − az−1), we could have considered factors of the form (z − a).
This would lead to a set of equations similar in form to Eqs. (3.41)–(3.47) that would be
convenient for use with a table of z-transforms expressed in terms of z. Since we find
it most convenient to express Table 3.1 in terms of z−1, the development we pursued is
more useful.

To see how to find the sequence corresponding to a given rational z-transform,
let us suppose that X(z) has only 1st-order poles, so that Eq. (3.45) is the most general
form of the partial fraction expansion. To find x[n], we first note that the z-transform
operation is linear, so that the inverse transform of individual terms can be found and
then added together to form x[n].

The terms Brz
−r correspond to shifted and scaled impulse sequences, i.e., terms

of the form Brδ[n − r]. The fractional terms correspond to exponential sequences. To
decide whether a term

Ak

1 − dkz−1

120 Chapter 3 The z -Transform

corresponds to (dk)
nu[n] or −(dk)

nu[−n − 1], we must use the properties of the ROC
that were discussed in Section 3.2. From that discussion, it follows that if X(z) has only
simple poles and the ROC is of the form rR < |z| < rL, then a given pole dk will
correspond to a right-sided exponential (dk)

nu[n] if |dk| ≤ rR , and it will correspond to
a left-sided exponential if |dk| ≥ rL. Thus, the ROC can be used to sort the poles, with all
poles inside the inner boundary rR corresponding to right-sided sequences and all the
poles outside the outer boundary corresponding to left-sided sequences. Multiple-order
poles also are divided into left-sided and right-sided contributions in the same way. The
use of the ROC in finding inverse z-transforms from the partial fraction expansion is
illustrated by the following examples.

Example 3.10 Inverse by Partial Fractions

To illustrate the case in which the partial fraction expansion has the form of Eq. (3.45),
consider a sequence x[n] with z-transform

X(z) = 1 + 2z−1 + z−2

1 − 3
2 z−1 + 1

2 z−2
= (1 + z−1)2(

1 − 1
2 z−1
)

(1 − z−1)
, |z| > 1. (3.48)

The pole–zero plot for X(z) is shown in Figure 3.11. From the ROC and Property 5,
Section 3.2, it is clear that x[n] is a right-sided sequence. Since M = N = 2 and the
poles are all 1st-order, X(z) can be represented as

X(z) = B0 + A1

1 − 1
2 z−1

+ A2

1 − z−1
.

The constant B0 can be found by long division:

2
1
2 z−2 − 3

2 z−1 + 1 z−2 + 2z−1 + 1
z−2 − 3z−1 + 2

5z−1 − 1

Since the remainder after one step of long division is of degree 1 in the variable z−1,
it is not necessary to continue to divide. Thus, X(z) can be expressed as

X(z) = 2 + −1 + 5z−1(
1 − 1

2 z−1
)

(1 − z−1)
. (3.49)

Section 3.3 The Inverse z -Transform 121

1 Re

Im z-plane

1
2

Figure 3.11 Pole–zero plot for the z -transform in Example 3.10.

Now the coefficients A1 and A2 can be found by applying Eq. (3.43) to Eq. (3.48)
or, equivalently, Eq. (3.49). Using Eq. (3.49), we obtain

A1 =
⎡⎣⎛⎝2 + −1 + 5z−1(

1 − 1
2 z−1
)

(1 − z−1)

⎞⎠(1 − 1
2
z−1
)⎤⎦

z=1/2

= −9,

A2 =
⎡⎣⎛⎝2 + −1 + 5z−1(

1 − 1
2 z−1
)

(1 − z−1)

⎞⎠ (1 − z−1)

⎤⎦
z=1

= 8.

Therefore,

X(z) = 2 − 9

1 − 1
2 z−1

+ 8

1 − z−1
. (3.50)

From Table 3.1, we see that since the ROC is |z| > 1,

2
Z←→ 2δ[n],

1

1 − 1
2 z−1

Z←→
(

1
2

)n

u[n],

1

1 − z−1
Z←→ u[n].

Thus, from the linearity of the z-transform,

x[n] = 2δ[n] − 9
(

1
2

)n

u[n] + 8u[n].

In Section 3.4, we will discuss and illustrate a number of properties of the z-
transform that, in combination with the partial fraction expansion, provide a means
for determining the inverse z-transform from a given rational algebraic expression and
associated ROC, even when X(z) is not exactly in the form of Eq. (3.41). The examples
of this section were simple enough so that the computation of the partial fraction ex-

122 Chapter 3 The z -Transform

pansion was not difficult. However, when X(z) is a rational function with high-degree
polynomials in numerator and denominator, the computations to factor the denomina-
tor and compute the coefficients become much more difficult. In such cases, software
tools such as MATLAB can implement the computations with ease.

3.3.3 Power Series Expansion

The defining expression for the z-transform is a Laurent series where the sequence
values x[n] are the coefficients of z−n. Thus, if the z-transform is given as a power series
in the form

X(z) =
∞∑

n=−∞
x[n]z−n

= · · · + x[−2]z2 + x[−1]z + x[0] + x[1]z−1 + x[2]z−2 + · · · ,

(3.51)

we can determine any particular value of the sequence by finding the coefficient of the
appropriate power of z−1. We have already used this approach in finding the inverse
transform of the polynomial part of the partial fraction expansion when M ≥ N . This
approach is also very useful for finite-length sequences where X(z) may have no simpler
form than a polynomial in z−1.

Example 3.11 Finite-Length Sequence

Suppose X(z) is given in the form

X(z) = z2
(

1 − 1
2
z−1
)

(1 + z−1)(1 − z−1). (3.52)

Although X(z) is obviously a rational function of z, it is really not a rational function
in the form of Eq. (3.39). Its only poles are at z = 0, so a partial fraction expansion
according to the technique of Section 3.3.2 is not appropriate. However, by multiplying
the factors of Eq. (3.52), we can express X(z) as

X(z) = z2 − 1
2
z − 1 + 1

2
z−1.

Therefore, by inspection, x[n] is seen to be

x[n] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, n = −2,

− 1
2 , n = −1,

−1, n = 0,

1
2 , n = 1,

0, otherwise.

Equivalently,

x[n] = δ[n + 2] − 1
2
δ[n + 1] − δ[n] + 1

2
δ[n − 1].

Section 3.3 The Inverse z -Transform 123

In finding z-transforms of a sequence, we generally seek to sum the power series
of Eq. (3.51) to obtain a simpler mathematical expression, e.g., a rational function. If
we wish to use the power series to find the sequence corresponding to a given X(z)

expressed in closed form, we must expand X(z) back into a power series. Many power
series have been tabulated for transcendental functions such as log, sin, sinh, etc. In
some cases, such power series can have a useful interpretation as z-transforms, as we
illustrate in Example 3.12. For rational z-transforms, a power series expansion can be
obtained by long division, as illustrated in Example 3.13.

Example 3.12 Inverse Transform by Power Series Expansion

Consider the z-transform

X(z) = log(1 + az−1), |z| > |a|. (3.53)

Using the Taylor series expansion for log(1 + x) with |x| < 1, we obtain

X(z) =
∞∑

n=1

(−1)n+1anz−n

n
.

Therefore,

x[n] =
⎧⎨⎩ (−1)n+1 an

n
, n ≥ 1,

0, n ≤ 0.
(3.54)

When X(z) is the ratio of polynomials, it is sometimes useful to obtain a power
series by long division of the polynomials.

Example 3.13 Power Series Expansion by Long Division

Consider the z-transform

X(z) = 1

1 − az−1
, |z| > |a|. (3.55)

Since the ROC is the exterior of a circle, the sequence is a right-sided one. Furthermore,
since X(z) approaches a finite constant as z approaches infinity, the sequence is causal.
Thus, we divide, so as to obtain a series in powers of z−1. Carrying out the long division,
we obtain

1+az−1+a2z−2+· · ·
1 − az−1 1

1−az−1

az−1

az−1−a2z−2

a2z−2 · · ·

,

or

1

1 − az−1
= 1 + az−1 + a2z−2 + · · · .

Hence, x[n] = anu[n].

124 Chapter 3 The z -Transform

By dividing the highest power of z−1 in the denominator into the highest power of
the numerator in Example 3.13, we obtained a series in z−1. An alternative is to express
the rational function as a ratio of polynomials in z and then divide. This leads to a power
series in z from which the corresponding left-sided sequence can be determined.

3.4 z -TRANSFORM PROPERTIES

Many of the mathematical properties of the z-transform are particularly useful in study-
ing discrete-time signals and systems. For example, these properties are often used in
conjunction with the inverse z-transform techniques discussed in Section 3.3 to obtain
the inverse z-transform of more complicated expressions. In Section 3.5 and Chapter 5
we will see that the properties also form the basis for transforming linear constant-
coefficient difference equations to algebraic equations in terms of the transform vari-
able z, the solution to which can then be obtained using the inverse z-transform. In
this section, we consider some of the most frequently used properties. In the following
discussion, X(z) denotes the z-transform of x[n], and the ROC of X(z) is indicated by
Rx ; i.e.,

x[n] Z←→ X(z), ROC = Rx.

As we have seen, Rx represents a set of values of z such that rR < |z| < rL. For
properties that involve two sequences and associated z-transforms, the transform pairs
will be denoted as

x1[n] Z←→ X1(z), ROC = Rx1 ,

x2[n] Z←→ X2(z), ROC = Rx2 .

3.4.1 Linearity

The linearity property states that

ax1[n] + bx2[n] Z←→ aX1(z) + bX2(z), ROC contains Rx1 ∩ Rx2 ,

and follows directly from the z-transform definition, Eq. (3.2); i.e.,
∞∑

n=−∞
(ax1[n] + bx2[n])z−n = a

∞∑
n=−∞

x1[n]z−n

︸ ︷︷ ︸
|z| ∈ Rx1

+b

∞∑
n=−∞

x2[n]z−n

︸ ︷︷ ︸
|z| ∈ Rx2

.

As indicated, to split the z-transform of a sum into the sum of corresponding z-transforms,
z must be in both ROCs. Therefore, the ROC is at least the intersection of the individ-
ual ROCs. For sequences with rational z-transforms, if the poles of aX1(z) + bX2(z)

consist of all the poles of X1(z) and X2(z) (i.e., if there is no pole–zero cancellation),
then the ROC will be exactly equal to the overlap of the individual ROCs. If the linear
combination is such that some zeros are introduced that cancel poles, then the ROC
may be larger. A simple example of this occurs when x1[n] and x2[n] are of infinite
duration, but the linear combination is of finite duration. In this case the ROC of the

Section 3.4 z -Transform Properties 125

linear combination is the entire z-plane, with the possible exception of z = 0 or z = ∞.
An example was given in Example 3.6, where x[n] can be expressed as

x[n] = an (u[n] − u[n − N]) = anu[n] − anu[n − N].
Both anu[n] and anu[n − N] are infinite-extent right-sided sequences, and their z-
transforms have a pole at z = a. Therefore, their individual ROCs would both be
|z| > |a|. However, as shown in Example 3.6, the pole at z = a is canceled by a zero
at z = a, and therefore, the ROC extends to the entire z-plane, with the exception of
z = 0.

We have already exploited the linearity property in our previous discussion of the
use of the partial fraction expansion for evaluating the inverse z-transform. With that
procedure, X(z) is expanded into a sum of simpler terms, and through linearity, the
inverse z-transform is the sum of the inverse transforms of each of these terms.

3.4.2 Time Shifting

The time-shifting property is,

x[n − n0] Z←→ z−n0X(z), ROC = Rx(except for the
possible addition or
deletion of z = 0 or z = ∞).

The quantity n0 is an integer. If n0 is positive, the original sequence x[n] is shifted right,
and if n0 is negative, x[n] is shifted left. As in the case of linearity, the ROC can be
changed, since the factor z−n0 can alter the number of poles at z = 0 or z = ∞.

The derivation of this property follows directly from the z-transform expression
in Eq. (3.2). Specifically, if y[n] = x[n − n0], the corresponding z-transform is

Y (z) =
∞∑

n=−∞
x[n − n0]z−n.

With the substitution of variables m = n − n0,

Y (z) =
∞∑

m=−∞
x[m]z−(m+n0)

= z−n0

∞∑
m=−∞

x[m]z−m,

or

Y (z) = z−n0X(z).

The time-shifting property is often useful, in conjunction with other properties
and procedures, for obtaining the inverse z-transform. We illustrate with an example.

126 Chapter 3 The z -Transform

Example 3.14 Shifted Exponential Sequence

Consider the z-transform

X(z) = 1

z − 1
4

, |z| >
1
4
.

From the ROC, we identify this as corresponding to a right-sided sequence. We can
first rewrite X(z) in the form

X(z) = z−1

1 − 1
4 z−1

, |z| >
1
4
. (3.56)

This z-transform is of the form of Eq. (3.41) with M = N = 1, and its expansion in the
form of Eq. (3.45) is

X(z) = −4 + 4

1 − 1
4 z−1

. (3.57)

From Eq. (3.57), it follows that x[n] can be expressed as

x[n] = −4δ[n] + 4
(

1
4

)n

u[n]. (3.58)

An expression for x[n] can be obtained more directly by applying the time-shifting
property. First, X(z) can be written as

X(z) = z−1

(
1

1 − 1
4 z−1

)
, |z| >

1
4
. (3.59)

From the time-shifting property, we recognize the factor z−1 in Eq. (3.59) as being

associated with a time shift of one sample to the right of the sequence
(

1
4

)n
u[n]; i.e.,

x[n] =
(

1
4

)n−1
u[n − 1]. (3.60)

It is easily verified that Eqs. (3.58) and (3.60) are the same for all values of n; i.e., they
represent the same sequence.

3.4.3 Multiplication by an Exponential Sequence

The exponential multiplication property is

zn
0x[n] Z←→ X(z/z0), ROC = |z0|Rx.

The notation ROC = |z0|Rx signifies that the ROC is Rx scaled by the number |z0|; i.e.,
if Rx is the set of values of z such that rR < |z| < rL, then |z0|Rx is the set of values of z

such that |z0|rR < |z| < |z0|rL.
This property is easily shown simply by substituting zn

0x[n] into Eq. (3.2). As a
consequence of the exponential multiplication property, all the pole–zero locations are
scaled by a factor z0, since, if X(z) has a pole (or zero) at z = z1, then X(z/z0) will
have a pole (or zero) at z = z0z1. If z0 is a positive real number, the scaling can be
interpreted as a shrinking or expanding of the z-plane; i.e., the pole and zero locations

Section 3.4 z -Transform Properties 127

change along radial lines in the z-plane. If z0 is complex with unity magnitude, so that
z0 = ejω0 , the scaling corresponds to a rotation in the z-plane by an angle of ω0; i.e., the
pole and zero locations change in position along circles centered at the origin. This in
turn can be interpreted as a frequency shift or translation of the discrete-time Fourier
transform, which is associated with the modulation in the time domain by the complex
exponential sequence ejω0n. That is, if the Fourier transform exists, this property has
the form

ejω0nx[n] F←→ X(ej(ω−ω0)).

Example 3.15 Exponential Multiplication

Starting with the transform pair

u[n] Z←→ 1

1 − z−1
, |z| > 1, (3.61)

we can use the exponential multiplication property to determine the z-transform of

x[n] = rn cos(ω0n)u[n], r > 0. (3.62)

First, x[n] is expressed as

x[n] = 1
2
(rejω0)nu[n] + 1

2
(re−jω0)nu[n].

Then, using Eq. (3.61) and the exponential multiplication property, we see that

1
2
(rejω0)nu[n] Z←→

1
2

1 − rejω0z−1
, |z| > r,

1
2
(re−jω0)nu[n] Z←→

1
2

1 − re−jω0z−1
, |z| > r.

From the linearity property, it follows that

X(z) =
1
2

1 − rejω0z−1
+

1
2

1 − re−jω0z−1
, |z| > r

= 1 − r cos(ω0)z−1

1 − 2r cos(ω0)z−1 + r2z−2
, |z| > r.

(3.63)

3.4.4 Differentiation of X(z)

The differentiation property states that

nx[n] Z←→ −z
dX(z)

dz
, ROC = Rx.

This property is verified by differentiating the z-transform expression of Eq. (3.2); i.e.,
for

X(z) =
∞∑

n=−∞
x[n]z−n,

128 Chapter 3 The z -Transform

we obtain

−z
dX(z)

dz
= −z

∞∑
n=−∞

(−n)x[n]z−n−1

=
∞∑

n=−∞
nx[n]z−n = Z{nx[n]}.

We illustrate the use of the differentiation property with two examples.

Example 3.16 Inverse of Non-Rational z-Transform

In this example, we use the differentiation property together with the time-shifting
property to determine the inverse z-transform considered in Example 3.12. With

X(z) = log(1 + az−1), |z| > |a|,
we first differentiate to obtain a rational expression:

dX(z)

dz
= −az−2

1 + az−1
.

From the differentiation property,

nx[n] Z←→ −z
dX(z)

dz
= az−1

1 + az−1
, |z| > |a|. (3.64)

The inverse transform of Eq. (3.64) can be obtained by the combined use of the z-
transform pair of Example 3.1, the linearity property, and the time-shifting property.
Specifically, we can express nx[n] as

nx[n] = a(−a)n−1u[n − 1].
Therefore,

x[n] = (−1)n+1 an

n
u[n − 1] Z←→ log(1 + az−1), |z| > |a|.

The result of Example 3.16 will be useful in our discussion of the cepstrum in
Chapter 13.

Example 3.17 2nd-Order Pole

As another example of the use of the differentiation property, let us determine the
z-transform of the sequence

x[n] = nanu[n] = n(anu[n]).
From the z-transform pair of Example 3.1 and the differentiation property, it follows
that

X(z) = −z
d

dz

(
1

1 − az−1

)
, |z| > |a|

= az−1

(1 − az−1)2
, |z| > |a|.

Section 3.4 z -Transform Properties 129

Therefore,

nanu[n] Z←→ az−1

(1 − az−1)2
, |z| > |a|.

3.4.5 Conjugation of a Complex Sequence

The conjugation property is expressed as

x∗[n] Z←→ X∗(z∗), ROC = Rx.

This property follows in a straightforward manner from the definition of the z-transform,
the details of which are left as an exercise (Problem 3.54).

3.4.6 Time Reversal

The time-reversal property is given by

x∗[−n] Z←→ X∗(1/z∗), ROC = 1
Rx

.

The notation ROC=1/Rx implies that Rx is inverted; i.e., if Rx is the set of values of z

such that rR < |z| < rL, then the ROC for X∗(1/z∗) is the set of values of z such that
1/rL < |z| < 1/rR . Thus, if z0 is in the ROC for x[n], then 1/z∗

0 is in the ROC for the
z-transform of x∗[−n]. If the sequence x[n] is real or we do not conjugate a complex
sequence, the result becomes

x[−n] Z←→ X(1/z), ROC = 1
Rx

.

As with the conjugation property, the time-reversal property follows easily from the
definition of the z-transform, and the details are left as an exercise (Problem 3.54).

Note that if z0 is a pole (or zero) of X(z), then 1/z0 will be a pole (or zero) of X(1/z).
The magnitude of 1/z0 is simply the reciprocal of the magnitude of z0. However, the
angle of 1/z0 is the negative of the angle of z0. When the poles and zeros of X(z) are
all real or in complex conjugate pairs, as they must be when x[n] is real, this complex
conjugate pairing is maintained.

Example 3.18 Time-Reversed Exponential Sequence

As an example of the use of the property of time reversal, consider the sequence

x[n] = a−nu[−n],
which is a time-reversed version of anu[n]. From the time-reversal property, it follows
that

X(z) = 1
1 − az

= −a−1z−1

1 − a−1z−1
, |z| < |a−1|.

Note that the z-transform of anu[n] has a pole at z = a, while X(z) has a pole at 1/a.

130 Chapter 3 The z -Transform

3.4.7 Convolution of Sequences

According to the convolution property,

x1[n] ∗ x2[n] Z←→ X1(z)X2(z), ROC contains Rx1 ∩ Rx2 .

To derive this property formally, we consider

y[n] =
∞∑

k=−∞
x1[k]x2[n − k],

so that

Y (z) =
∞∑

n=−∞
y[n]z−n

=
∞∑

n=−∞

{ ∞∑
k=−∞

x1[k]x2[n − k]
}

z−n.

If we interchange the order of summation (which is allowed for z in the ROC),

Y (z) =
∞∑

k=−∞
x1[k]

∞∑
n=−∞

x2[n − k]z−n.

Changing the index of summation in the second sum from n to m = n − k, we obtain

Y (z) =
∞∑

k=−∞
x1[k]
{ ∞∑

m=−∞
x2[m]z−m

}
z−k

=
∞∑

k=−∞
x1[k] X2(z)︸ ︷︷ ︸

|z|∈Rx2

z−k =
(∞∑

k=−∞
x1[k]z−k

)
X2(z)

Thus, for values of z inside the ROCs of both X1(z) and X2(z), we can write

Y (z) = X1(z)X2(z),

where the ROC includes the intersection of the ROCs of X1(z) and X2(z). If a pole that
borders on the ROC of one of the z-transforms is canceled by a zero of the other, then
the ROC of Y (z) may be larger.

The use of the z-transform for evaluating convolutions is illustrated by the follow-
ing example.

Section 3.5 z -Transforms and LTI Systems 131

Example 3.19 Convolution of Finite-Length Sequences

Suppose that

x1[n] = δ[n] + 2δ[n − 1] + δ[n − 2]
is a finite-length sequence to be convolved with the sequence x2[n] = δ[n] − δ[n − 1].
The corresponding z-transforms are

X1(z) = 1 + 2z−1 + z−2

and X2(z) = 1 − z−1. The convolution y[n] = x1[n] ∗ x2[n] has z-transform

Y (z) = X1(z)X2(z) = (1 + 2z−1 + z−2)(1 − z−1)

= 1 + z−1 − z−2 − z−3.

Since the sequences are both of finite length, the ROCs are both |z| > 0 and therefore
so is the ROC of Y (z). From Y (z), we conclude by inspection of the coefficients of the
polynomial that

y[n] = δ[n] + δ[n − 1] − δ[n − 2] − δ[n − 3].
The important point of this example is that convolution of finite-length sequences is
equivalent to polynomial multiplication. Conversely, the coefficients of the product of
two polynomials are obtained by discrete convolution of the polynomial coefficients.

The convolution property plays a particularly important role in the analysis of
LTI systems as we will discuss in more detail in Section 3.5 and Chapter 5. An example
of the use of the z-transform for computing the convolution of two infinite-duration
sequences is given in Section 3.5.

3.4.8 Summary of Some z -Transform Properties

We have presented and discussed a number of the theorems and properties of z-
transforms, many of which are useful in manipulating z-transforms in the analysis of
discrete-time systems. These properties and a number of others are summarized for
convenient reference in Table 3.2.

3.5 z -TRANSFORMS AND LTI SYSTEMS

The properties discussed in Section 3.4 make the z-transform a very useful tool for
discrete-time system analysis. Since we shall rely on the z-transform extensively in
Chapter 5 and later chapters, it is worthwhile now to illustrate how the z-transform
can be used in the representation and analysis of LTI systems.

Recall from Section 2.3 that an LTI system can be represented as the convolution
y[n] = x[n] ∗ h[n] of the input x[n] with h[n], where h[n] is the response of the system
to the unit impulse sequence δ[n]. From the convolution property of Section 3.4.7, it
follows that the z-transform of y[n] is

Y (z) = H(z)X(z) (3.65)

132 Chapter 3 The z -Transform

TABLE 3.2 SOME z -TRANSFORM PROPERTIES

Property Section
Number Reference Sequence Transform ROC

x[n] X(z) Rx

x1[n] X1(z) Rx1

x2[n] X2(z) Rx2

1 3.4.1 ax1[n] + bx2[n] aX1(z) + bX2(z) Contains Rx1 ∩ Rx2

2 3.4.2 x[n − n0] z−n0X(z) Rx , except for the possible
addition or deletion of
the origin or ∞

3 3.4.3 zn
0x[n] X(z/z0) |z0|Rx

4 3.4.4 nx[n] −z
dX(z)

dz
Rx

5 3.4.5 x∗[n] X∗(z∗) Rx

6 Re{x[n]} 1
2
[X(z) + X∗(z∗)] Contains Rx

7 Im{x[n]} 1
2j

[X(z) − X∗(z∗)] Contains Rx

8 3.4.6 x∗[−n] X∗(1/z∗) 1/Rx

9 3.4.7 x1[n] ∗ x2[n] X1(z)X2(z) Contains Rx1 ∩ Rx2

where H(z) and X(z) are the z-transforms of h[n] and x[n] respectively. In this context,
the z-transform H(z) is called the system function of the LTI system whose impulse
response is h[n].

The computation of the output of an LTI system using the z-transform is illustrated
by the following example.

Example 3.20 Convolution of Infinite-Length Sequences

Let h[n] = anu[n] and x[n] = Au[n]. To use the z-transform to evaluate the convolution
y[n] = x[n] ∗ h[n], we begin by finding the corresponding z-transforms as

H(z) =
∞∑

n=0

anz−n = 1

1 − az−1
, |z| > |a|,

and

X(z) =
∞∑

n=0

Az−n = A

1 − z−1
, |z| > 1.

The z-transform of the convolution y[n] = x[n] ∗ h[n] is therefore

Y (z) = A

(1 − az−1)(1 − z−1)
= Az2

(z − a)(z − 1)
, |z| > 1,

Section 3.5 z -Transforms and LTI Systems 133

where we assume that |a| < 1 so that the overlap of the ROCs is |z| > 1.
The poles and zeros of Y (z) are plotted in Figure 3.12, and the ROC is seen to

be the overlap region. The sequence y[n] can be obtained by determining the inverse
z-transform. The partial fraction expansion of Y (z) is

Y (z) = A

1 − a

(
1

1 − z−1
− a

1 − az−1

)
|z| > 1.

Therefore, taking the inverse z-transform of each term yields

y[n] = A

1 − a
(1 − an+1)u[n].

1a Re

Im
z-plane

Region of
convergence

Figure 3.12 Pole–zero plot for the z -transform of the convolution of the se-
quences u[n] and anu[n] (assuming |a| < 1).

The z-transform is particularly useful in the analysis of LTI systems described by
difference equations. Recall that in Section 2.5, we showed that difference equations of
the form

y[n] = −
N∑

k=1

(
ak

a0

)
y[n − k] +

M∑
k=0

(
bk

a0

)
x[n − k], (3.66)

behave as causal LTI systems when the input is zero prior to n = 0 and initial rest
conditions are imposed prior to the time when the input becomes nonzero; i.e.,

y[−N], y[−N + 1], . . . , y[−1]
are all assumed to be zero. The difference equation with assumed initial rest conditions
defines the LTI system, but it is also of interest to know the system function. If we
apply the linearity property (Section 3.4.1) and the time-shift property (Section 3.4.2)
to Eq. (3.66), we obtain

Y (z) = −
N∑

k=1

(
ak

a0

)
z−kY (z) +

M∑
k=0

(
bk

a0

)
z−kX(z). (3.67)

134 Chapter 3 The z -Transform

Solving for Y (z) in terms of X(z) and the parameters of the difference equation yields

Y (z) =

⎛⎜⎜⎜⎜⎜⎝
M∑

k=0

bkz
−k

N∑
k=0

akz
−k

⎞⎟⎟⎟⎟⎟⎠X(z), (3.68)

and from a comparison of Eqs. (3.65) and (3.68) it follows that for the LTI system
described by Eq. (3.66), the system function is

H(z) =

M∑
k=0

bkz
−k

N∑
k=0

akz
−k

. (3.69)

Since the system defined by the difference equation of Eq. (3.66) is a causal system,
our discussion in Section 3.2 leads to the conclusion that H(z) in Eq. (3.69) must have
an ROC of the form |z| > rR , and since the ROC can contain no poles, rR must be
equal to the magnitude of pole of H(z) that is farthest from the origin. Furthermore,
the discussion in Section 3.2 also confirms that if rR < 1, i.e., all poles are inside the unit
circle, then the system is stable and the frequency response of the system is obtained by
setting z = ejω in Eq. (3.69).

Note that if Eq. (3.66) is expressed in the equivalent form

N∑
k=0

aky[n − k] =
M∑

k=0

bkx[n − k] (3.70)

then Eq. (3.69), which gives the system function (and frequency response for stable
systems) as a ratio of polynomials in the variable z−1, can be written down directly by
observing that the numerator is the z-transform representation of the coefficient and
delay terms involving the input, whereas the denominator represents the coefficients
and delays of the terms involving the output. Similarly, given the system function as
a ratio of polynomials in z−1 as in Eq. (3.69), it is straightforward to write down the
difference equation in the form of Eq. (3.70) and then write it in the form of Eq. (3.66)
for recursive implementation.

Example 3.21 1st-Order System

Suppose that a causal LTI system is described by the difference equation
y[n] = ay[n − 1] + x[n]. (3.71)

By inspection, it follows that the system function for this system is

H(z) = 1

1 − az−1
, (3.72)

with ROC |z| > |a|. from which it follows from entry 5 of Table 3.1 that the impulse
response of the system is

h[n] = anu[n]. (3.73)

Section 3.6 The Unilateral z -Transform 135

Finally, if x[n] is a sequence with a rational z-transform such as x[n] = Au[n], we
can find the output of the system in three distinct ways. (1) We can iterate the difference
equation in Eq. (3.71). In general, this approach could be used with any input and would
generally be used to implement the system, but it would not lead directly to a closed-
form solution valid for all n even if such expression exists. (2) We could evaluate the
convolution of x[n] and h[n] explicitly using the techniques illustrated in Section 2.3.
(3) Since the z-transforms of both x[n] and h[n] are rational functions of z, we can use
the partial fraction method of Section 3.3.2 to find a closed-form expression for the
output valid for all n. In fact, this was done in Example 3.20.

We shall have much more use for the z-transform in Chapter 5 and subsequent
chapters. For example, in Section 5.2.3, we shall obtain general expressions for the
impulse response of an LTI system with rational system function, and we shall show
how the frequency response of the system is related to the locations of the poles and
zeros of H(z).

3.6 THE UNILATERAL z -TRANSFORM

The z-transform, as defined by Eq. (3.2), and as considered so far in this chapter, is
more explicitly referred to as the bilateral z-transform or the two-sided z-transform. In
contrast, the unilateral or one-sided z-transform is defined as

X (z) =
∞∑

n=0

x[n]z−n. (3.74)

The unilateral z-transform differs from the bilateral z-transform in that the lower limit
of the sum is always fixed at zero, regardless of the values of x[n] for n < 0. If x[n] = 0
for n < 0, the unilateral and bilateral z-transforms are identical, whereas, if x[n] is not
zero for all n < 0, they will be different. A simple example illustrates this.

Example 3.22 Unilateral Transform of an Impulse

Suppose that x1[n] = δ[n]. Then it is clear from Eq. (3.74) that X1(z) = 1, which
is identical to the bilateral z-transform of the impulse. However, consider x2[n] =
δ[n + 1] = x1[n + 1]. This time using Eq. (3.74) we find that X2(z) = 0, whereas the
bilateral z-transform would be X2(z) = zX1(z) = z.

Because the unilateral transform in effect ignores any left-sided part, the proper-
ties of the ROC of the unilateral z-transform will be the same as those of the bilateral
transform of a right-sided sequence obtained by assuming that the sequence values are
zero for n < 0. That is, the ROC for all unilateral z-transforms will be of the form
|z| > rR , and for rational unilateral z-transforms, the boundary of the ROC will be
defined by the pole that is farthest from the origin of the z-plane.

In digital signal processing applications, difference equations of the form of
Eq. (3.66) are generally employed with initial rest conditions. However, in some situa-
tions, noninitial rest conditions may occur. In such cases, the linearity and time-shifting
properties of the unilateral z-transform are particularly useful tools. The linearity prop-
erty is identical to that of the bilateral z-transform (Property 1 in Table 3.2). The time-

136 Chapter 3 The z -Transform

shifting property is different in the unilateral case because the lower limit in the uni-
lateral transform definition is fixed at zero. To illustrate how to develop this property,
consider a sequence x[n] with unilateral z-transform X (z) and let y[n] = x[n−1]. Then,
by definition

Y(z) =
∞∑

n=0

x[n − 1]z−n.

With the substitution of summation index m = n − 1, we can write Y(z) as

Y(z) =
∞∑

m=−1

x[m]z−(m+1) = x[−1] + z−1
∞∑

m=0

x[m]z−m,

so that

Y(z) = x[−1] + z−1X (z). (3.75)

Thus, to determine the unilateral z-transform of a delayed sequence, we must provide
sequence values that are ignored in computing X (z). By a similar analysis, it can be
shown that if y[n] = x[n − k], where k > 0, then

Y(z) = x[−k] + x[−k + 1]z−1 + . . . + x[−1]z−k+1 + z−kX (z)

=
k∑

m=1

x[m − k − 1]z−m+1 + z−kX (z). (3.76)

The use of the unilateral z-transform to solve for the output of a difference equa-
tion with nonzero initial conditions is illustrated by the following example.

Example 3.23 Effect of Nonzero Initial Conditions

Consider a system described by the linear constant-coefficient difference equation

y[n] − ay[n − 1] = x[n], (3.77)

which is the same as the system in Examples 3.20 and 3.21. Assume that x[n] = 0 for
n < 0 and the initial condition at n = −1 is denoted y[−1]. Applying the unilateral
z-transform to Eq. (3.77) and using the linearity property as well as the time-shift
property in Eq. (3.75), we have

Y(z) − ay[−1] − az−1Y(z) = X (z).

Solving for Y(z) we obtain

Y(z) = ay[−1]
1 − az−1

+ 1

1 − az−1
X (z). (3.78)

Note that if y[−1] = 0 the first term disappears, and we are left with Y(z) = H(z)X (z),
where

H(z) = 1

1 − az−1
, |z| > |a|

is the system function of the LTI system corresponding to the difference equation
in Eq. (3.77) when iterated with initial rest conditions. This confirms that initial rest

Section 3.7 Summary 137

conditions are necessary for the iterated difference equation to behave as an LTI
system. Furthermore, note that if x[n] = 0 for all n, the output will be equal to

y[n] = y[−1]an+1 n ≥ −1.

This shows that if y[−1] �= 0, the system does not behave linearly because the scaling
property for linear systems [Eq. (2.23b)] requires that when the input is zero for all n,
the output must likewise be zero for all n.

To be more specific, suppose that x[n] = Au[n] as in Example 3.20. We can
determine an equation for y[n] for n ≥ −1 by noting that the unilateral z-transform
of x[n] = Au[n] is

X (z) = A

1 − z−1
, |z| > 1

so that Eq. (3.78) becomes

Y(z) = ay[−1]
1 − az−1

+ A

(1 − az−1)(1 − z−1)
. (3.79)

Applying the partial fraction expansion technique to Eq. (3.79) gives

Y(z) = ay[−1]
1 − az−1

+
A

1 − a

1 − z−1
+

− aA

1 − a

1 − az−1
,

from which it follows that the complete solution is

y[n] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y[−1] n = −1

y[−1]an+1︸ ︷︷ ︸
ZIR

+ A

1 − a

(
1 − an+1

)
︸ ︷︷ ︸

ZICR

n ≥ 0 (3.80)

Equation (3.80) shows that the system response is composed of two parts. The zero
input response (ZIR) is the response when the input is zero (in this case when A = 0).
The zero initial conditions response (ZICR) is the part that is directly proportional
to the input (as required for linearity). This part remains when y[−1] = 0. In Prob-
lem 3.49, this decomposition into ZIR and ZICR components is shown to hold for any
difference equation of the form of Eq. (3.66).

3.7 SUMMARY

In this chapter, we have defined the z-transform of a sequence and shown that it is a
generalization of the Fourier transform. The discussion focused on the properties of the
z-transform and techniques for obtaining the z-transform of a sequence and vice versa.
Specifically, we showed that the defining power series of the z-transform may converge
when the Fourier transform does not. We explored in detail the dependence of the shape
of the ROC on the properties of the sequence. A full understanding of the properties
of the ROC is essential for successful use of the z-transform. This is particularly true in
developing techniques for finding the sequence that corresponds to a given z-transform,
i.e., finding inverse z-transforms. Much of the discussion focused on z-transforms that
are rational functions in their region of convergence. For such functions, we described a

138 Chapter 3 The z -Transform

technique of inverse transformation based on the partial fraction expansion of X(z). We
also discussed other techniques for inverse transformation, such as the use of tabulated
power series expansions and long division.

An important part of the chapter was a discussion of some of the many properties
of the z-transform that make it useful in analyzing discrete-time signals and systems. A
variety of examples demonstrated how these properties can be used to find direct and
inverse z-transforms.

Problems

Basic Problems with Answers

3.1. Determine the z-transform, including the ROC, for each of the following sequences:

(a)
(

1
2

)n
u[n]

(b) −
(

1
2

)n
u[−n − 1]

(c)
(

1
2

)n
u[−n]

(d) δ[n]
(e) δ[n − 1]
(f) δ[n + 1]
(g)
(

1
2

)n
(u[n] − u[n − 10]).

3.2. Determine the z-transform of the sequence

x[n] =
{

n, 0 ≤ n ≤ N − 1,

N, N ≤ n.

3.3. Determine the z-transform of each of the following sequences. Include with your answer
the ROC in the z-plane and a sketch of the pole–zero plot. Express all sums in closed form;
α can be complex.

(a) xa[n] = α|n|, 0 < |α| < 1.

(b) xb[n] =
{

1, 0 ≤ n ≤ N − 1,

0, otherwise.

(c) xc[n] =
⎧⎨⎩

n + 1, 0 ≤ n ≤ N − 1,

2N − 1 − n, N ≤ n ≤ 2(N − 1),

0, otherwise.

Hint: Note that xb[n] is a rectangular sequence and xc[n] is a triangular sequence. First,
express xc[n] in terms of xb[n].

3.4. Consider the z-transform X(z) whose pole–zero plot is as shown in Figure P3.4.

(a) Determine the ROC of X(z) if it is known that the Fourier transform exists. For this
case, determine whether the corresponding sequence x[n] is right sided, left sided, or
two sided.

(b) How many possible two-sided sequences have the pole–zero plot shown in Figure P3.4?
(c) Is it possible for the pole–zero plot in Figure P3.4 to be associated with a sequence that

is both stable and causal? If so, give the appropriate ROC.

Chapter 3 Problems 139

Unit circle

Re

Im
z-plane

–1 2 31
3

Figure P3.4

3.5. Determine the sequence x[n] with z-transform

X(z) = (1 + 2z)(1 + 3z−1)(1 − z−1).

3.6. Following are several z-transforms. For each, determine the inverse z-transform using both
methods—partial fraction expansion and power series expansion—discussed in Section 3.3.
In addition, indicate in each case whether the Fourier transform exists.

(a) X(z) = 1

1 + 1
2 z−1

, |z| >
1
2

(b) X(z) = 1

1 + 1
2 z−1

, |z| <
1
2

(c) X(z) = 1 − 1
2 z−1

1 + 3
4 z−1 + 1

8z−2
, |z| >

1
2

(d) X(z) = 1 − 1
2 z−1

1 − 1
4 z−2

, |z| >
1
2

(e) X(z) = 1 − az−1

z−1 − a
, |z| > |1/a|

3.7. The input to a causal LTI system is

x[n] = u[−n − 1] +
(

1
2

)n

u[n].

The z-transform of the output of this system is

Y (z) = − 1
2 z−1(

1 − 1
2 z−1
) (

1 + z−1
) .

(a) Determine H(z), the z-transform of the system impulse response. Be sure to specify
the ROC.

(b) What is the ROC for Y (z)?
(c) Determine y[n].

3.8. The system function of a causal LTI system is

H(z) = 1 − z−1

1 + 3
4 z−1

.

140 Chapter 3 The z -Transform

The input to this system is

x[n] =
(

1
3

)n

u[n] + u[−n − 1].

(a) Find the impulse response of the system, h[n].
(b) Find the output y[n].
(c) Is the system stable? That is, is h[n] absolutely summable?

3.9. A causal LTI system has impulse response h[n], for which the z-transform is

H(z) = 1 + z−1(
1 − 1

2 z−1
) (

1 + 1
4 z−1
) .

(a) What is the ROC of H(z)?
(b) Is the system stable? Explain.
(c) Find the z-transform X(z) of an input x[n] that will produce the output

y[n] = − 1
3

(
−1

4

)n

u[n] − 4
3
(2)nu[−n − 1].

(d) Find the impulse response h[n] of the system.

3.10. Without explicitly solving for X(z), find the ROC of the z-transform of each of the following
sequences, and determine whether the Fourier transform converges:

(a) x[n] =
[(

1
2

)n +
(

3
4

)n]
u[n − 10]

(b) x[n] =
{

1, −10 ≤ n ≤ 10,

0, otherwise,

(c) x[n] = 2nu[−n]
(d) x[n] =

[(
1
4

)n+4 − (ejπ/3)n
]

u[n − 1]
(e) x[n] = u[n + 10] − u[n + 5]
(f) x[n] =

(
1
2

)n−1
u[n] + (2 + 3j)n−2u[−n − 1].

3.11. Following are four z-transforms. Determine which ones could be the z-transform of a causal
sequence. Do not evaluate the inverse transform. You should be able to give the answer by
inspection. Clearly state your reasons in each case.

(a)
(1 − z−1)2(
1 − 1

2 z−1
)

(b)
(z − 1)2(
z − 1

2

)
(c)

(
z − 1

4

)5
(
z − 1

2

)6
(d)

(
z − 1

4

)6
(
z − 1

2

)5

Chapter 3 Problems 141

3.12. Sketch the pole–zero plot for each of the following z-transforms and shade the ROC:

(a) X1(z) = 1 − 1
2 z−1

1 + 2z−1
, ROC: |z| < 2

(b) X2(z) = 1 − 1
3z−1(

1 + 1
2 z−1
) (

1 − 2
3 z−1
) , x2[n] causal

(c) X3(z) = 1 + z−1 − 2z−2

1 − 13
6 z−1 + z−2

, x3[n] absolutely summable.

3.13. A causal sequence g[n] has the z-transform

G(z) = sin(z−1)(1 + 3z−2 + 2z−4).

Find g[11].
3.14. If H(z) = 1

1 − 1
4 z−2

and h[n] = A1αn
1u[n] + A2αn

2u[n], determine the values of A1, A2, α1,

and α2.

3.15. If H(z) = 1 − 1
1024 z−10

1 − 1
2 z−1

for |z| > 0, is the corresponding LTI system causal? Justify your

answer.

3.16. When the input to an LTI system is

x[n] =
(

1
3

)n

u[n] + (2)nu[−n − 1],

the corresponding output is

y[n] = 5
(

1
3

)n

u[n] − 5
(

2
3

)n

u[n].

(a) Find the system function H(z) of the system. Plot the pole(s) and zero(s) of H(z) and
indicate the ROC.

(b) Find the impulse response h[n] of the system.
(c) Write a difference equation that is satisfied by the given input and output.
(d) Is the system stable? Is it causal?

3.17. Consider an LTI system with input x[n] and output y[n] that satisfies the difference equation

y[n] − 5
2
y[n − 1] + y[n − 2] = x[n] − x[n − 1].

Determine all possible values for the system’s impulse response h[n] at n = 0.

3.18. A causal LTI system has the system function

H(z) = 1 + 2z−1 + z−2(
1 + 1

2 z−1
)

(1 − z−1)
.

(a) Find the impulse response of the system, h[n].
(b) Find the output of this system, y[n], for the input

x[n] = 2n.

142 Chapter 3 The z -Transform

3.19. For each of the following pairs of input z-transform X(z) and system function H(z), deter-
mine the ROC for the output z-transform Y (z):

(a)

X(z) = 1

1 + 1
2 z−1

, |z| >
1
2

H(z) = 1

1 − 1
4 z−1

, |z| >
1
4

(b)

X(z) = 1

1 − 2z−1
, |z| < 2

H(z) = 1

1 − 1
3z−1

, |z| >
1
3

(c)

X(z) = 1(
1 − 1

5z−1
) (

1 + 3z−1
) , 1

5
< |z| < 3

H(z) = 1 + 3z−1

1 + 1
3z−1

, |z| >
1
3

3.20. For each of the following pairs of input and output z-transforms X(z) and Y (z), determine
the ROC for the system function H(z):

(a)

X(z) = 1

1 − 3
4 z−1

, |z| >
3
4

Y (z) = 1

1 + 2
3 z−1

, |z| >
2
3

(b)

X(z) = 1

1 + 1
3z−1

, |z| <
1
3

Y (z) = 1(
1 − 1

6z−1
) (

1 + 1
3z−1
) , 1

6
< |z| <

1
3

Basic Problems

3.21. A causal LTI system has the following system function:

H(z) = 4 + 0.25z−1 − 0.5z−2

(1 − 0.25z−1)(1 + 0.5z−1)

(a) What is the ROC for H(z)?

Chapter 3 Problems 143

(b) Determine if the system is stable or not.
(c) Determine the difference equation that is satisfied by the input x[n] and the output

y[n].
(d) Use a partial fraction expansion to determine the impulse response h[n].
(e) Find Y (z), the z-transform of the output, when the input is x[n] = u[−n − 1]. Be sure

to specify the ROC for Y (z).
(f) Find the output sequence y[n] when the input is x[n] = u[−n − 1].

3.22. A causal LTI system has system function

H(z) = 1 − 4z−2

1 + 0.5z−1
.

The input to this system is

x[n] = u[n] + 2 cos
(π

2
n
)

− ∞ < n < ∞,

Determine the output y[n] for large positive n; i.e., find an expression for y[n] that is
asymptotically correct as n gets large. (Of course, one approach is to find an expression for
y[n] that is valid for all n, but you should see an easier way.)

3.23. Consider an LTI system with impulse response

h[n] =
{

an, n ≥ 0,

0, n < 0,

and input

x[n] =
{

1, 0 ≤ n ≤ (N − 1),

0, otherwise.

(a) Determine the output y[n] by explicitly evaluating the discrete convolution of x[n] and
h[n].

(b) Determine the output y[n] by computing the inverse z-transform of the product of the
z-transforms of x[n] and h[n].

3.24. Consider an LTI system that is stable and for which H(z), the z-transform of the impulse
response, is given by

H(z) = 3

1 + 1
3z−1

.

Suppose x[n], the input to the system, is a unit step sequence.

(a) Determine the output y[n] by evaluating the discrete convolution of x[n] and h[n].
(b) Determine the output y[n] by computing the inverse z-transform of Y (z).

3.25. Sketch each of the following sequences and determine their z-transforms, including the
ROC:

(a)
∞∑

k=−∞
δ[n − 4k]

(b)
1
2

[
ejπn + cos

(π
2

n
)

+ sin
(π

2
+ 2πn

)]
u[n]

144 Chapter 3 The z -Transform

3.26. Consider a right-sided sequence x[n] with z-transform

X(z) = 1

(1 − az−1)(1 − bz−1)
= z2

(z − a)(z − b)
.

In Section 3.3, we considered the determination of x[n] by carrying out a partial fraction
expansion, with X(z) considered as a ratio of polynomials in z−1. Carry out a partial fraction
expansion of X(z), considered as a ratio of polynomials in z, and determine x[n] from this
expansion.

3.27. Determine the unilateral z-transform, including the ROC, for each of the following se-
quences:

(a) δ[n]
(b) δ[n − 1]
(c) δ[n + 1]
(d)
(

1
2

)n
u[n]

(e) −
(

1
2

)n
u[−n − 1]

(f)
(

1
2

)n
u[−n]

(g) {
(

1
2

)n +
(

1
4

)n}u[n]
(h)
(

1
2

)n−1
u[n − 1]

3.28. If X (z) denotes the unilateral z-transform of x[n], determine, in terms of X (z), the unilateral
z-transform of the following:

(a) x[n − 2]
(b) x[n + 1]
(c)

n∑
m=−∞

x[m]

3.29. For each of the following difference equations and associated input and initial conditions,
determine the response y[n] for n ≥ 0 by using the unilateral z-transform.

(a) y[n] + 3y[n − 1] = x[n]
x[n] =

(
1
2

)n
u[n]

y[−1] = 1

(b) y[n] − 1
2 y[n − 1] = x[n] − 1

2 x[n − 1]
x[n] = u[n]

y[−1] = 0

(c) y[n] − 1
2 y[n − 1] = x[n] − 1

2 x[n − 1]
x[n] =

(
1
2

)n
u[n]

y[−1] = 1

Chapter 3 Problems 145

Advanced Problems

3.30. A causal LTI system has system function

H(z) = 1 − z−1

1 − 0.25z−2
= 1 − z−1

(1 − 0.5z−1)(1 + 0.5z−1)
.

(a) Determine the output of the system when the input is x[n] = u[n].
(b) Determine the input x[n] so that the corresponding output of the above system is

y[n] = δ[n] − δ[n − 1].
(c) Determine the output y[n] when the input is x[n] = cos(0.5πn) for −∞ < n < ∞. You

may leave your answer in any convenient form.

3.31. Determine the inverse z-transform of each of the following. In parts (a)–(c), use the methods
specified. (In part (d), use any method you prefer.)

(a) Long division:

X(z) = 1 − 1
3z−1

1 + 1
3z−1

, x[n] a right-sided sequence

(b) Partial fraction:

X(z) = 3

z − 1
4 − 1

8z−1
, x[n] stable

(c) Power series:

X(z) = ln(1 − 4z), |z| <
1
4

(d) X(z) = 1

1 − 1
3z−3

, |z| > (3)−1/3

3.32. Using any method, determine the inverse z-transform for each of the following:

(a) X(z) = 1(
1 + 1

2 z−1
)2

(1 − 2z−1)(1 − 3z−1)

,

(x[n] is a stable sequence)

(b) X(z) = ez−1

(c) X(z) = z3 − 2z

z − 2
, (x[n] is a left-sided sequence)

3.33. Determine the inverse z-transform of each of the following. You should find the z-transform
properties in Section 3.4 helpful.

(a) X(z) = 3z−3(
1 − 1

4 z−1
)2 , x[n] left sided

(b) X(z) = sin(z), ROC includes |z| = 1

(c) X(z) = z7 − 2

1 − z−7 , |z| > 1

3.34. Determine a sequence x[n] whose z-transform is X(z) = ez + e1/z, z �= 0.

146 Chapter 3 The z -Transform

3.35. Determine the inverse z-transform of

X(z) = log (1 − 2z) , |z| <
1
2
,

by

(a) using the power series

log(1 − x) = −
∞∑

m=1

xm

m
, |x| < 1;

(b) first differentiating X(z) and then using the derivative to recover x[n].
3.36. For each of the following sequences, determine the z-transform and ROC, and sketch the

pole–zero diagram:

(a) x[n] = anu[n] + bnu[n] + cnu[−n − 1], |a| < |b| < |c|
(b) x[n] = n2anu[n]
(c) x[n] = en4

[
cos
(π

12
n
)]

u[n] − en4
[
cos
(π

12
n
)]

u[n − 1]
3.37. The pole–zero diagram in Figure P3.37 corresponds to the z-transform X(z) of a causal

sequence x[n]. Sketch the pole–zero diagram of Y (z), where y[n] = x[−n+3]. Also, specify
the ROC for Y (z).

Re

Im

z-plane

11
2

1
2

– 1
2

– 3
4

Figure P3.37

3.38. Let x[n] be the sequence with the pole–zero plot shown in Figure P3.38. Sketch the pole–
zero plot for:

(a) y[n] =
(

1
2

)n
x[n]

(b) w[n] = cos
(πn

2

)
x[n]

Re

Im z-plane

11
2

Figure P3.38

Chapter 3 Problems 147

3.39. Determine the unit step response of the causal system for which the z-transform of the
impulse response is

H(z) = 1 − z3

1 − z4
.

3.40. If the input x[n] to an LTI system is x[n] = u[n], the output is

y[n] =
(

1
2

)n−1
u[n + 1].

(a) Find H(z), the z-transform of the system impulse response, and plot its pole–zero
diagram.

(b) Find the impulse response h[n].
(c) Is the system stable?
(d) Is the system causal?

3.41. Consider a sequence x[n] for which the z-transform is

X(z) =
1
3

1 − 1
2 z−1

+
1
4

1 − 2z−1

and for which the ROC includes the unit circle. Determine x[0] using the initial-value
theorem (see Problem 3.57).

3.42. In Figure P3.42, H(z) is the system function of a causal LTI system.

(a) Using z-transforms of the signals shown in the figure, obtain an expression for W(z) in
the form

W(z) = H1(z)X(z) + H2(z)E(z),

where both H1(z) and H2(z) are expressed in terms of H(z).
(b) For the special case H(z) = z−1/(1 − z−1), determine H1(z) and H2(z).
(c) Is the system H(z) stable? Are the systems H1(z) and H2(z) stable?

+
+

–

+

+
+

e [n]

w [n]v [n]x [n]
H(z)

Figure P3.42

3.43. In Figure P3.43, h[n] is the impulse response of the LTI system within the inner box. The
input to system h[n] is v[n], and the output is w[n]. The z-transform of h[n], H(z), exists in
the following ROC:

0 < rmin < |z| < rmax < ∞.

(a) Can the LTI system with impulse response h[n] be bounded input, bounded output
stable? If so, determine inequality constraints on rmin and rmax such that it is stable.
If not, briefly explain why.

(b) Is the overall system (in the large box, with input x[n] and output y[n]) LTI? If so, find
its impulse response g[n]. If not, briefly explain why.

148 Chapter 3 The z -Transform

(c) Can the overall system be BIBO stable? If so, determine inequality constraints relating
α, rmin, and rmax such that it is stable. If not, briefly explain why.

x [n] w [n] y [n]
�

v [n]
�

h [n]
LTI

�n�–n

Figure P3.43

3.44. A causal and stable LTI system S has its input x[n] and output y[n] related by the linear
constant-coefficient difference equation

y[n] +
10∑

k=1

αky[n − k] = x[n] + βx[n − 1].

Let the impulse response of S be the sequence h[n].
(a) Show that h[0] must be nonzero.
(b) Show that α1 can be determined from knowledge of β, h[0], and h[1].
(c) If h[n] = (0.9)ncos(πn/4) for 0 ≤ n ≤ 10, sketch the pole–zero plot for the system

function of S, and indicate the ROC.

3.45. When the input to an LTI system is

x[n] =
(

1
2

)n

u[n] + 2nu[−n − 1],

the output is

y[n] = 6
(

1
2

)n

u[n] − 6
(

3
4

)n

u[n].

(a) Find the system function H(z) of the system. Plot the poles and zeros of H(z), and
indicate the ROC.

(b) Find the impulse response h[n] of the system.
(c) Write the difference equation that characterizes the system.
(d) Is the system stable? Is it causal?

3.46. The following information is known about an LTI system:

(i) The system is causal.
(ii) When the input is

x[n] = −1
3

(
1
2

)n

u[n] − 4
3

(2)n u[−n − 1],

then the z-transform of the output is

Y (z) = 1 − z−2

(1 − 1
2 z−1)(1 − 2z−1)

.

Chapter 3 Problems 149

(a) Find the z-transform of x[n].
(b) What are the possible choices for the ROC of Y (z)?
(c) What are the possible choices for a linear constant-coefficient difference equation used

to describe the system?
(d) What are the possible choices for the impulse response of the system?

3.47. Letx[n]be a discrete-time signal withx[n] = 0 forn ≤ 0 and z-transformX(z). Furthermore,
given x[n], let the discrete-time signal y[n] be defined by

y[n] =
{ 1

nx[n], n > 0,

0, otherwise.

(a) Compute Y (z) in terms of X(z).
(b) Using the result of part (a), find the z-transform of

w[n] = 1
n + δ[n]u[n − 1].

3.48. The signal y[n] is the output of an LTI system with impulse response h[n] for a given input
x[n]. Throughout the problem, assume that y[n] is stable and has a z-transform Y (z) with the
pole–zero diagram shown in Figure P3.48-1. The signal x[n] is stable and has the pole–zero
diagram shown in Figure P3.48-2.

1

z-plane

2
1

–1 0 1
Re(z)

2

1.5

1

0.5

0

–0.5

–1

–1.5

4
2Im

(z
)

Figure P3.48-1

1

z-plane

2
1

–1 0 1

Re(z)

1

0.5

0

–0.5

–1

4
3
4

Im
(z

)

–

Figure P3.48-2

150 Chapter 3 The z -Transform

(a) What is the ROC, Y (z)?
(b) Is y[n] left sided, right sided, or two sided?
(c) What is the ROC of X(z)?
(d) Is x[n] a causal sequence? That is, does x[n] = 0 for n < 0?
(e) What is x[0]?
(f) Draw the pole–zero plot of H(z), and specify its ROC.
(g) Is h[n] anticausal? That is, does h[n] = 0 for n > 0?

3.49. Consider the difference equation of Eq. (3.66).
(a) Show that with nonzero initial conditions the unilateral z-transform of the output of

the difference equation is

Y(z) = −

N∑
k=1

ak

⎛⎝ k∑
m=1

y[m − k − 1]z−m+1

⎞⎠
N∑

k=0

akz
−k

+

M∑
k=0

bkz
−k

N∑
k=0

akz
−k

X (z).

(b) Use the result of (a) to show that the output has the form
y[n] = yZIR[n] + yZICR[n]

where yZIR[n] is the output when the input is zero for all n and yZICR[n] is the output
when the initial conditions are all zero.

(c) Show that when the initial conditions are all zero, the result reduces to the result that
is obtained with the bilateral z-transform.

Extension Problems

3.50. Let x[n] denote a causal sequence; i.e., x[n] = 0, n < 0. Furthermore, assume that x[0] �= 0
and that the z-transform is a rational function.
(a) Show that there are no poles or zeros of X(z) at z = ∞, i.e., that lim

z→∞X(z) is nonzero

and finite.
(b) Show that the number of poles in the finite z-plane equals the number of zeros in the

finite z-plane. (The finite z-plane excludes z = ∞.)

3.51. Consider a sequence with z-transform X(z) = P(z)/Q(z), where P(z) and Q(z) are poly-
nomials in z. If the sequence is absolutely summable and if all the roots of Q(z) are inside
the unit circle, is the sequence necessarily causal? If your answer is yes, clearly explain. If
your answer is no, give a counterexample.

3.52. Let x[n] be a causal stable sequence with z-transform X(z). The complex cepstrum x̂[n] is
defined as the inverse transform of the logarithm of X(z); i.e.,

X̂(z) = log X(z)
Z←→ x̂[n],

where the ROC of X̂(z) includes the unit circle. (Strictly speaking, taking the logarithm of
a complex number requires some careful considerations. Furthermore, the logarithm of a
valid z-transform may not be a valid z-transform. For now, we assume that this operation
is valid.)

Determine the complex cepstrum for the sequence
x[n] = δ[n] + aδ[n − N], where |a| < 1.

Chapter 3 Problems 151

3.53. Assume that x[n] is real and even; i.e., x[n] = x[−n]. Further, assume that z0 is a zero of
X(z); i.e., X(z0) = 0.

(a) Show that 1/z0 is also a zero of X(z).
(b) Are there other zeros of X(z) implied by the information given?

3.54. Using the definition of the z-transform in Eq. (3.2), show that if X(z) is the z-transform of
x[n] = xR[n] + jxI [n], then

(a) x∗[n] Z←→ X∗(z∗)

(b) x[−n] Z←→ X(1/z)

(c) xR[n] Z←→ 1
2 [X(z) + X∗(z∗)]

(d) xI [n] Z←→ 1
2j

[X(z) − X∗(z∗)].

3.55. Consider a real sequence x[n] that has all the poles and zeros of its z-transform inside the
unit circle. Determine, in terms of x[n], a real sequence x1[n] not equal to x[n], but for which
x1[0] = x[0], |x1[n]| = |x[n]|, and the z-transform of x1[n] has all its poles and zeros inside
the unit circle.

3.56. A real finite-duration sequence whose z-transform has no zeros at conjugate reciprocal pair
locations and no zeros on the unit circle is uniquely specified to within a positive scale factor
by its Fourier transform phase (Hayes et al., 1980).

An example of zeros at conjugate reciprocal pair locations is z = a and (a∗)−1. Even
though we can generate sequences that do not satisfy the preceding set of conditions, almost
any sequence of practical interest satisfies the conditions and therefore is uniquely specified
to within a positive scale factor by the phase of its Fourier transform.

Consider a sequence x[n] that is real, that is zero outside 0 ≤ n ≤ N − 1, and whose
z-transform has no zeros at conjugate reciprocal pair locations and no zeros on the unit
circle. We wish to develop an algorithm that reconstructs cx[n] from � X(ejω), the Fourier
transform phase of x[n], where c is a positive scale factor.

(a) Specify a set of (N −1) linear equations, the solution to which will provide the recovery
of x[n] to within a positive or negative scale factor from tan{� X(ejω)}. You do not have
to prove that the set of (N − 1) linear equations has a unique solution. Further, show
that if we know � X(ejω) rather than just tan{� X(ejω)}, the sign of the scale factor can
also be determined.

(b) Suppose

x[n] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, n < 0,

1, n = 0,

2, n = 1,

3, n = 2,

0, n ≥ 3.

Using the approach developed in part (a), demonstrate that cx[n] can be determined
from � X(ejω), where c is a positive scale factor.

3.57. For a sequence x[n] that is zero for n < 0, use Eq. (3.2) to show that

lim
z→∞ X(z) = x[0].

This result is called the initial value theorem. What is the corresponding theorem if the
sequence is zero for n > 0?

152 Chapter 3 The z -Transform

3.58. The aperiodic autocorrelation function for a real-valued stable sequence x[n] is defined as

cxx [n] =
∞∑

k=−∞
x[k]x[n + k].

(a) Show that the z-transform of cxx [n] is

Cxx(z) = X(z)X(z−1).

Determine the ROC for Cxx(z).
(b) Suppose that x[n] = anu[n]. Sketch the pole–zero plot for Cxx(z), including the ROC.

Also, find cxx [n] by evaluating the inverse z-transform of Cxx(z).
(c) Specify another sequence, x1[n], that is not equal to x[n] in part (b), but that has the

same autocorrelation function, cxx [n], as x[n] in part (b).
(d) Specify a third sequence, x2[n], that is not equal to x[n] or x1[n], but that has the same

autocorrelation function as x[n] in part (b).

3.59. Determine whether or not the function X(z) = z∗ can correspond to the z-transform of a
sequence. Clearly explain your reasoning.

3.60. Let X(z) denote a ratio of polynomials in z; i.e.,

X(z) = B(z)

A(z)
.

Show that if X(z) has a 1st-order pole at z = z0, then the residue of X(z) at z = z0 is equal
to

B(z0)

A′(z0)
,

where A′(z0) denotes the derivative of A(z) evaluated at z = z0.

4
Sampling of

Continuous-Time

Signals

4.0 INTRODUCTION

Discrete-time signals can arise in many ways, but they occur most commonly as repre-
sentations of sampled continuous-time signals. While sampling will no doubt be familiar
to many readers, we shall review many of the basic issues such as the phenomenon of
aliasing and the important fact that continuous-time signal processing can be imple-
mented through a process of sampling, discrete-time processing, and reconstruction
of a continuous-time signal. After a thorough discussion of these basic issues, we dis-
cuss multirate signal processing, A/D conversion, and the use of oversampling in A/D
conversion.

4.1 PERIODIC SAMPLING

Discrete representations of signals can take many forms including basis expansions of
various types, parametric models for signal modeling (Chapter 11), and nonuniform
sampling (see for example Yen (1956), Yao and Thomas (1967) and Eldar and Oppen-
heim (2000)). Such representations are often based on prior knowledge of properties
of the signal that can be exploited to obtain more efficient representations. However,
even these alternative representations generally begin with a discrete-time representa-
tion of a continuous-time signal obtained through periodic sampling; i.e., a sequence of
samples, x[n], is obtained from a continuous-time signal xc(t) according to the relation

x[n] = xc(nT), −∞ < n < ∞. (4.1)

153

154 Chapter 4 Sampling of Continuous-Time Signals

x [n] = xc(nT)xc(t)
C/D

T

Figure 4.1 Block diagram
representation of an ideal
continuous-to-discrete-time (C/D)
converter.

In Eq. (4.1), T is the sampling period, and its reciprocal, fs = 1/T , is the sampling
frequency, in samples per second. We also express the sampling frequency as �s = 2π/T

when we want to use frequencies in radians per second. Since sampling representations
rely only on the assumption of a bandlimited Fourier transform, they are applicable to
a wide class of signals that arise in many practical applications.

We refer to a system that implements the operation of Eq. (4.1) as an ideal
continuous-to-discrete-time (C/D) converter, and we depict it in block diagram form
as indicated in Figure 4.1. As an example of the relationship between xc(t) and x[n],
in Figure 2.2 we illustrated a continuous-time speech waveform and the corresponding
sequence of samples.

In a practical setting, the operation of sampling is implemented by an analog-to-
digital (A/D) converter. Such systems can be viewed as approximations to the ideal C/D
converter. In addition to sampling rate, which is sufficient to define the ideal C/D con-
verter, important considerations in the implementation or choice of an A/D converter
include quantization of the output samples, linearity of quantization steps, the need for
sample-and-hold circuits, and limitations on the sampling rate. The effects of quantiza-
tion are discussed in Sections 4.8.2 and 4.8.3. Other practical issues of A/D conversion
are electronic circuit concerns that are outside the scope of this text.

The sampling operation is generally not invertible; i.e., given the output x[n],
it is not possible in general to reconstruct xc(t), the input to the sampler, since many
continuous-time signals can produce the same output sequence of samples. The inherent
ambiguity in sampling is a fundamental issue in signal processing. However, it is possible
to remove the ambiguity by restricting the frequency content of input signals that go
into the sampler.

It is convenient to represent the sampling process mathematically in the two stages
depicted in Figure 4.2(a). The stages consist of an impulse train modulator, followed by
conversion of the impulse train to a sequence. The periodic impulse train is

s(t) =
∞∑

n=−∞
δ(t − nT), (4.2)

where δ(t) is the unit impulse function, or Dirac delta function. The product of s(t) and
xc(t) is therefore

xs(t) = xc(t)s(t)

= xc(t)

∞∑
n=−∞

δ(t − nT) =
∞∑

n=−∞
xc(t)δ(t − nT). (4.3)

Using the property of the continuous-time impulse function, x(t)δ(t) = x(0)δ(t), some-
times called the “sifting property” of the impulse function, (see e.g., Oppenheim and

Section 4.1 Periodic Sampling 155

Willsky, 1997), xs(t) can be expressed as

xs(t) =
∞∑

n=−∞
xc(nT)δ(t − nT), (4.4)

i.e., the size (area) of the impulse at sample time nT is equal to the value of the
continuous-time signal at that time. In this sense, the impulse train modulation of
Eq. (4.3) is a mathematical representation of sampling.

Figure 4.2(b) shows a continuous-time signal xc(t) and the results of impulse train
sampling for two different sampling rates. Note that the impulses xc(nT)δ(t − nT) are
represented by arrows with length proportional to their area. Figure 4.2(c) depicts the
corresponding output sequences. The essential difference between xs(t) and x[n] is that
xs(t) is, in a sense, a continuous-time signal (specifically, an impulse train) that is zero,

−4T −2T 0 2T 4T
t

−2T −T 0 T 2T
t

−4 −3 −2 −1 0 1 2 3 4
n

−4 −3 −2 −1 0 1 2 3 4
n

�

Conversion from
impulse train

to discrete-time
sequence

s(t)

xs(t)

xs(t) xs(t)

x [n] = xc(nT)

x [n] x [n]

xc(t)

xc(t) xc(t)

C/D converter

(a)

(c)

(b)

...

...

...

...

...

...

...

...

T = T1 T = 2T1

Figure 4.2 Sampling with a periodic impulse train, followed by conversion to a
discrete-time sequence. (a) Overall system. (b) xs (t) for two sampling rates. (c)
The output sequence for the two different sampling rates.

156 Chapter 4 Sampling of Continuous-Time Signals

except at integer multiples of T . The sequence x[n], on the other hand, is indexed
on the integer variable n, which, in effect, introduces a time normalization; i.e., the
sequence of numbers x[n] contains no explicit information about the sampling period
T . Furthermore, the samples of xc(t) are represented by finite numbers in x[n] rather
than as the areas of impulses, as with xs(t).

It is important to emphasize that Figure 4.2(a) is strictly a mathematical repre-
sentation convenient for gaining insight into sampling in both the time domain and
frequency domain. It is not a close representation of any physical circuits or systems
designed to implement the sampling operation. Whether a piece of hardware can be
construed to be an approximation to the block diagram of Figure 4.2(a) is a secondary
issue at this point. We have introduced this representation of the sampling operation
because it leads to a simple derivation of a key result and because the approach leads to
a number of important insights that are difficult to obtain from a more formal derivation
based on manipulation of Fourier transform formulas.

4.2 FREQUENCY-DOMAIN REPRESENTATION OF
SAMPLING

To derive the frequency-domain relation between the input and output of an ideal C/D
converter, consider the Fourier transform of xs(t). Since, from Eq. (4.3), xs(t) is the
product of xc(t) and s(t), the Fourier transform of xs(t) is the convolution of the Fourier
transforms Xc(j�) and S(j�) scaled by 1

2π
. The Fourier transform of the periodic

impulse train s(t) is the periodic impulse train

S(j�) = 2π

T

∞∑
k=−∞

δ(� − k �s), (4.5)

where �s = 2π/T is the sampling frequency in radians/s (see Oppenheim and Willsky,
1997 or McClellan, Schafer and Yoder, 2003). Since

Xs(j�) = 1
2π

Xc(j�) ∗ S(j�),

where ∗ denotes the operation of continuous-variable convolution, it follows that

Xs(j�) = 1
T

∞∑
k=−∞

Xc(j (� − k �s)). (4.6)

Equation (4.6) is the desired relationship between the Fourier transforms of the
input and the output of the impulse train modulator in Figure 4.2(a). Equation (4.6)
states that the Fourier transform of xs(t) consists of periodically repeated copies of
Xc(j�), the Fourier transform of xc(t). These copies are shifted by integer multiples
of the sampling frequency, and then superimposed to produce the periodic Fourier
transform of the impulse train of samples. Figure 4.3 depicts the frequency-domain
representation of impulse train sampling. Figure 4.3(a) represents a bandlimited Fourier
transform having the property that Xc(j�) = 0 for |�| ≥ �N . Figure 4.3(b) shows the
periodic impulse train S(j�), and Figure 4.3(c) shows Xs(j�), the result of convolving
Xc(j�) with S(j�) and scaling by 1

2π
. It is evident that when

�s − �N ≥ �N, or �s ≥ 2�N, (4.7)

Section 4.2 Frequency-Domain Representation of Sampling 157

�N �–�N

Xc(j�)

1

(a)

�s �–�s–2�s 2�s 3�s

–�s–2�s 2�s

2�s

3�s

S(j�)

(b)

0

�N �s �–�N

Xs(j�)

1

(c)

T
2�

T

(�s – �N)

�s �

Xs(j�)
1

(d)

T

(�s – �N)

Figure 4.3 Frequency-domain representation of sampling in the time domain.
(a) Spectrum of the original signal. (b) Fourier transform of the sampling function.
(c) Fourier transform of the sampled signal with �s > 2�N . (d) Fourier transform
of the sampled signal with �s < 2�N .

as in Figure 4.3(c), the replicas of Xc(j�) do not overlap, and therefore, when they are
added together in Eq. (4.6), there remains (to within a scale factor of 1/T) a replica
of Xc(j�) at each integer multiple of �s . Consequently, xc(t) can be recovered from
xs(t) with an ideal lowpass filter. This is depicted in Figure 4.4(a), which shows the
impulse train modulator followed by an LTI system with frequency response Hr(j�).
For Xc(j�) as in Figure 4.4(b), Xs(j�) would be as shown in Figure 4.4(c), where it is
assumed that �s > 2�N . Since

Xr(j�) = Hr(j�)Xs(j�), (4.8)

158 Chapter 4 Sampling of Continuous-Time Signals

�N �–�N

Xc(j�)

Hr(j�)
xc(t)

s(t) =

xs(t) xr(t)

1

(b)

(a)

�c �–�c

Hr(j�)

(d)

�N �–�N

Xr(j�)
1

(e)

�N

�N � �c � (�s – �N)

(�s – �N)

�s > 2�N

�s �–�N–�s

(c)

1
T

T

Xs(j�)

�

�(t – nT)�
n = –�

�

Figure 4.4 Exact recovery of a
continuous-time signal from its samples
using an ideal lowpass filter.

it follows that if Hr(j�) is an ideal lowpass filter with gain T and cutoff frequency �c

such that

�N ≤ �c ≤ (�s − �N), (4.9)

then

Xr(j�) = Xc(j�), (4.10)

as depicted in Figure 4.4(e) and therefore xr(t) = xc(t).
If the inequality of Eq. (4.7) does not hold, i.e., if �s < 2�N , the copies of Xc(j�)

overlap, so that when they are added together, Xc(j�) is no longer recoverable by

Section 4.2 Frequency-Domain Representation of Sampling 159

lowpass filtering. This is illustrated in Figure 4.3(d). In this case, the reconstructed output
xr(t) in Figure 4.4(a) is related to the original continuous-time input through a distortion
referred to as aliasing distortion, or, more simply, aliasing. Figure 4.5 illustrates aliasing
in the frequency domain for the simple case of a cosine signal of the form

xc(t) = cos �0t, (4.11a)

whose Fourier transform is

Xc(j�) = πδ(� − �0) + πδ(� + �0) (4.11b)

as depicted in Figure 4.5(a). Note that the impulse at −�0 is dashed. It will be helpful
to observe its effect in subsequent plots. Figure 4.5(b) shows the Fourier transform
of xs(t) with �0 < �s/2, and Figure 4.5(c) shows the Fourier transform of xs(t) with
�s

2 < �0 < �s . Figures 4.5(d) and (e) correspond to the Fourier transform of the

�0

�0 <

�–�0

(a)

�

� �

T

�

T
�

T

Xc(j�)

�0 �s�s �–�0–�s

(b)
2

�s

2

Xs(j�)

�0 �–�0

(d)

� �

Xr(j�)

�–(�s – �0) (�s – �0)

(e)

� �

Xr(j�)

=

< �0 < �s

�

T

T

T

�0 < �

T

�

T

�0 �s�s �–�0–�s

(c) 2

�s

2

< �0 < �s
�s

2

Xs(j�)

Aliasing

No aliasing

Figure 4.5 The effect of aliasing in the
sampling of a cosine signal.

160 Chapter 4 Sampling of Continuous-Time Signals

lowpass filter output for �0 < �s/2 = π/T and �s/2 < �0 < �s , respectively, with
�c = �s/2. Figures 4.5(c) and (e) correspond to the case of aliasing. With no aliasing
[Figures 4.5(b) and (d)], the reconstructed output is

xr(t) = cos �0t. (4.12)

With aliasing, the reconstructed output is

xr(t) = cos(�s − �0)t; (4.13)

i.e., the higher frequency signal cos �0t has taken on the identity (alias) of the lower
frequency signal cos(�s − �0)t as a consequence of the sampling and reconstruction.
This discussion is the basis for the Nyquist sampling theorem (Nyquist 1928; Shannon,
1949), stated as follows.

Nyquist-Shannon Sampling Theorem: Let xc(t) be a bandlimited signal with

Xc(j�) = 0 for |�| ≥ �N. (4.14a)

Then xc(t) is uniquely determined by its samples x[n] = xc(nT), n = 0, ±1, ±2, . . . , if

�s = 2π

T
≥ 2�N. (4.14b)

The frequency �N is commonly referred to as the Nyquist frequency, and the frequency
2�N as the Nyquist rate.

Thus far, we have considered only the impulse train modulator in Figure 4.2(a).
Our eventual objective is to expressX (ejω), the discrete-time Fourier transform (DTFT)
of the sequence x[n], in terms of Xs(j�) and Xc(j�). Toward this end, let us consider
an alternative expression for Xs(j�). Applying the continuous-time Fourier transform
to Eq. (4.4), we obtain

Xs(j�) =
∞∑

n=−∞
xc(nT)e−j�T n. (4.15)

Since

x[n] = xc(nT) (4.16)

and

X (ejω) =
∞∑

n=−∞
x[n]e−jωn, (4.17)

it follows that

Xs(j�) = X (ejω)|ω=�T = X (ej�T). (4.18)

Consequently, from Eqs. (4.6) and (4.18),

X (ej�T) = 1
T

∞∑
k=−∞

Xc(j (� − k �s)), (4.19)

Section 4.2 Frequency-Domain Representation of Sampling 161

or equivalently,

X (ejω) = 1
T

∞∑
k=−∞

Xc

[
j

(
ω

T
− 2πk

T

)]
. (4.20)

From Eqs. (4.18)–(4.20), we see that X (ejω) is a frequency-scaled version of Xs(j�)

with the frequency scaling specified by ω = �T . This scaling can alternatively be thought
of as a normalization of the frequency axis so that the frequency � = �s in Xs(j�)

is normalized to ω = 2π for X (ejω). The frequency scaling or normalization in the
transformation from Xs(j�) to X (ejω) is directly a result of the time normalization in
the transformation from xs(t) to x[n]. Specifically, as we see in Figure 4.2, xs(t) retains
a spacing between samples equal to the sampling period T . In contrast, the “spacing”
of sequence values x[n] is always unity; i.e., the time axis is normalized by a factor
of T . Correspondingly, in the frequency domain the frequency axis is normalized by
fs = 1/T .

For a sinusoid of the form xc(t) = cos(�0t), the highest (and only) frequency is
�0. Since the signal is described by a simple equation, it is easy to compute the samples
of the signal. The next two examples use sinusoidal signals to illustrate some important
points about sampling.

Example 4.1 Sampling and Reconstruction of a Sinusoidal
Signal

If we sample the continuous-time signal xc(t) = cos(4000πt) with sampling period
T = 1/6000, we obtain x[n] = xc(nT) = cos(4000πT n) = cos(ω0n), where ω0 =
4000πT = 2π/3. In this case, �s = 2π/T = 12000π, and the highest frequency of the
signal is �0 = 4000π , so the conditions of the Nyquist sampling theorem are satisfied
and there is no aliasing. The Fourier transform of xc(t) is

Xc(j�) = πδ(� − 4000π) + πδ(� + 4000π).

Figure 4.6(a) shows

Xs(j�) = 1
T

∞∑
k=−∞

Xc [j (� − k �s)] (4.21)

for �s = 12000π . Note that Xc(j�) is a pair of impulses at � = ±4000π , and we
see shifted copies of this Fourier transform centered on ±�s, ±2�s , etc. Plotting
X (ejω) = Xs(jω/T) as a function of the normalized frequency ω = �T results
in Figure 4.6(b), where we have used the fact that scaling the independent variable of
an impulse also scales its area, i.e., δ(ω/T) = T δ(ω) (Oppenheim and Willsky, 1997).
Note that the original frequency �0 = 4000π corresponds to the normalized frequency
ω0 = 4000πT = 2π/3, which satisfies the inequality ω0 < π, corresponding to the fact
that �0 = 4000π < π/T = 6000π . Figure 4.6(a) also shows the frequency response of
an ideal reconstruction filter Hr(j�) for the given sampling rate of �s = 12000π . This
figure shows that the reconstructed signal would have frequency �0 = 4000π , which
is the frequency of the original signal xc(t).

162 Chapter 4 Sampling of Continuous-Time Signals

0

0

(a)

–4000�–6000�–8000�–12000�–16000� 4000� 8000� 12000� 16000�6000� �

�

T
�

T
�

T
�

T
�

T

T

�

T

Xs(j�) Hr(j�)

...

(b)

–
3

� � � � � �

�8�

3
4�

3
2�

3
2�–

3
4�–

3
8� �–�–2� 2�

X(e j�) = Xs(j�/T)

...

Figure 4.6 (a) Continuous-time and (b) discrete-time Fourier transforms for sam-
pled cosine signal with frequency �0 = 4000π and sampling period T = 1/6000.

Example 4.2 Aliasing in Sampling a Sinusoidal Signal

Now suppose that the continuous-time signal is xc(t) = cos(16000πt), but the sampling
period is T = 1/6000, as it was in Example 4.1. This sampling period fails to satisfy
the Nyquist criterion, since �s = 2π/T = 12000π < 2�0 = 32000π . Consequently,
we expect to see aliasing. The Fourier transform Xs(j�) for this case is identical to
that of Figure 4.6(a). However, now the impulse located at � = −4000π is from
Xc[j (� − �s)] in Eq. (4.21) rather than from Xc(j�,) and the impulse at � = 4000π

is from Xc[j (� + �s)]. That is, the frequencies ±4000π are alias frequencies. Plotting
X (ejω) = Xs(jω/T)as a function ofω yields the same graph as shown in Figure 4.6(b),
since we are normalizing by the same sampling period. The fundamental reason for
this is that the sequence of samples is the same in both cases; i.e.,

cos(16000πn/6000) = cos(2πn + 4000πn/6000) = cos(2πn/3).

(Recall that we can add any integer multiple of 2π to the argument of the cosine
without changing its value.) Thus, we have obtained the same sequence of samples,
x[n] = cos(2πn/3), by sampling two different continuous-time signals with the same
sampling frequency. In one case, the sampling frequency satisfied the Nyquist criterion,
and in the other case it did not. As before, Figure 4.6(a) shows the frequency response
of an ideal reconstruction filter Hr(j�) for the given sampling rate of �s = 12000π .
It is clear from this figure that the signal that would be reconstructed would have the
frequency �0 = 4000π , which is the alias frequency of the original frequency 16000π

with respect to the sampling frequency �s = 12000π .

Examples 4.1 and 4.2 use sinusoidal signals to illustrate some of the ambiguities
that are inherent in the sampling operation. Example 4.1 verifies that if the conditions
of the sampling theorem hold, the original signal can be reconstructed from the samples.
Example 4.2 illustrates that if the sampling frequency violates the sampling theorem, we
cannot reconstruct the original signal using an ideal lowpass reconstruction filter with
cutoff frequency at one-half the sampling frequency. The signal that is reconstructed

Section 4.3 Reconstruction of a Bandlimited Signal from Its Samples 163

is one of the alias frequencies of the original signal with respect to the sampling rate
used in sampling the original continuous-time signal. In both examples, the sequence of
samples was x[n] = cos(2πn/3), but the original continuous-time signal was different.
As suggested by these two examples, there are unlimited ways of obtaining this same
set of samples by periodic sampling of a continuous-time sinusoid. All ambiguity is
removed, however, if we choose �s > 2�0.

4.3 RECONSTRUCTION OF A BANDLIMITED SIGNAL
FROM ITS SAMPLES

According to the sampling theorem, samples of a continuous-time bandlimited signal
taken frequently enough are sufficient to represent the signal exactly, in the sense that
the signal can be recovered from the samples and with knowledge of the sampling
period. Impulse train modulation provides a convenient means for understanding the
process of reconstructing the continuous-time bandlimited signal from its samples.

In Section 4.2, we saw that if the conditions of the sampling theorem are met
and if the modulated impulse train is filtered by an appropriate lowpass filter, then the
Fourier transform of the filter output will be identical to the Fourier transform of the
original continuous-time signal xc(t), and thus, the output of the filter will be xc(t). If
we are given a sequence of samples, x[n], we can form an impulse train xs(t) in which
successive impulses are assigned an area equal to successive sequence values, i.e.,

xs(t) =
∞∑

n=−∞
x[n]δ(t − nT). (4.22)

The nth sample is associated with the impulse at t = nT , where T is the sampling period
associated with the sequence x[n]. If this impulse train is the input to an ideal lowpass
continuous-time filter with frequency response Hr(j�) and impulse response hr(t), then
the output of the filter will be

xr(t) =
∞∑

n=−∞
x[n]hr(t − nT). (4.23)

A block diagram representation of this signal reconstruction process is shown in Fig-
ure 4.7(a). Recall that the ideal reconstruction filter has a gain of T [to compensate
for the factor of 1/T in Eq. (4.19) or (4.20)] and a cutoff frequency �c between �N

and �s − �N . A convenient and commonly used choice of the cutoff frequency is
�c = �s/2 = π/T . This choice is appropriate for any relationship between �s and
�N that avoids aliasing (i.e., so long as �s ≥ 2�N). Figure 4.7(b) shows the frequency
response of the ideal reconstruction filter. The corresponding impulse response, hr(t),
is the inverse Fourier transform of Hr(j�), and for cutoff frequency π/T it is given by

hr(t) = sin(πt/T)

πt/T
. (4.24)

This impulse response is shown in Figure 4.7(c). Substituting Eq. (4.24) into Eq. (4.23)
leads to

xr(t) =
∞∑

n=−∞
x[n] sin[π(t − nT)/T]

π(t − nT)/T
. (4.25)

164 Chapter 4 Sampling of Continuous-Time Signals

�

T

T

�

T
�–

Hr(j�)

xs(t) xr(t)x [n]

T t3T0

1

4T–T–3T–4T

hr(t)

(b)

(a)

(c)

Ideal reconstruction system

Convert from
sequence to

impulse train

Ideal
reconstruction

filter
Hr(j�)

Sampling
period T

Figure 4.7 (a) Block diagram of an
ideal bandlimited signal reconstruction
system. (b) Frequency response of an
ideal reconstruction filter. (c) Impulse
response of an ideal reconstruction filter.

Equations (4.23) and (4.25) express the continuous-time signal in terms of a linear
combination of basis functions hr(t − nT) with the samples x[n] playing the role of
coefficients. Other choices of the basis functions and corresponding coefficients could
be used to represent other classes of continuous-time functions [see, for example Unser
(2000)]. However, the functions in Eq. (4.24) and the samples x[n] are the natural basis
functions and coefficients for representing bandlimited continuous-time signals.

From the frequency-domain argument of Section 4.2, we saw that if x[n] = xc(nT),
where Xc(j�) = 0 for |�| ≥ π/T , then xr(t) is equal to xc(t). It is not immediately
obvious that this is true by considering Eq. (4.25) alone. However, useful insight is
gained by looking at that equation more closely. First, let us consider the function hr(t)

given by Eq. (4.24). We note that

hr(0) = 1. (4.26a)

Section 4.3 Reconstruction of a Bandlimited Signal from Its Samples 165

This follows from l’Hôpital’s rule or the small angle approximation for the sine function.
In addition,

hr(nT) = 0 for n = ±1, ±2, (4.26b)

It follows from Eqs. (4.26a) and (4.26b) and Eq. (4.23) that if x[n] = xc(nT), then

xr(mT) = xc(mT) (4.27)

for all integer values of m. That is, the signal that is reconstructed by Eq. (4.25) has the
same values at the sampling times as the original continuous-time signal, independently
of the sampling period T .

In Figure 4.8, we show a continuous-time signal xc(t) and the corresponding mod-
ulated impulse train. Figure 4.8(c) shows several of the terms

x[n] sin[π(t − nT)/T]
π(t − nT)/T

and the resulting reconstructed signal xr(t). As suggested by this figure, the ideal lowpass
filter interpolates between the impulses of xs(t) to construct a continuous-time signal
xr(t). From Eq. (4.27), the resulting signal is an exact reconstruction of xc(t) at the
sampling times. The fact that, if there is no aliasing, the lowpass filter interpolates the

T

t

xc(t)

(a)

t

xs(t)

(b)

T

t

xr(t)

(c)
Figure 4.8 Ideal bandlimited
interpolation.

166 Chapter 4 Sampling of Continuous-Time Signals

xs(t) xr(t)x [n]

(a) (b)

xr(t)x [n]

T

Ideal reconstruction system

Convert from
sequence to

impulse train

Ideal
reconstruction

filter
Hr(j�)

Sampling
period T

D/C

Figure 4.9 (a) Ideal bandlimited signal reconstruction. (b) Equivalent represen-
tation as an ideal D/C converter.

correct reconstruction between the samples follows from our frequency-domain analysis
of the sampling and reconstruction process.

It is useful to formalize the preceding discussion by defining an ideal system for
reconstructing a bandlimited signal from a sequence of samples. We will call this system
the ideal discrete-to-continuous-time (D/C) converter. The desired system is depicted in
Figure 4.9. As we have seen, the ideal reconstruction process can be represented as the
conversion of the sequence to an impulse train, as in Eq. (4.22), followed by filtering with
an ideal lowpass filter, resulting in the output given by Eq. (4.25). The intermediate step
of conversion to an impulse train is a mathematical convenience in deriving Eq. (4.25)
and in understanding the signal reconstruction process. However, once we are familiar
with this process, it is useful to define a more compact representation, as depicted in
Figure 4.9(b), where the input is the sequence x[n] and the output is the continuous-time
signal xr(t) given by Eq. (4.25).

The properties of the ideal D/C converter are most easily seen in the frequency do-
main. To derive an input/output relation in this domain, consider the Fourier transform
of Eq. (4.23) or Eq. (4.25), which is

Xr(j�) =
∞∑

n=−∞
x[n]Hr(j�)e−j�T n.

Since Hr(j�) is common to all the terms in the sum, we can write

Xr(j�) = Hr(j�)X (ej�T). (4.28)

Equation (4.28) provides a frequency-domain description of the ideal D/C converter.
According to Eq. (4.28), X (ejω) is frequency scaled (in effect, going from the sequence
to the impulse train causes ω to be replaced by �T). Then the ideal lowpass filter
Hr(j�) selects the base period of the resulting periodic Fourier transform X (ej�T)

and compensates for the 1/T scaling inherent in sampling. Thus, if the sequence x[n]
has been obtained by sampling a bandlimited signal at the Nyquist rate or higher, the
reconstructed signal xr(t) will be equal to the original bandlimited signal. In any case,
it is also clear from Eq. (4.28) that the output of the ideal D/C converter is always
bandlimited to at most the cutoff frequency of the lowpass filter, which is typically
taken to be one-half the sampling frequency.

Section 4.4 Discrete-Time Processing of Continuous-Time Signals 167

4.4 DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME
SIGNALS

A major application of discrete-time systems is in the processing of continuous-time
signals. This is accomplished by a system of the general form depicted in Figure 4.10.
The system is a cascade of a C/D converter, followed by a discrete-time system, followed
by a D/C converter. Note that the overall system is equivalent to a continuous-time
system, since it transforms the continuous-time input signal xc(t) into the continuous-
time output signal yr(t). The properties of the overall system are dependent on the
choice of the discrete-time system and the sampling rate. We assume in Figure 4.10 that
the C/D and D/C converters have the same sampling rate. This is not essential, and later
sections of this chapter and some of the problems at the end of the chapter consider
systems in which the input and output sampling rates are not the same.

The previous sections of the chapter have been devoted to understanding the
C/D and D/C conversion operations in Figure 4.10. For convenience, and as a first step
in understanding the overall system of Figure 4.10, we summarize the mathematical
representations of these operations.

The C/D converter produces a discrete-time signal

x[n] = xc(nT), (4.29)

i.e., a sequence of samples of the continuous-time input signal xc(t). The DTFT of this
sequence is related to the continuous-time Fourier transform of the continuous-time
input signal by

X (ejω) = 1
T

∞∑
k=−∞

Xc

[
j

(
ω

T
− 2πk

T

)]
. (4.30)

The D/C converter creates a continuous-time output signal of the form

yr(t) =
∞∑

n=−∞
y[n] sin[π(t − nT)/T]

π(t − nT)/T
, (4.31)

where the sequence y[n] is the output of the discrete-time system when the input to the
system is x[n]. From Eq. (4.28), Yr(j�), the continuous-time Fourier transform of yr(t),
and Y (ejω), the DTFT of y[n], are related by

Yr(j�) = Hr(j�)Y (ej�T) =
{

T Y (ej�T), |�| < π/T ,

0, otherwise.
(4.32)

Next, let us relate the output sequence y[n] to the input sequence x[n], or equiva-
lently, Y (ejω) to X (ejω). A simple example is the identity system, i.e., y[n] = x[n]. This

x [n]xc(t)

T

y [n] yr(t)
C/D

T

D/C
Discrete-time

system

Figure 4.10 Discrete-time processing of continuous-time signals.

168 Chapter 4 Sampling of Continuous-Time Signals

is in effect the case that we have studied in detail so far. We know that if xc(t) has a band-
limited Fourier transform such that Xc(j�) = 0 for |�| ≥ π/T and if the discrete-time
system in Figure 4.10 is the identity system such that y[n] = x[n] = xc(nT), then the
output will be yr(t) = xc(t). Recall that, in proving this result, we utilized the frequency-
domain representations of the continuous-time and discrete-time signals, since the key
concept of aliasing is most easily understood in the frequency domain. Likewise, when
we deal with systems more complicated than the identity system, we generally carry
out the analysis in the frequency domain. If the discrete-time system is nonlinear or
time varying, it is usually difficult to obtain a general relationship between the Fourier
transforms of the input and the output of the system. (In Problem 4.51, we consider an
example of the system of Figure 4.10 in which the discrete-time system is nonlinear.)
However, the LTI case leads to a rather simple and generally useful result.

4.4.1 Discrete-Time LTI Processing of Continuous-Time
Signals

If the discrete-time system in Figure 4.10 is linear and time invariant, we have

Y (ejω) = H(ejω)X (ejω), (4.33)

where H(ejω) is the frequency response of the system or, equivalently, the Fourier
transform of the unit sample response, and X (ejω) and Y (ejω) are the Fourier transforms
of the input and output, respectively. Combining Eqs. (4.32) and (4.33), we obtain

Yr(j�) = Hr(j�)H(ej�T)X (ej�T). (4.34)

Next, using Eq. (4.30) with ω = �T , we have

Yr(j�) = Hr(j�)H(ej�T)
1
T

∞∑
k=−∞

Xc

[
j

(
� − 2πk

T

)]
. (4.35)

If Xc(j�) = 0 for |�| ≥ π/T , then the ideal lowpass reconstruction filter Hr(j�)

cancels the factor 1/T and selects only the term in Eq. (4.35) for k = 0; i.e.,

Yr(j�) =
{

H(ej�T)Xc(j�), |�| < π/T ,

0, |�| ≥ π/T .
(4.36)

Thus, if Xc(j�) is bandlimited and the sampling rate is at or above the Nyquist rate,
the output is related to the input through an equation of the form

Yr(j�) = H eff(j�)Xc(j�), (4.37)

where

H eff(j�) =
{

H(ej�T), |�| < π/T ,

0, |�| ≥ π/T .
(4.38)

That is, the overall continuous-time system is equivalent to an LTI system whose effective
frequency response is given by Eq. (4.38).

It is important to emphasize that the linear and time-invariant behavior of the sys-
tem of Figure 4.10 depends on two factors. First, the discrete-time system must be linear
and time invariant. Second, the input signal must be bandlimited, and the sampling rate
must be high enough so that any aliased components are removed by the discrete-time

Section 4.4 Discrete-Time Processing of Continuous-Time Signals 169

system. As a simple illustration of this second condition being violated, consider the case
when xc(t) is a single finite-duration unit-amplitude pulse whose duration is less than the
sampling period. If the pulse is unity at t = 0, then x[n] = δ[n]. However, it is clearly pos-
sible to shift the pulse so that it is not aligned with any of the sampling times, i.e., x[n] = 0
for all n. Such a pulse, being limited in time, is not bandlimited, and the conditions of the
sampling theorem cannot hold. Even if the discrete-time system is the identity system,
such that y[n] = x[n], the overall system will not be time invariant if aliasing occurs in
sampling the input. In general, if the discrete-time system in Figure 4.10 is linear and
time invariant, and if the sampling frequency is at or above the Nyquist rate associated
with the bandwidth of the input xc(t), then the overall system will be equivalent to an LTI
continuous-time system with an effective frequency response given by Eq. (4.38). Fur-
thermore, Eq. (4.38) is valid even if some aliasing occurs in the C/D converter, as long as
H(ejω) does not pass the aliased components. Example 4.3 is a simple illustration of this.

Example 4.3 Ideal Continuous-Time Lowpass Filtering
Using a Discrete-Time Lowpass Filter

Consider Figure 4.10, with the LTI discrete-time system having frequency response

H(ejω) =
{

1, |ω| < ωc,

0, ωc < |ω| ≤ π.
(4.39)

This frequency response is periodic with period 2π , as shown in Figure 4.11(a).
For bandlimited inputs sampled at or above the Nyquist rate, it follows from Eq. (4.38)
that the overall system of Figure 4.10 will behave as an LTI continuous-time system
with frequency response

H eff(j�) =
{

1, |�T | < ωc or |�| < ωc/T ,

0, |�T | ≥ ωc or |�| ≥ ωc/T .
(4.40)

As shown in Figure 4.11(b), this effective frequency response is that of an ideal
lowpass filter with cutoff frequency �c = ωc/T

The graphical illustration given in Figure 4.12 provides an interpretation of how
this effective response is achieved. Figure 4.12(a) represents the Fourier transform

1

(a)

H(e j�)

–�c–2� 2��c �

1

(b)

Heff(j�)

T

�c–
�

T

�c

Figure 4.11 (a) Frequency response of discrete-time system in Figure 4.10.
(b) Corresponding effective continuous-time frequency response for bandlimited
inputs.

170 Chapter 4 Sampling of Continuous-Time Signals

�N

�N

�–�N

– �N

Xc(j�)

1

(a)

�

�

�

–�NT
�NT

–

Xs(j�) = X(e j�T)

Y(e j�T)

Yr(j�)

Hr(j�)

1

(b)
T
2�

T
2�

T
2�–

T
�

T
�

T

�

X(e j�)

H(e j�)

Y(e j�)

1

(c)

–2� –�c �c 2�

T

�

1

(d)
–2� 2�–�c �c

T

1

(e)

–

T T

1

(f)

�c �c

T T

–––
�c �c

T T
2�

T
2�

T
�

T
�

T

(2� – �NT)

Figure 4.12 (a) Fourier transform of a bandlimited input signal. (b) Fourier trans-
form of sampled input plotted as a function of continuous-time frequency �.
(c) Fourier transform X (ejω) of sequence of samples and frequency response
H(ejω) of discrete-time system plotted versus ω. (d) Fourier transform of output
of discrete-time system. (e) Fourier transform of output of discrete-time system
and frequency response of ideal reconstruction filter plotted versus �. (f) Fourier
transform of output.

Section 4.4 Discrete-Time Processing of Continuous-Time Signals 171

of a bandlimited signal. Figure 4.12(b) shows the Fourier transform of the intermediate
modulated impulse train, which is identical to X (ej�T), the DTFT of the sequence of
samples evaluated for ω = �T . In Figure 4.12(c), the DTFT of the sequence of samples
and the frequency response of the discrete-time system are both plotted as a function
of the normalized discrete-time frequency variable ω. Figure 4.12(d) shows Y (ejω) =
H(ejω)X (ejω), the Fourier transform of the output of the discrete-time system. Figure
4.12(e) illustrates the Fourier transform of the output of the discrete-time system as
a function of the continuous-time frequency �, together with the frequency response
of the ideal reconstruction filter Hr(j�) of the D/C converter. Finally, Figure 4.12(f)
shows the resulting Fourier transform of the output of the D/C converter. By comparing
Figures 4.12(a) and 4.12(f), we see that the system behaves as an LTI system with
frequency response given by Eq. (4.40) and plotted in Figure 4.11(b).

Several important points are illustrated in Example 4.3. First, note that the ideal
lowpass discrete-time filter with discrete-time cutoff frequency ωc has the effect of an
ideal lowpass filter with cutoff frequency �c = ωc/T when used in the configuration
of Figure 4.10. This cutoff frequency depends on both ωc and T . In particular, by using
a fixed discrete-time lowpass filter, but varying the sampling period T , an equivalent
continuous-time lowpass filter with a variable cutoff frequency can be implemented.
For example, if T were chosen so that �NT < ωc, then the output of the system of
Figure 4.10 would be yr(t) = xc(t). Also, as illustrated in Problem 4.31, Eq. (4.40) will
be valid even if some aliasing is present in Figures 4.12(b) and (c), as long as these
distorted (aliased) components are eliminated by the filter H(ejω). In particular, from
Figure 4.12(c), we see that for no aliasing to be present in the output, we require that

(2π − �NT) ≥ ωc, (4.41)

compared with the Nyquist requirement that

(2π − �NT) ≥ �NT . (4.42)

As another example of continuous-time processing using a discrete-time system, let us
consider the implementation of an ideal differentiator for bandlimited signals.

Example 4.4 Discrete-Time Implementation of an Ideal
Continuous-Time Bandlimited Differentiator

The ideal continuous-time differentiator system is defined by

yc(t) = d

dt
[xc(t)], (4.43)

with corresponding frequency response
Hc(j�) = j�. (4.44)

Since we are considering a realization in the form of Figure 4.10, the inputs are re-
stricted to be bandlimited. For processing bandlimited signals, it is sufficient that

H eff(j�) =
{

j�, |�| < π/T ,

0, |�| ≥ π/T ,
(4.45)

as depicted in Figure 4.13(a). The corresponding discrete-time system has frequency
response

H(ejω) = jω

T
, |ω| < π, (4.46)

172 Chapter 4 Sampling of Continuous-Time Signals

and is periodic with period 2π . This frequency response is plotted in Figure 4.13(b).
The corresponding impulse response can be shown to be

h[n] = 1
2π

∫ π

−π

(
jω

T

)
ejωndω = πn cos πn − sin πn

πn2T
, −∞ < n < ∞,

or equivalently,

h[n] =
⎧⎨⎩ 0, n = 0,

cos πn

nT
, n �= 0.

(4.47)

Thus, if a discrete-time system with this impulse response was used in the con-
figuration of Figure 4.10, the output for every appropriately bandlimited input would
be the derivative of the input. Problem 4.22 concerns the verification of this for a
sinusoidal input signal.

�

(a)

–
T
�

–
T
�

–

T
�

T
�

T
�

–2� –� � �2�

|Heff(j�)|

T
�

|H(e j�)|

�Heff(j�)

�

�
2

�
2

(b)

–
�

�H(e j�)

�
2

�
2

Figure 4.13 (a) Frequency response of a continuous-time ideal bandlimited dif-
ferentiator Hc (j�) = j�, |�| < π/T . (b) Frequency response of a discrete-time
filter to implement a continuous-time bandlimited differentiator.

Section 4.4 Discrete-Time Processing of Continuous-Time Signals 173

4.4.2 Impulse Invariance

We have shown that the cascade system of Figure 4.10 can be equivalent to an LTI
system for bandlimited input signals. Let us now assume that, as depicted in Figure 4.14,
we are given a desired continuous-time system that we wish to implement in the form
of Figure 4.10. With Hc(j�) bandlimited, Eq. (4.38) specifies how to choose H(ejω) so
that H eff(j�) = Hc(j�). Specifically,

H(ejω) = Hc(jω/T), |ω| < π, (4.48)

with the further requirement that T be chosen such that

Hc(j�) = 0, |�| ≥ π/T . (4.49)

Under the constraints of Eqs. (4.48) and (4.49), there is also a straightforward and useful
relationship between the continuous-time impulse response hc(t) and the discrete-time
impulse response h[n]. In particular, as we shall verify shortly,

h[n] = T hc(nT); (4.50)

i.e., the impulse response of the discrete-time system is a scaled, sampled version of
hc(t). When h[n] and hc(t) are related through Eq. (4.50), the discrete-time system is
said to be an impulse-invariant version of the continuous-time system.

Equation (4.50) is a direct consequence of the discussion in Section 4.2. Specifically,
with x[n] and xc(t) respectively replaced by h[n] and hc(t) in Eq. (4.16), i.e.,

h[n] = hc(nT), (4.51)

Eq. (4.20) becomes

H(ejω) = 1
T

∞∑
k=−∞

Hc

(
j

(
ω

T
− 2πk

T

))
, (4.52)

x [n]xc(t)

xc(t)

T

y [n] yr(t) = yc(t)

yc(t)

C/D

T

D/C
Discrete-time

LTI system
h [n], H(e j�)

Continuous-time
LTI system

hc(t), Hc(j�)

Heff(j�) = Hc(j�)

(b)

(a)

Figure 4.14 (a) Continuous-time LTI system. (b) Equivalent system for bandlim-
ited inputs.

174 Chapter 4 Sampling of Continuous-Time Signals

or, if Eq. (4.49) is satisfied,

H(ejω) = 1
T

Hc

(
j

ω

T

)
, |ω| < π. (4.53)

Modifying Eqs. (4.51) and (4.53) to account for the scale factor of T in Eq. (4.50), we
have

h[n] = T hc(nT), (4.54)

H(ejω) = Hc

(
j

ω

T

)
, |ω| < π. (4.55)

Example 4.5 A Discrete-Time Lowpass Filter Obtained
by Impulse Invariance

Suppose that we wish to obtain an ideal lowpass discrete-time filter with cutoff fre-
quency ωc < π . We can do this by sampling a continuous-time ideal lowpass filter with
cutoff frequency �c = ωc/T < π/T defined by

Hc(j�) =
{

1, |�| < �c,

0, |�| ≥ �c.

The impulse response of this continuous-time system is

hc(t) = sin(�ct)

πt
,

so we define the impulse response of the discrete-time system to be

h[n] = T hc(nT) = T
sin(�cnT)

πnT
= sin(ωcn)

πn
,

where ωc = �cT . We have already shown that this sequence corresponds to the DTFT

H(ejω) =
{

1, |ω| < ωc,

0, ωc ≤ |ω| ≤ π,

which is identical to Hc(jω/T), as predicted by Eq. (4.55).

Example 4.6 Impulse Invariance Applied to
Continuous-Time Systems with Rational System Functions

Many continuous-time systems have impulse responses composed of a sum of expo-
nential sequences of the form

hc(t) = A es0t u(t).

Such time functions have Laplace transforms

Hc(s) = A

s − s0
Re(s) > Re(s0).

If we apply the impulse invariance concept to such a continuous-time system, we obtain
the impulse response

h[n] = T hc(nT) = A T es0T nu[n],

Section 4.5 Continuous-Time Processing of Discrete-Time Signals 175

which has z-transform system function

H(z) = A T

1 − es0T z−1
|z| > |es0T |

and, assuming Re(s0) < 0, the frequency response

H(ejω) = A T

1 − es0T e−jω
.

In this case, Eq. (4.55) does not hold exactly, because the original continuous-time
system did not have a strictly bandlimited frequency response, and therefore, the re-
sulting discrete-time frequency response is an aliased version of Hc(j�). Even though
aliasing occurs in such a case as this, the effect may be small. Higher-order systems
whose impulse responses are sums of complex exponentials may in fact have fre-
quency responses that fall off rapidly at high frequencies, so that aliasing is minimal if
the sampling rate is high enough. Thus, one approach to the discrete-time simulation
of continuous-time systems and also to the design of digital filters is through sampling
of the impulse response of a corresponding analog filter.

4.5 CONTINUOUS-TIME PROCESSING OF DISCRETE-TIME
SIGNALS

In Section 4.4, we discussed and analyzed the use of discrete-time systems for processing
continuous-time signals in the configuration of Figure 4.10. In this section, we consider
the complementary situation depicted in Figure 4.15, which is appropriately referred
to as continuous-time processing of discrete-time signals. Although the system of Fig-
ure 4.15 is not typically used to implement discrete-time systems, it provides a useful
interpretation of certain discrete-time systems that have no simple interpretation in the
discrete domain.

From the definition of the ideal D/C converter, Xc(j�) and therefore also Yc(j�),

will necessarily be zero for |�| ≥ π/T . Thus, the C/D converter samples yc(t) without
aliasing, and we can express xc(t) and yc(t) respectively as

xc(t) =
∞∑

n=−∞
x[n] sin[π(t − nT)/T]

π(t − nT)/T
(4.56)

and

yc(t) =
∞∑

n=−∞
y[n] sin[π(t − nT)/T]

π(t − nT)/T
, (4.57)

x[n]

h [n], H(e j�)

xc(t) yc(t)

T

y [n]
D/C

T

C/D
hc(t)

Hc(j�)

Figure 4.15 Continuous-time
processing of discrete-time signals.

176 Chapter 4 Sampling of Continuous-Time Signals

where x[n] = xc(nT) and y[n] = yc(nT). The frequency-domain relationships for
Figure 4.15 are

Xc(j�) = T X (ej�T), |�| < π/T , (4.58a)

Yc(j�) = Hc(j�)Xc(j�), (4.58b)

Y (ejω) = 1
T

Yc

(
j

ω

T

)
, |ω| < π. (4.58c)

Therefore, by substituting Eqs. (4.58a) and (4.58b) into Eq. (4.58c), it follows that the
overall system behaves as a discrete-time system whose frequency response is

H(ejω) = Hc

(
j

ω

T

)
, |ω| < π, (4.59)

or equivalently, the overall frequency response of the system in Figure 4.15 will be equal
to a given H(ejω) if the frequency response of the continuous-time system is

Hc(j�) = H(ej�T), |�| < π/T . (4.60)

Since Xc(j�) = 0 for |�| ≥ π/T , Hc(j�) may be chosen arbitrarily above π/T . A
convenient—but arbitrary—choice is Hc(j�) = 0 for |�| ≥ π/T .

With this representation of a discrete-time system, we can focus on the equivalent
effect of the continuous-time system on the bandlimited continuous-time signal xc(t).
This is illustrated in Examples 4.7 and 4.8.

Example 4.7 Noninteger Delay

Let us consider a discrete-time system with frequency response

H(ejω) = e−jω	, |ω| < π. (4.61)

When 	 is an integer, this system has a straightforward interpretation as a delay of 	,
i.e.,

y[n] = x[n −]. (4.62)

When 	 is not an integer, Eq. (4.62) has no formal meaning, because we cannot shift
the sequence x[n] by a noninteger amount. However, with the use of the system of
Figure 4.15, a useful time-domain interpretation can be applied to the system specified
by Eq. (4.61). Let Hc(j�) in Figure 4.15 be chosen to be

Hc(j�) = H(ej�T) = e−j�T 	. (4.63)

Then, from Eq. (4.59), the overall discrete-time system in Figure 4.15 will have the
frequency response given by Eq. (4.61), whether or not 	 is an integer. To interpret
the system of Eq. (4.61), we note that Eq. (4.63) represents a time delay of T 	 seconds.
Therefore,

yc(t) = xc(t − T). (4.64)

Furthermore, xc(t) is the bandlimited interpolation of x[n], and y[n] is obtained by
sampling yc(t). For example, if 	 = 1

2 , y[n] would be the values of the bandlim-
ited interpolation halfway between the input sequence values. This is illustrated in

Section 4.5 Continuous-Time Processing of Discrete-Time Signals 177

Figure 4.16. We can also obtain a direct convolution representation for the system
defined by Eq. (4.61). From Eqs. (4.64) and (4.56), we obtain

y[n] = yc(nT) = xc(nT − T)

=
∞∑

k=−∞
x[k] sin[π(t − T 	 − kT)/T]

π(t − T 	 − kT)/T

∣∣∣∣
t=nT

(4.65)

=
∞∑

k=−∞
x[k] sin π(n − k −)

π(n − k −)
,

which is, by definition, the convolution of x[n] with

h[n] = sin π(n −)

π(n −)
, −∞ < n < ∞.

When 	 is not an integer, h[n] has infinite extent. However, when 	 = n0 is an integer,
it is easily shown that h[n] = δ[n−n0], which is the impulse response of the ideal integer
delay system.

xc(t)

x [n]

t2TT0

(a)

yc(t) = xc

y [n]

t2TT0

(b)

t – T
2

Figure 4.16 (a) Continuous-time processing of the discrete-time sequence (b) can
produce a new sequence with a “half-sample” delay.

The noninteger delay represented by Eq. (4.65) has considerable practical sig-
nificance, since such a factor often arises in the frequency-domain representation of
systems. When this kind of term is found in the frequency response of a causal discrete-
time system, it can be interpreted in the light of this example. This interpretation is
illustrated in Example 4.8.

Example 4.8 Moving-Average System with Noninteger
Delay

In Example 2.16, we considered the general moving-average system and obtained its
frequency response. For the case of the causal (M + 1)-point moving-average system,

178 Chapter 4 Sampling of Continuous-Time Signals

M 1 = 0 and M 2 = M , and the frequency response is

H(ejω) = 1
(M + 1)

sin[ω(M + 1)/2]
sin(ω/2)

e−jωM/2, |ω| < π. (4.66)

This representation of the frequency response suggests the interpretation of the
(M + 1)-point moving-average system as the cascade of two systems, as indicated
in Figure 4.17. The first system imposes a frequency-domain amplitude weighting. The
second system represents the linear-phase term in Eq. (4.66). If M is an even integer
(meaning the moving average of an odd number of samples), then the linear-phase
term corresponds to an integer delay, i.e.,

y[n] = w[n − M/2]. (4.67)

However, if M is odd, the linear-phase term corresponds to a noninteger delay, specif-
ically, an integer-plus-one-half sample interval. This noninteger delay can be inter-
preted in terms of the discussion in Example 4.7; i.e., y[n] is equivalent to bandlim-
ited interpolation of w[n], followed by a continuous-time delay of MT/2 (where T

is the assumed, but arbitrary, sampling period associated with the D/C interpola-
tion of w[n]), followed by C/D conversion again with sampling period T . This frac-
tional delay is illustrated in Figure 4.18. Figure 4.18(a) shows a discrete-time sequence
x[n] = cos(0.25πn). This sequence is the input to a six-point (M = 5) moving-average
filter. In this example, the input is “turned on” far enough in the past so that the output
consists only of the steady-state response for the time interval shown. Figure 4.18(b)
shows the corresponding output sequence, which is given by

y[n] = H(ej0.25π)
1
2
ej0.25πn + H(e−j0.25π)

1
2
e−j0.25πn

= 1
2

sin[3(0.25π)]
6 sin(0.125π)

e−j (0.25π)5/2ej0.25πn + 1
2

sin[3(−0.25π)]
6 sin(−0.125π)

ej (0.25π)5/2e−j0.25πn

= 0.308 cos[0.25π(n − 2.5)].
Thus, the six-point moving-average filter reduces the amplitude of the cosine signal
and introduces a phase shift that corresponds to 2.5 samples of delay. This is apparent
in Figure 4.18, where we have plotted the continuous-time cosines that would be inter-
polated by the ideal D/C converter for both the input and the output sequence. Note
in Figure 4.18(b) that the six-point moving-average filtering gives a sampled cosine
signal such that the sample points have been shifted by 2.5 samples with respect to
the sample points of the input. This can be seen from Figure 4.18 by comparing the
positive peak at 8 in the interpolated cosine for the input to the positive peak at 10.5
in the interpolated cosine for the output. Thus, the six-point moving-average filter is
seen to have a delay of 5/2 = 2.5 samples.

x [n] y [n]w [n]

1
M + 1

sin(�(M + 1)/2)
sin(�/2)

e–j�M /2

H(e j�)

Figure 4.17 The moving-average system represented as a cascade of two
systems.

Section 4.6 Changing the Sampling Rate Using Discrete-Time Processing 179

–5 0 5 10

(a)

(b)

15 20

–1

–0.5

0

1

0.5

–5 0 5 10 15 20

n

n

–1

–0.5

0

1

0.5

M/2

Figure 4.18 Illustration of moving-average filtering. (a) Input signal
x [n] = cos(0.25πn). (b) Corresponding output of six-point moving-average
filter.

4.6 CHANGING THE SAMPLING RATE USING
DISCRETE-TIME PROCESSING

We have seen that a continuous-time signal xc(t) can be represented by a discrete-time
signal consisting of a sequence of samples

x[n] = xc(nT). (4.68)

Alternatively, our previous discussion has shown that, even if x[n] was not obtained
originally by sampling, we can always use the bandlimited interpolation formula of
Eq. (4.25) to reconstruct a continuous-time bandlimited signal xr(t) whose samples are
x[n] = xr(nT) = xc(nT), i.e., the samples of xc(t) and xr(t) are identical at the sampling
times even when xr(t) �= xc(t).

It is often necessary to change the sampling rate of a discrete-time signal, i.e., to
obtain a new discrete-time representation of the underlying continuous-time signal of
the form

x1[n] = xc(nT1), (4.69)

where T1 �= T . This operation is often called resampling. Conceptually, x1[n] can be ob-
tained from x[n] by reconstructing xc(t) from x[n] using Eq. (4.25) and then resampling
xc(t) with period T1 to obtain x1[n]. However, this is not usually a practical approach,

180 Chapter 4 Sampling of Continuous-Time Signals

x [n] xd[n] = x [nM]
M

Sampling
period T

Sampling
period Td = MT

Figure 4.19 Representation of a
compressor or discrete-time sampler.

because of the nonideal analog reconstruction filter, D/A converter, and A/D converter
that would be used in a practical implementation. Thus, it is of interest to consider
methods of changing the sampling rate that involve only discrete-time operations.

4.6.1 Sampling Rate Reduction by an Integer Factor

The sampling rate of a sequence can be reduced by “sampling” it, i.e., by defining a new
sequence

xd [n] = x[nM] = xc(nMT). (4.70)

Equation (4.70) defines the system depicted in Figure 4.19, which is called a sampling
rate compressor (see Crochiere and Rabiner, 1983 and Vaidyanathan, 1993) or simply a
compressor. From Eq. (4.70), it follows that xd [n] is identical to the sequence that would
be obtained from xc(t) by sampling with period Td = MT . Furthermore, if Xc(j�) = 0
for |�| ≥ �N , then xd [n] is an exact representation of xc(t) if π/Td = π/(MT) ≥ �N .
That is, the sampling rate can be reduced to π/M without aliasing if the original sampling
rate is at least M times the Nyquist rate or if the bandwidth of the sequence is first
reduced by a factor of M by discrete-time filtering. In general, the operation of reducing
the sampling rate (including any prefiltering) is called downsampling.

As in the case of sampling a continuous-time signal, it is useful to obtain a frequency-
domain relation between the input and output of the compressor. This time, however,
it will be a relationship between DTFTs. Although several methods can be used to de-
rive the desired result, we will base our derivation on the results already obtained for
sampling continuous-time signals. First, recall that the DTFT of x[n] = xc(nT) is

X (ejω) = 1
T

∞∑
k=−∞

Xc

[
j

(
ω

T
− 2πk

T

)]
. (4.71)

Similarly, the DTFT of xd [n] = x[nM] = xc(nTd) with Td = MT is

Xd(ejω) = 1
Td

∞∑
r=−∞

Xc

[
j

(
ω

Td

− 2πr

Td

)]
. (4.72)

Now, since Td = MT , we can write Eq. (4.72) as

Xd(ejω) = 1
MT

∞∑
r=−∞

Xc

[
j

(
ω

MT
− 2πr

MT

)]
. (4.73)

To see the relationship between Eqs. (4.73) and (4.71), note that the summation index r

in Eq. (4.73) can be expressed as

r = i + kM, (4.74)

Section 4.6 Changing the Sampling Rate Using Discrete-Time Processing 181

where k and i are integers such that −∞ < k < ∞ and 0 ≤ i ≤ M − 1. Clearly, r is still
an integer ranging from −∞ to ∞, but now Eq. (4.73) can be expressed as

Xd(ejω) = 1
M

M−1∑
i=0

{
1
T

∞∑
k=−∞

Xc

[
j

(
ω

MT
− 2πk

T
− 2πi

MT

)]}
. (4.75)

The term inside the square brackets in Eq. (4.75) is recognized from Eq. (4.71) as

X (ej(ω−2πi)/M) = 1
T

∞∑
k=−∞

Xc

[
j

(
ω − 2πi

MT
− 2πk

T

)]
. (4.76)

Thus, we can express Eq. (4.75) as

Xd(ejω) = 1
M

M−1∑
i=0

X (ej(ω/M−2πi/M)). (4.77)

There is a strong analogy between Eqs. (4.71) and (4.77): Equation (4.71) expresses
the Fourier transform of the sequence of samples, x[n] (with period T), in terms of the
Fourier transform of the continuous-time signal xc(t); Equation (4.77) expresses the
Fourier transform of the discrete-time sampled sequencexd [n] (with sampling periodM)
in terms of the Fourier transform of the sequence x[n]. If we compare Eqs. (4.72) and
(4.77), we see that Xd(ejω) can be thought of as being composed of the superposition
of either an infinite set of amplitude-scaled copies of Xc(j�), frequency scaled through
ω = �Td and shifted by integer multiples of 2π [Eq. (4.72)], or M amplitude-scaled
copies of the periodic Fourier transform X (ejω), frequency scaled by M and shifted by
integer multiples of 2π [Eq. (4.77)]. Either interpretation makes it clear that Xd(ejω) is
periodic with period 2π (as are all DTFTs) and that aliasing can be avoided by ensuring
that X (ejω) is bandlimited, i.e.,

X (ejω) = 0, ωN ≤ |ω| ≤ π, (4.78)

and 2π/M ≥ 2ωN .
Downsampling is illustrated in Figure 4.20 for M = 2. Figure 4.20(a) shows the

Fourier transform of a bandlimited continuous-time signal, and Figure 4.20(b) shows
the Fourier transform of the impulse train of samples when the sampling period is
T . Figure 4.20(c) shows X (ejω) and is related to Figure 4.20(b) through Eq. (4.18).
As we have already seen, Figures 4.20(b) and (c) differ only in a scaling of the fre-
quency variable. Figure 4.20(d) shows the DTFT of the downsampled sequence when
M = 2. We have plotted this Fourier transform as a function of the normalized frequency
ω = �Td . Finally, Figure 4.20(e) shows the DTFT of the downsampled sequence plotted
as a function of the continuous-time frequency variable �. Figure 4.20(e) is identical
to Figure 4.20(d), except for the scaling of the frequency axis through the relation
� = ω/Td .

In this example, 2π/T = 4�N ; i.e., the original sampling rate is exactly twice the
minimum rate to avoid aliasing. Thus, when the original sampled sequence is downsam-
pled by a factor of M = 2, no aliasing results. If the downsampling factor is more than
2 in this case, aliasing will result, as illustrated in Figure 4.21.

Figure 4.21(a) shows the continuous-time Fourier transform of xc(t), and Fig-
ure 4.21(b) shows the DTFT of the sequence x[n] = xc(nT), when 2π/T = 4�N . Thus,

�N �–�N

�N–�N

Xc(j�)

1

(a)

�–

Xs(j�) = X(e j�T)

Xd(e j�T)

1

(b)

T
2�

T
2�

T

�N = �NT � = �T–�N

1

1
2

(c)

–2� –� 2��

T

X(e j�)

� = �Td

1

(d)

–2� –� 2��

MT

Xd(e j�) = [X(e j�/2) + X(e j(� – 2�)/2)]

1

(e)

– 2�

Td

T
�

Td

4�

Td

2�

Td

2�

Td
– 4�

Td

(M = 2)

(M = 2)

= � =

Figure 4.20 Frequency-domain illustration of downsampling.

182

�N �–�N

�N =–�N

Xc(j�)
1

(a)

1

(b)

–2� –�

–
2

3�

2
3�

2��

2
�

T

1
T

� = �T

X(e j�)

� = �Td

1

(f)
–2� –� 2��

MT

Xd(e j�)

(M = 3)

1
MT (M = 3)

(c)

–2� –� 2�� � = �Td

Xd(e j�)

–
M
� =

M
� �

1

(d)

–2� –� 2� � = �T
�c

Hd(e j�)

– � =
M
�

3
�

3
�

(e)

–2� –� 2� � = �T

X(e j�) = Hd(e j�)X(e j�)
~

~

Figure 4.21 (a)–(c) Downsampling with aliasing. (d)–(f) Downsampling with
prefiltering to avoid aliasing.

183

184 Chapter 4 Sampling of Continuous-Time Signals

x [n] x [n] xd[n] = x [nM]
M

Sampling
period T

Sampling
period T

Sampling
period Td = MT

Lowpass filter
Gain = 1

Cutoff = � /M ~ ~ ~

Figure 4.22 General system for
sampling rate reduction by M .

ωN = �NT = π/2. Now, if we downsample by a factor of M = 3, we obtain the sequence
xd [n] = x[3n] = xc(n3T) whose DTFT is plotted in Figure 4.21(c) with normalized
frequency ω = �Td . Note that because MωN = 3π/2, which is greater than π , aliasing
occurs. In general, to avoid aliasing in downsampling by a factor of M requires that

ωNM ≤ π or ωN ≤ π/M. (4.79)

If this condition does not hold, aliasing occurs, but it may be tolerable for some appli-
cations. In other cases, downsampling can be done without aliasing if we are willing to
reduce the bandwidth of the signal x[n] before downsampling. Thus, if x[n] is filtered
by an ideal lowpass filter with cutoff frequency π/M , then the output x̃[n] can be down-
sampled without aliasing, as illustrated in Figures 4.21(d), (e), and (f). Note that the
sequence x̃d [n] = x̃[nM] no longer represents the original underlying continuous-time
signal xc(t). Rather, x̃d [n] = x̃c(nTd), where Td = MT , and x̃c(t) is obtained from xc(t)

by lowpass filtering with cutoff frequency �c = π/Td = π/(MT).
From the preceding discussion, we see that a general system for downsampling by

a factor of M is the one shown in Figure 4.22. Such a system is called a decimator, and
downsampling by lowpass filtering followed by compression has been termed decimation
(Crochiere and Rabiner, 1983 and Vaidyanathan, 1993).

4.6.2 Increasing the Sampling Rate by an Integer Factor

We have seen that the reduction of the sampling rate of a discrete-time signal by an
integer factor involves sampling the sequence in a manner analogous to sampling a
continuous-time signal. Not surprisingly, increasing the sampling rate involves opera-
tions analogous to D/C conversion. To see this, consider a signal x[n] whose sampling
rate we wish to increase by a factor of L. If we consider the underlying continuous-time
signal xc(t), the objective is to obtain samples

xi[n] = xc(nTi), (4.80)

where Ti = T/L, from the sequence of samples

x[n] = xc(nT). (4.81)

We will refer to the operation of increasing the sampling rate as upsampling.
From Eqs. (4.80) and (4.81), it follows that

xi[n] = x[n/L] = xc(nT /L), n = 0, ±L, ±2L, (4.82)

Figure 4.23 shows a system for obtaining xi[n] from x[n] using only discrete-time pro-
cessing. The system on the left is called a sampling rate expander (see Crochiere and
Rabiner, 1983 and Vaidyanathan, 1993) or simply an expander. Its output is

xe[n] =
{

x[n/L], n = 0, ±L, ±2L, . . . ,

0, otherwise,
(4.83)

Section 4.6 Changing the Sampling Rate Using Discrete-Time Processing 185

x [n] xe[n] xi[n]
L

Sampling
period T

Sampling
period Ti = T/L

Sampling
period Ti = T/L

Lowpass filter
Gain = L

Cutoff = � /L

Figure 4.23 General system for
sampling rate increase by L.

or equivalently,

xe[n] =
∞∑

k=−∞
x[k]δ[n − kL]. (4.84)

The system on the right is a lowpass discrete-time filter with cutoff frequency π/L and
gain L. This system plays a role similar to the ideal D/C converter in Figure 4.9(b).
First, we create a discrete-time impulse train xe[n], and we then use a lowpass filter to
reconstruct the sequence.

The operation of the system in Figure 4.23 is most easily understood in the fre-
quency domain. The Fourier transform of xe[n] can be expressed as

Xe(e
jω) =

∞∑
n=−∞

(∞∑
k=−∞

x[k]δ[n − kL]
)

e−jωn

=
∞∑

k=−∞
x[k]e−jωL k = X (ejωL).

(4.85)

Thus, the Fourier transform of the output of the expander is a frequency-scaled
version of the Fourier transform of the input; i.e., ω is replaced by ωL so that ω is now
normalized by

ω = �Ti. (4.86)
This effect is illustrated in Figure 4.24. Figure 4.24(a) shows a bandlimited continuous-
time Fourier transform, and Figure 4.24(b) shows the DTFT of the sequence x[n] =
xc(nT), where π/T = �N . Figure 4.24(c) shows Xe(e

jω) according to Eq. (4.85), with
L = 2, and Figure 4.24(e) shows the Fourier transform of the desired signal xi[n]. We see
that Xi(e

jω) can be obtained from Xe(e
jω) by correcting the amplitude scale from 1/T

to 1/Ti and by removing all the frequency-scaled images of Xc(j�) except at integer
multiples of 2π . For the case depicted in Figure 4.24, this requires a lowpass filter with a
gain of 2 and cutoff frequency π/2, as shown in Figure 4.24(d). In general, the required
gain would be L, since L(1/T) = [1/(T /L)] = 1/Ti , and the cutoff frequency would be
π/L.

This example shows that the system of Figure 4.23 does indeed give an output
satisfying Eq. (4.80) if the input sequence x[n] = xc(nT) was obtained by sampling
without aliasing. Therefore, that system is called an interpolator, since it fills in the
missing samples, and the operation of upsampling is consequently considered to be
synonymous with interpolation.

As in the case of the D/C converter, it is possible to obtain an interpolation formula
for xi[n] in terms of x[n]. First, note that the impulse response of the lowpass filter in
Figure 4.23 is

hi[n] = sin(πn/L)

πn/L
. (4.87)

�N �–�N

Xc(j�)

1

(a)

1

(b)

–2� –� 2��

T

� = �T

X(e j�)

1

(c)

(L = 2)

4�– = 2�

T

L
2�–
L

2�
L

4�
L

�–
L

�
L

1
Ti

� = �Ti

Xe(e j�) = X(e j�L)

–

=

L
�

L

L

� �

(d)

–2� –� 2� � = �Ti

Hi(e j�)

–
L
�

L

T
L

� �

(e)

–2� –� 2� � = �Ti

Xi(e j�)

Figure 4.24 Frequency-domain illustration of interpolation.

186

Section 4.6 Changing the Sampling Rate Using Discrete-Time Processing 187

Using Eq. (4.84), we obtain

xi[n] =
∞∑

k=−∞
x[k] sin[π(n − kL)/L]

π(n − kL)/L
. (4.88)

The impulse response hi[n] has the properties

hi[0] = 1,

hi[n] = 0, n = ±L, ±2L,
(4.89)

Thus, for the ideal lowpass interpolation filter, we have

xi[n] = x[n/L] = xc(nT /L) = xc(nTi), n = 0, ±L, ±2L, . . . , (4.90)

as desired. The fact that xi[n] = xc(nTi) for all n follows from our frequency-domain
argument.

4.6.3 Simple and Practical Interpolation Filters

Although ideal lowpass filters for interpolation cannot be implemented exactly, very
good approximations can be designed using techniques to be discussed in Chapter 7.
However, in some cases, very simple interpolation procedures are adequate or are forced
on us by computational limitations. Since linear interpolation is often used (even though
it is often not very accurate), it is worthwhile to examine this process within the general
framework that we have just developed.

Linear interpolation corresponds to interpolation so that the samples between
two original samples lie on a straight line connecting the two original sample values.
Linear interpolation can be accomplished with the system of Figure 4.23 with the filter
having the triangularly shaped impulse response

hlin[n] =
{

1 − |n|/L, |n| ≤ L,

0, otherwise,
(4.91)

as shown in Figure 4.25 for L = 5. With this filter, the interpolated output will be

xlin[n] =
n+L−1∑

k=n−L+1

xe[k]hlin[n − k]. (4.92)

Figure 4.26(a) depictsxe[k] (with the envelope ofhlin[n−k] shown dashed for a particular
value n = 18) and the corresponding output xlin[n] for the case L = 5. In this case, xlin[n]
for n = 18 depends only on original samples x[3] and x[4]. From this figure, we see that
xlin[n] is identical to the sequence obtained by connecting the two original samples on
either side of n by a straight line and then resampling at the L − 1 desired points in

0

hlin[n]

n

L = 5

1
4/5

3/5
2/5

1/5

Figure 4.25 Impulse response for
linear interpolation.

188 Chapter 4 Sampling of Continuous-Time Signals

n
(a)

(b)

L

–�
5

– 4�4� � �
5

2�
5

– 2�
55

–
5

Hi(e j�)

Hlin(e j�)

kn0 L 2L 3L 4L 5L

xlin[n]

xe[k]hlin[n − k]
L = 5

L = 5

Figure 4.26 (a) Illustration of linear interpolation by filtering. (b) Frequency re-
sponse of linear interpolator compared with ideal lowpass interpolation filter.

between. Also, note that the original sample values are preserved because hlin[0] = 1
and hlin[n] = 0 for |n| ≥ L.

The nature of the distortion in the intervening samples can be better understood
by comparing the frequency response of the linear interpolator with that of the ideal
lowpass interpolator for a factor of L interpolation. It can be shown (see Problem 4.56)
that

H lin(ejω) = 1
L

[
sin(ωL/2)

sin(ω/2)

]2
. (4.93)

This function is plotted in Figure 4.26(b) for L = 5 together with the ideal lowpass
interpolation filter. From the figure, we see that if the original signal is sampled at just
the Nyquist rate, i.e., not oversampled, linear interpolation will not be very accurate,
since the output of the filter will contain considerable energy in the band π/L < |ω| ≤ π

due to the frequency-scaled images of Xc(j�) at multiples of 2π/L that are not removed
by the linear interpolation filter. However, if the original sampling rate is much higher
than the Nyquist rate, then the linear interpolator will be more successful in removing
these images because H lin(ejω) is small in a narrow region around these normalized
frequencies, and at higher sampling rates, the increased frequency scaling causes the
shifted copies of Xc(j�) to be more localized at multiples of 2π/L. This is intuitively

Section 4.6 Changing the Sampling Rate Using Discrete-Time Processing 189

reasonable from a time domain perspective too, since, if the original sampling rate
greatly exceeds the Nyquist rate, the signal will not vary significantly between samples,
and thus, linear interpolation should be more accurate for oversampled signals.

Because of its double-sided infinite-length impulse response, the ideal bandlimited
interpolator involves all of the original samples in the computation of each interpolated
sample. In contrast, linear interpolation involves only two of the original samples in the
computation of each interpolated sample. To better approximate ideal bandlimited in-
terpolation, it is necessary to use filters with longer impulse responses. For this purpose
FIR filters have many advantages. The impulse response h̃i[n] of an FIR filter for inter-
polation by a factor L usually is designed to have the following properties:

h̃i[n] = 0 |n| ≥ KL (4.94a)

h̃i[n] = h̃i[−n] |n| ≤ KL (4.94b)

h̃i[0] = 1 n = 0 (4.94c)

h̃i[n] = 0 n = ±L, ±2L, . . . ,±KL. (4.94d)

The interpolated output will therefore be

x̃i[n] =
n+KL−1∑

k=n−KL+1

xe[k]h̃i[n − k]. (4.95)

Note that the impulse response for linear interpolation satisfies Eqs. (4.94a)–(4.94d)
with K = 1.

It is important to understand the motivation for the constraints of Eqs. (4.94a)–
(4.94d). Equation (4.94a) states that the length of the FIR filter is 2KL − 1 samples.
Furthermore, this constraint ensures that only 2K original samples are involved in the
computation of each sample of x̃i[n]. This is because, even though h̃i[n] has 2KL − 1
nonzero samples, the input xe[k] has only 2K nonzero samples within the region of
support of h̃i[n − k] for any n between two of the original samples. Equation (4.94b)
ensures that the filter will not introduce any phase shift into the interpolated samples
since the corresponding frequency response is a real function of ω. The system could
be made causal by introducing a delay of at least KL − 1 samples. In fact, the impulse
response h̃i[n−KL] would yield an interpolated output delayed by KL samples, which
would correspond to a delay of K samples at the original sampling rate. We might want
to insert other amounts of delay so as to equalize delay among parts of a larger system
that involves subsystems operating at different sampling rates. Finally, Eqs. (4.94c) and
(4.94d) guarantee that the original signal samples will be preserved in the output, i.e.,

x̃i[n] = x[n/L] at n = 0, ±L, ±2L, (4.96)

Thus, if the sampling rate of x̃i[n] is subsequently reduced back to the original rate (with
no intervening delay or a delay by a multiple of L samples) then x̃i[nL] = x[n]; i.e., the
original signal is recovered exactly. If this consistency is not required, the conditions of
Eqs. (4.94c) and (4.94d) could be relaxed in the design of h̃i[n].

190 Chapter 4 Sampling of Continuous-Time Signals

Figure 4.27 shows xe[k] and h̃i[n − k] with K = 2. The figure shows that each
interpolated value depends on 2K = 4 samples of the original input signal. Also note
that computation of each interpolated sample requires only 2K multiplications and
2K − 1 additions since there are always L− 1 zero samples in xe[k] between each of the
original samples.

n0 L

2L

3L 4L

5L

6L

xe[k]

˜

k

hi[n − k]

Figure 4.27 Illustration of interpolation involving 2K = 4 samples when L = 5.

Interpolation is a much-studied problem in numerical analysis. Much of the de-
velopment in this field is based on interpolation formulas that exactly interpolate poly-
nomials of a certain degree. For example, the linear interpolator gives exact results for
a constant signal and one whose samples vary along a straight line. Just as in the case
of linear interpolation, higher-order Lagrange interpolation formulas (Schafer and Ra-
biner, 1973) and cubic spline interpolation formulas (Keys, 1981 and Unser, 2000) can
be cast into our linear filtering framework to provide longer filters for interpolation.
For example, the equation

h̃i[n] =

⎧⎪⎪⎨⎪⎪⎩
(a + 2)|n/L|3 − (a + 3)|n/L|2 + 1 0 ≤ n ≤ L

a|n/L|3 − 5|n/L|2 + 8a|n/L| − 4a L ≤ n ≤ 2L

0 otherwise

(4.97)

defines a convenient family of interpolation filter impulse responses that involve four
(K = 2) original samples in the computation of each interpolated sample. Figure 4.28(a)
shows the impulse response of a cubic filter for a = −0.5 and L = 5 along with the
filter (dashed triangle) for linear (K = 1) interpolation. The corresponding frequency
responses are shown in Figure 4.28(b) on a logarithmic amplitude (dB) scale. Note that
the cubic filter has much wider regions around the frequencies 2π/L and 4π/L (0.4π

and 0.8π in this case) but lower sidelobes than the linear interpolator, which is shown
as the dashed line.

4.6.4 Changing the Sampling Rate by a Noninteger
Factor

We have shown how to increase or decrease the sampling rate of a sequence by an
integer factor. By combining decimation and interpolation, it is possible to change
the sampling rate by a noninteger factor. Specifically, consider Figure 4.29(a), which

−10 −5 0 5 10

0

0.5

1

 n

−� −0.5� 0 0.5� �

−80

−60

−40

−20

0

20

�

lo
g

m
ag

ni
tu

de
 in

 d
B

linear pulse (L = 5)

cubic pulse a = −5

Figure 4.28 Impulse responses and frequency responses for linear and cubic
interpolation.

x [n] xe[n] xi[n] xi[n] xd[n]
L M

Sampling
period:

Lowpass filter
Gain = L

Cutoff = � /L

Lowpass filter
Gain = 1

Cutoff = � /M

x [n] xe[n] xi[n] xd[n]
L M

Lowpass filter
Gain = L
Cutoff =

min(� /L, � /M)

Interpolator Decimator

~ ~

~~

(a)

(b)

T
T
L

T
L

T
L

TM
L

Sampling
period: T

T
L

T
L

TM
L

Figure 4.29 (a) System for changing the sampling rate by a noninteger fac-
tor. (b) Simplified system in which the decimation and interpolation filters are
combined.

191

192 Chapter 4 Sampling of Continuous-Time Signals

shows an interpolator that decreases the sampling period from T to T/L, followed by a
decimator that increases the sampling period by M , producing an output sequence x̃d [n]
that has an effective sampling period of (T M/L). By choosing L and M appropriately,
we can approach arbitrarily close to any desired ratio of sampling periods. For example,
if L = 100 and M = 101, then the effective sampling period is 1.01T .

If M > L, there is a net increase in the sampling period (a decrease in the sam-
pling rate), and if M < L, the opposite is true. Since the interpolation and decima-
tion filters in Figure 4.29(a) are in cascade, they can be combined as shown in Fig-
ure 4.29(b) into one lowpass filter with gain L and cutoff equal to the minimum of
π/L and π/M . If M > L, then π/M is the dominant cutoff frequency, and there is a
net reduction in sampling rate. As pointed out in Section 4.6.1, if x[n] was obtained by
sampling at the Nyquist rate, the sequence x̃d [n] will correspond to a lowpass-filtered
version of the original underlying bandlimited signal if we are to avoid aliasing. On
the other hand, if M < L, then π/L is the dominant cutoff frequency, and there will
be no need to further limit the bandwidth of the signal below the original Nyquist
frequency.

Example 4.9 Sampling Rate Conversion by a Noninteger
Rational Factor

Figure 4.30 illustrates sampling rate conversion by a rational factor. Suppose that a
bandlimited signal with Xc(j�) as given in Figure 4.30(a) is sampled at the Nyquist
rate; i.e., 2π/T = 2�N . The resulting DTFT

X (ejω) = 1
T

∞∑
k=−∞

Xc

(
j

(
ω

T
− 2πk

T

))

is plotted in Figure 4.30(b). An effective approach to changing the sampling period
to (3/2)T , is to first interpolate by a factor L = 2 and then decimate by a factor of
M = 3. Since this implies a net decrease in sampling rate, and the original signal was
sampled at the Nyquist rate, we must incorporate additional bandlimiting to avoid
aliasing.

Figure 4.30(c) shows the DTFT of the output of the L = 2 upsampler. If we were
interested only in interpolating by a factor of 2, we could choose the lowpass filter to
have a cutoff frequency of ωc = π/2 and a gain of L = 2. However, since the output
of the filter will be decimated by M = 3, we must use a cutoff frequency of ωc = π/3,
but the gain of the filter should still be 2 as in Figure 4.30(d). The Fourier transform
X̃i (e

jω) of the output of the lowpass filter is shown in Figure 4.30(e). The shaded
regions indicate the part of the signal spectrum that is removed owing to the lower
cutoff frequency for the interpolation filter. Finally, Figure 4.30(f) shows the DTFT
of the output of the downsampler by M = 3. Note that the shaded regions show the
aliasing that would have occurred if the cutoff frequency of the interpolation lowpass
filter had been π/2 instead of π/3.

Section 4.6 Changing the Sampling Rate Using Discrete-Time Processing 193

L
T

� = �TM/L
(f)

–2� –� 2��

Xd(e j�)

MT

(M = 3)

(L = 2)

–
M
� =

M
� �

(d)

–2� –� 2� � = �T/L
�c

Hd(e j�)

– � =
M
�

3
�

3
�

(e)

–2� –� 2� � = �T/L

Xi(e j�) = Hd(e j�)Xe(e j�)
~

~

1

(b)

–2� –� 2��

T

� = �T

X(e j�)

1

(c)

4�– = 2�

T

L
2�–
L

2�
L

4�
L

�–
L

�
L

L

L

� = �T/L

Xe(e j�)

�N �–�N

Xc(j�)

1

(a)

Figure 4.30 Illustration of changing the sampling rate by a noninteger factor.

194 Chapter 4 Sampling of Continuous-Time Signals

4.7 MULTIRATE SIGNAL PROCESSING

As we have seen, it is possible to change the sampling rate of a discrete-time signal by a
combination of interpolation and decimation. For example, if we want a new sampling
period of 1.01T , we can first interpolate by L = 100 using a lowpass filter that cuts off
at ωc = π/101 and then decimate by M = 101. These large intermediate changes in
sampling rate would require large amounts of computation for each output sample if we
implement the filtering in a straightforward manner at the high intermediate sampling
rate that is required. Fortunately, it is possible to greatly reduce the amount of com-
putation required by taking advantage of some basic techniques broadly characterized
as multirate signal processing. These multirate techniques refer in general to utilizing
upsampling, downsampling, compressors, and expanders in a variety of ways to increase
the efficiency of signal-processing systems. Besides their use in sampling rate conver-
sion, they are exceedingly useful in A/D and D/A systems that exploit oversampling
and noise shaping. Another important class of signal-processing algorithms that relies
increasingly on multirate techniques is filter banks for the analysis and/or processing of
signals.

Because of their widespread applicability, there is a large body of results on mul-
tirate signal processing techniques. In this section, we will focus on two basic results
and show how a combination of these results can greatly improve the efficiency of sam-
pling rate conversion. The first result is concerned with the interchange of filtering and
downsampling or upsampling operations. The second is the polyphase decomposition.
We shall also give two examples of how multirate techniques are used.

4.7.1 Interchange of Filtering with
Compressor/Expander

First, we will derive two identities that aid in manipulating and understanding the opera-
tion of multirate systems. It is straightforward to show that the two systems in Figure 4.31
are equivalent. To see the equivalence, note that in Figure 4.31(b),

Xb(e
jω) = H(ejωM)X (ejω), (4.98)

and from Eq. (4.77),

Y (ejω) = 1
M

M−1∑
i=0

Xb(e
j (ω/M− 2πi/M)). (4.99)

y [n]xa[n]

(a)

x [n]
H(z)M

y [n]xb[n]

(b)

x [n]
H(zM) M

Figure 4.31 Two equivalent systems
based on downsampling identities.

Section 4.7 Multirate Signal Processing 195

y [n]xa[n]

(a)

x [n]
H(z) L

y [n]xb[n]

(b)

x [n]
H(zL)L

Figure 4.32 Two equivalent systems
based on upsampling identities.

Substituting Eq. (4.98) into Eq. (4.99) gives

Y (ejω) = 1
M

M−1∑
i=0

X (ej(ω/M− 2πi/M))H(ej (ω − 2πi)). (4.100)

Since H(ej(ω − 2πi)) = H(ejω), Eq. (4.100) reduces to

Y (ejω) = H(ejω)
1
M

M−1∑
i= 0

X (ej(ω/M− 2πi/M))

= H(ejω)Xa(e
jω), (4.101)

which corresponds to Figure 4.31(a). Therefore, the systems in Figure 4.31(a) and 4.31(b)
are completely equivalent.

A similar identity applies to upsampling. Specifically, using Eq. (4.85) in Sec-
tion 4.6.2, it is also straightforward to show the equivalence of the two systems in Fig-
ure 4.32. We have, from Eq. (4.85) and Figure 4.32(a),

Y (ejω) = Xa(e
jωL)

= X (ejωL)H(ejωL). (4.102)

Since, from Eq. (4.85),

Xb(e
jω) = X (ejωL),

it follows that Eq. (4.102) is, equivalently,

Y (ejω) = H(ejωL)Xb(e
jω),

which corresponds to Figure 4.32(b).
In summary, we have shown that the operations of linear filtering and downsam-

pling or upsampling can be interchanged if we modify the linear filter.

4.7.2 Multistage Decimation and Interpolation

When decimation or interpolation ratios are large, it is necessary to use filters with very
long impulse responses to achieve adequate approximations to the required lowpass
filters. In such cases, there can be significant reduction in computation through the use
of multistage decimation or interpolation. Figure 4.33(a) shows a two-stage decimation

196 Chapter 4 Sampling of Continuous-Time Signals

H1(z)H2(zM1)

H1(z) H2(z)M1 M2

H1(z) H2(zM1) M1 M2

(M1M2)

(a)

(b)

(c)

x [n] ~xd[n]

~xd[n]

~xd[n]x [n]

x [n]

Figure 4.33 Multistage decimation:
(a) Two-stage decimation system.
(b) Modification of (a) using
downsampling identity of Figure 4.31.
(c) Equivalent one-stage decimation.

system where the overall decimation ratio is M = M1M2. In this case, two lowpass
filters are required; H1(z) corresponds to a lowpass filter with nominal cutoff frequency
π/M1 and likewise, H2(z) has nominal cutoff frequency π/M2. Note that for single-
stage decimation, the required nominal cutoff frequency would be π/M = π/(M1M2),
which would be much smaller than that of either of the two filters. In Chapter 7 we will
see that narrowband filters generally require high-order system functions to achieve
sharp cutoff approximations to frequency-selective filter characteristics. Because of this
effect, the two-stage implementation is often much more efficient than a single-stage
implementation.

The single-stage system that is equivalent to Figure 4.33(a) can be derived using the
downsampling identity of Figure 4.31. Figure 4.33(b) shows the result of replacing the
system H2(z) and its preceding downsampler (by M1) by the system H2(z

M1) followed
by a downsampler by M1. Figure 4.33(c) shows the result of combining the cascaded
linear systems and cascaded downsamplers into corresponding single-stage systems.
From this, we see that the system function of the equivalent single-stage lowpass filter
is the product

H(z) = H1(z)H2(z
M1). (4.103)

This equation, which can be generalized to any number of stages if M has many factors,
is a useful representation of the overall effective frequency response of the two-stage
decimator. Since it explicitly shows the effects of the two filters, it can be used as an aid in
designing effective multistage decimators that minimize computation. (See Crochiere
and Rabiner, 1983, Vaidyanathan, 1993, and Bellanger, 2000.) The factorization in
Eq. (4.103) has also been used directly to design lowpass filters (Neuvo et al., 1984).
In this context, the filter with system function represented by Eq. (4.103) is called an
interpolated FIR filter. This is because the corresponding impulse response can be seen
to be the convolution of h1[n] with the second impulse response expanded by M1; i.e.,

h[n] = h1[n] ∗
∞∑

k=−∞
h2[k]δ[n − kM1]. (4.104)

The same multistage principles can be applied to interpolation, where, in this case,
the upsampling identity of Figure 4.32 is used to relate the two-stage interpolator to an
equivalent one-stage system. This is depicted in Figure 4.34.

Section 4.7 Multirate Signal Processing 197

H1(zL2)H2(z)

H2(z)H1(z) L2L1

(L1L2)
xi[n]x [n]

x [n] xi[n]

H1(zL2) H2(z)L2L1

x [n] xi[n]

(a)

(b)

(c)

Figure 4.34 Multistage interpolation:
(a) Two-stage interpolation system.
(b) Modification of (a) using upsampling
identity of Figure 4.32. (c) Equivalent
one-stage interpolation.

4.7.3 Polyphase Decompositions

The polyphase decomposition of a sequence is obtained by representing it as a super-
position of M subsequences, each consisting of every Mth value of successively delayed
versions of the sequence. When this decomposition is applied to a filter impulse re-
sponse, it can lead to efficient implementation structures for linear filters in several
contexts. Specifically, consider an impulse response h[n] that we decompose into M

subsequences hk[n] with k = 0, 1, . . . , M − 1 as follows:

hk[n] =
{

h[n + k], n = integer multiple of M,

0, otherwise.
(4.105)

By successively delaying these subsequences, we can reconstruct the original impulse
response h[n]; i.e.,

h[n] =
M−1∑
k=0

hk[n − k]. (4.106)

This decomposition can be represented with the block diagram in Figure 4.35. If we
create a chain of advance elements at the input and a chain of delay elements at the
output, the block diagram in Figure 4.36 is equivalent to that of Figure 4.35. In the
decomposition in Figures 4.35 and 4.36, the sequences ek[n] are

ek[n] = h[nM + k] = hk[nM] (4.107)

and are referred to in general as the polyphase components of h[n]. There are several
other ways to derive the polyphase components, and there are other ways to index them
for notational convenience (Bellanger, 2000 and Vaidyanathan, 1993), but the definition
in Eq. (4.107) is adequate for our purpose in this section.

Figures 4.35 and 4.36 are not realizations of the filter, but they show how the filter
can be decomposed into M parallel filters. We see this by noting that Figures 4.35 and

198 Chapter 4 Sampling of Continuous-Time Signals

......

h [n]

M
hM – 1[n]

M

M

M

M

M

M

h0[n]

h1[n]

h2[n]

eM – 1[n]

e0[n]

e1[n]

e2[n]

h [n + M – 1]

h [n]

h [n + 1]

h [n + 2]

z–1

z–2

z–(M – 1)

+
h[n]

z

z2

zM – 1

M

Figure 4.35 Polyphase decomposition of filter h[n] using components ek [n].

... ...

h [n] h [n]

M
hM – 1[n]

M

M

M

M

M

M

M
h0[n]

h1[n]

h2[n]

eM – 1[n]

e0[n]

e1[n]

e2[n]

h [n + M – 1]

h [n]

h [n + 1]

h [n + 2]

z–1

z–1

z–1

z

z

z

+

+

+

Figure 4.36 Polyphase decomposition of filter h[n] using components ek [n] with
chained delays.

4.36 show that, in the frequency or z-transform domain, the polyphase representation
corresponds to expressing H(z) as

H(z) =
M−1∑
k=0

Ek(z
M)z−k. (4.108)

Equation (4.108) expresses the system function H(z) as a sum of delayed polyphase
component filters. For example, from Eq. (4.108), we obtain the filter structure shown
in Figure 4.37.

Section 4.7 Multirate Signal Processing 199

y[n]
+

...

E(M – 1)(zM)

E2(zM)

E1(zM)

E0(zM)
x [n]

z–1

z–1

z–1
Figure 4.37 Realization structure
based on polyphase decomposition
of h[n].

4.7.4 Polyphase Implementation of Decimation Filters

One of the important applications of the polyphase decomposition is in the implemen-
tation of filters whose output is then downsampled as indicated in Figure 4.38.

In the most straightforward implementation of Figure 4.38, the filter computes
an output sample at each value of n, but then only one of every M output samples is
retained. Intuitively, we might expect that it should be possible to obtain a more efficient
implementation, which does not compute the samples that are thrown away.

To obtain a more efficient implementation, we can exploit a polyphase decomposi-
tion of the filter. Specifically, suppose we express h[n] in polyphase form with polyphase
components

ek[n] = h[nM + k]. (4.109)

From Eq. (4.108),

H(z) =
M−1∑
k=0

Ek(z
M)z−k. (4.110)

With this decomposition and the fact that downsampling commutes with addition, Fig-
ure 4.38 can be redrawn as shown in Figure 4.39. Applying the identity in Figure 4.31
to the system in Figure 4.39, we see that the latter then becomes the system shown in
Figure 4.40.

To illustrate the advantage of Figure 4.40 compared with Figure 4.38, suppose
that the input x[n] is clocked at a rate of one sample per unit time and that H(z) is an
N -point FIR filter. In the straightforward implementation of Figure 4.38, we require N

multiplications and (N − 1) additions per unit time. In the system of Figure 4.40, each
of the filters Ek(z) is of length N/M, and their inputs are clocked at a rate of 1 per M

units of time. Consequently, each filter requires 1
M

(
N
M

)
multiplications per unit time and

1
M

(
N
M

− 1
)

additions per unit time. Since there are M polyphase components, the entire
system therefore requires (N/M) multiplications and

(
N
M

− 1
)+ (M − 1) additions per

unit time. Thus, we can achieve a significant savings for some values of M and N .

w [n] = y [nM]y [n]x [n]
H(z) M

Figure 4.38 Decimation system.

200 Chapter 4 Sampling of Continuous-Time Signals

... ...

w [n]

E(M – 1)(zM)

E2(zM)

E1(zM)

E0(zM)
x [n]

z–1

z–1

z–1

+

M

M

M

M

Figure 4.39 Implementation of
decimation filter using polyphase
decomposition.

... ...

w[n]

E(M – 1)(z)

E2(z)

E1(z)

E0(z)
x [n]

z–1

z–1

z–1

+

M

M

M

M

Figure 4.40 Implementation of
decimation filter after applying the
downsampling identity to the polyphase
decomposition.

4.7.5 Polyphase Implementation of Interpolation Filters

A savings similar to that just discussed for decimation can be achieved by applying the
polyphase decomposition to systems in which a filter is preceded by an upsampler as
shown in Figure 4.41. Since only every Lth sample of w[n] is nonzero, the most straight-
forward implementation of Figure 4.41 would involve multiplying filter coefficients by
sequence values that are known to be zero. Intuitively, here again we would expect that
a more efficient implementation was possible.

To implement the system in Figure 4.41 more efficiently, we again utilize the
polyphase decomposition of H(z). For example, we can express H(z) as in the form
of Eq. (4.110) and represent Figure 4.41 as shown in Figure 4.42. Applying the identity
in Figure 4.32, we can rearrange Figure 4.42 as shown in Figure 4.43.

To illustrate the advantage of Figure 4.43 compared with Figure 4.41, we note
that in Figure 4.41 if x[n] is clocked at a rate of one sample per unit time, then w[n] is
clocked at a rate of L samples per unit time. If H(z) is an FIR filter of length N , we then

w[n] y [n]x [n]
H(z)L

Figure 4.41 Interpolation system.

Section 4.7 Multirate Signal Processing 201

... ...

x [n]

y [n]

L E(L – 1)(zL)

L E2(zL)

L E1(zL)

L E0(zL)

z–1

z–1

z–1

+

+

+

Figure 4.42 Implementation of
interpolation filter using polyphase
decomposition.

... ...

x [n]

y [n]

E(L – 1)(z)

E2(z)

E1(z)

E0(z)

z–1

z–1

z–1

L

L

L

L

+

+

+

Figure 4.43 Implementation of
interpolation filter after applying the
upsampling identity to the polyphase
decomposition.

require NL multiplications and (NL − 1) additions per unit time. Figure 4.43, on the
other hand, requires L (N/L) multiplications and L

(
N
L

− 1
)

additions per unit time for
the set of polyphase filters, plus (L − 1) additions, to obtain y[n]. Thus, we again have
the possibility of significant savings in computation for some values of L and N .

For both decimation and interpolation, gains in computational efficiency result
from rearranging the operations so that the filtering is done at the low sampling rate.
Combinations of interpolation and decimation systems for noninteger rate changes lead
to significant savings when high intermediate rates are required.

4.7.6 Multirate Filter Banks

Polyphase structures for decimation and interpolation are widely used in filter banks
for analysis and synthesis of audio and speech signals. For example, Figure 4.44 shows
the block diagram of a two-channel analysis and synthesis filter bank commonly used
in speech coding applications. The purpose of the analysis part of the system is to
split the frequency spectrum of the input x[n] into a lowpass band represented by the
downsampled signal v0[n] and a highpass band represented by v1[n]. In speech and audio
coding applications, the channel signals are quantized for transmission and/or storage.
Since the original band is nominally split into two equal parts of width π/2 radians, the

202 Chapter 4 Sampling of Continuous-Time Signals

h0[n] g0[n]
v0[n] y0[n]

2 2
x [n] y[n]

analysis synthesis

h1[n] g1[n]
v1[n] y1[n]

2 2

Figure 4.44 Two-channel analysis and synthesis filter bank.

sampling rates of the filter outputs can be 1/2 that of the input so that the total number
of samples per second remains the same.1 Note that downsampling the output of the
lowpass filter expands the low-frequency band to the entire range |ω| < π . On the other
hand, downsampling the output of the highpass filter down-shifts the high-frequency
band and expands it to the full range |ω| < π .

The decomposition requires that h0[n] and h1[n] be impulse responses of lowpass
and highpass filters respectively. A common approach is to derive the highpass filter from
the lowpass filter by h1[n] = ejπnh0[n]. This implies that H1(e

jω) = H0(e
j (ω−π)) so that

if H0(e
jω) is a lowpass filter with nominal passband 0 ≤ |ω| ≤ π/2, then H1(e

jω) will be
a highpass filter with nominal passband π/2 < |ω| ≤ π . The purpose of the righthand
(synthesis) part of Figure 4.44 is to reconstitute an approximation to x[n] from the two
channel signals v0[n] and v1[n]. This is achieved by upsampling both signals and passing
them through a lowpass filter g0[n] and highpass filter g1[n] respectively. The resulting
interpolated signals are added to produce the full-band output signal y[n] sampled at
the input sampling rate.

Applying the frequency-domain results for downsampling and upsampling to the
system in Figure 4.44 leads to the following result:

Y (ejω) = 1
2

[
G0(e

jω)H0(e
jω) + G1(e

jω)H1(e
jω)
]
X(ejω) (4.111a)

+1
2

[
G0(e

jω)H0(e
j (ω−π))

+G1(e
jω)H1(e

j (ω−π))
]
X(ej(ω−π)). (4.111b)

If the analysis and synthesis filters are ideal so that they exactly split the band 0 ≤ |ω| ≤ π

into two equal segments without overlapping, then it is straightforward to verify that
Y (ejω) = X(ejω); i.e., the synthesis filter bank reconstructs the input signal exactly.
However, perfect or nearly perfect reconstruction also can be achieved with nonideal
filters for which aliasing will occur in the downsampling operations of the analysis filter
bank. To see this, note that the second term in the expression for Y (ejω) (line labeled
Eq. (4.111b)), which represents potential aliasing distortion from the downsampling
operation, can be eliminated by choosing the filters such that

G0(e
jω)H0(e

j (ω−π)) + G1(e
jω)H1(e

j (ω−π)) = 0. (4.112)

1Filter banks that conserve the total number of samples per second are termed maximally decimated
filter banks.

Section 4.7 Multirate Signal Processing 203

This condition is called the alias cancellation condition. One set of conditions that satisfy
Eq. (4.112) is

h1[n] = ejπnh0[n] ⇐⇒ H1(e
jω) = H0(e

j (ω−π)) (4.113a)

g0[n] = 2h0[n] ⇐⇒ G0(e
jω) = 2H0(e

jω) (4.113b)

g1[n] = −2h1[n] ⇐⇒ G1(e
jω) = −2H0(e

j (ω−π)). (4.113c)

The filters h0[n] and h1[n] are termed quadrature mirror filters since Eq. (4.113a) imposes
mirror symmetry about ω = π/2. Substituting these relations into Eq. (4.111a) leads to
the relation

Y (ejω) =
[
H 2

0 (ejω) − H 2
0 (ej (ω−π))

]
X(ejω), (4.114)

from which it follows that perfect reconstruction (with possible delay of M samples)
requires

H 2
0 (ejω) − H 2

0 (ej (ω−π)) = e−jωM. (4.115)

It can be shown (Vaidyanathan, 1993) that the only computationally realizable filters
satisfying Eq. (4.115) exactly are systems with impulse responses of the form h0[n] =
c0δ[n − 2n0] + c1δ[n − 2n1 − 1] where n0 and n1 are arbitrarily chosen integers and
c0c1 = 1

4 . Such systems cannot provide the sharp frequency selective properties needed
in speech and audio coding applications, but to illustrate that such systems can achieve
exact reconstruction, consider the simple two-point moving average lowpass filter

h0[n] = 1
2
(δ[n] + δ[n − 1]), (4.116a)

which has frequency response

H0(e
jω) = cos(ω/2)e−jω/2. (4.116b)

For this filter, Y (ejω) = e−jωX(ejω) as can be verified by substituting Eq. (4.116b) into
Eq. (4.114).

Either FIR or IIR filters can be used in the analysis/synthesis system of Figure 4.44
with the filters related as in Eq. (4.113a)–(4.113c) to provide nearly perfect reconstruc-
tion. The design of such filters is based on finding a design for H0(e

jω) that is an accept-
able lowpass filter approximation while satisfying Eq. (4.115) to within an acceptable
approximation error. A set of such filters and an algorithm for their design was given
by Johnston (1980). Smith and Barnwell (1984) and Mintzer (1985) showed that perfect
reconstruction is possible with the two-channel filter bank of Figure 4.44 if the filters
have a different relationship to one another than is specified by Eq. (4.113a)–(4.113c).
The different relationship leads to filters called conjugate quadrature filters (CQF).

Polyphase techniques can be employed to save computation in the implementation
of the analysis/synthesis system of Figure 4.44. Applying the polyphase downsampling
result depicted in Figure 4.40 to the two channels leads to the block diagram in Fig-
ure 4.45(a), where

e00[n] = h0[2n] (4.117a)

e01[n] = h0[2n + 1] (4.117b)

e10[n] = h1[2n] = ej2πnh0[2n] = e00[n] (4.117c)

e11[n] = h1[2n + 1] = ej2πnejπh0[2n + 1] = −e01[n]. (4.117d)

204 Chapter 4 Sampling of Continuous-Time Signals

e00[n]
x [n] v0[n]

z−1

z−1

e01[n]

e10[n]

e11[n]

(a)

v0[n]

z−1

e00[n]

e01[n] v1[n]

(b)

x [n]

2

2

2

2

2

2

v1[n]

Figure 4.45 Polyphase representation
of the two-channel analysis filter bank of
Figure 4.44.

Equations (4.117c) and (4.117d) show that the polyphase filters for h1[n] are the same
(except for sign) as those for h0[n]. Therefore, only one set, e00[n] and e01[n] need be
implemented. Figure 4.45(b) shows how both v0[n] and v1[n] can be formed from the
outputs of the two polyphase filters. This equivalent structure, which requires only half
the computation of Figure 4.45(a), is, of course, owing entirely to the simple relation
between the two filters.

The polyphase technique can likewise be applied to the synthesis filter bank, by
recognizing that the two interpolators can be replaced by their polyphase implementa-
tions and then the polyphase structures can be combined because g1[n] = −ejπng0[n] =
−ejπn2h0[n]. The resulting polyphase synthesis system can be represented in terms of
the polyphase filters f00[n] = 2e00[n] and f01[n] = 2e01[n] as in Figure 4.46. As in the
case of the analysis filter bank, the synthesis polyphase filters can be shared between
the two channels thereby halving the computation.

v0[n]

z−1 z−1

v1[n]

x [n]
e00[n]

e01[n]2

2 f00[n]

f01[n] 2

2
y[n]

Figure 4.46 Polyphase representation of the two-channel analysis and synthesis filter bank
of Figure 4.44.

Section 4.8 Digital Processing of Analog Signals 205

This two-band analysis/synthesis system can be generalized to N equal width chan-
nels to obtain a finer decomposition of the spectrum. Such systems are used in audio
coding, where they facilitate exploitation of the characteristics of human auditory per-
ception in compression of the digital information rate. (See MPEG audio coding stan-
dard and Spanias, Painter, and Atti, 2007.) Also, the two-band system can be incorpo-
rated into a tree structure to obtain an analysis/synthesis system with either uniformly
or nonuniformly spaced channels. When the CQF filters of Smith and Barnwell, and
Mintzer are used, exact reconstruction is possible, and the resulting analysis synthe-
sis system is essentially the discrete wavelet transform. (See Vaidyanathan, 1993 and
Burrus, Gopinath and Guo, 1997.)

4.8 DIGITAL PROCESSING OF ANALOG SIGNALS

So far, our discussions of the representation of continuous-time signals by discrete-time
signals have focused on idealized models of periodic sampling and bandlimited interpo-
lation. We have formalized those discussions in terms of an idealized sampling system
that we have called the ideal continuous-to-discrete (C/D) converter and an idealized
bandlimited interpolator system called the ideal discrete-to-continuous (D/C) converter.
These idealized conversion systems allow us to concentrate on the essential mathemati-
cal details of the relationship between a bandlimited signal and its samples. For example,
in Section 4.4 we used the idealized C/D and D/C conversion systems to show that LTI
discrete-time systems can be used in the configuration of Figure 4.47(a) to implement
LTI continuous-time systems if the input is bandlimited and the sampling rate is at or
above the Nyquist rate. In a practical setting, continuous-time signals are not precisely
bandlimited, ideal filters cannot be realized, and the ideal C/D and D/C converters can
only be approximated by devices that are called analog-to-digital (A/D) and digital-
to-analog (D/A) converters, respectively. The block diagram of Figure 4.47(b) shows a

x [n]

x [n] y [n]

xc(t)

xc(t) xa(t) x0(t)

Haa(j�) Hr(j�)

T

y [n] yr(t)

yr(t)yDA(t)

T T T

C/D

T

D/C
Discrete-time

system

Anti-
aliasing

filter

Sample
and
hold

A/D
converter

Discrete-time
system

D/A
converter

Compensated
reconstruction

filter

(a)

(b)

~

Figure 4.47 (a) Discrete-time filtering of continuous-time signals. (b) Digital processing of
analog signals.

206 Chapter 4 Sampling of Continuous-Time Signals

more realistic model for digital processing of continuous-time (analog) signals. In this
section, we will examine some of the considerations introduced by each of the compo-
nents of the system in Figure 4.47(b).

4.8.1 Prefiltering to Avoid Aliasing

In processing analog signals using discrete-time systems, it is generally desirable to
minimize the sampling rate. This is because the amount of arithmetic processing required
to implement the system is proportional to the number of samples to be processed.
If the input is not bandlimited or if the Nyquist frequency of the input is too high,
prefiltering may be necessary. An example of such a situation occurs in processing speech
signals, where often only the low-frequency band up to about 3 to 4 kHz is required for
intelligibility, even though the speech signal may have significant frequency content in
the 4 kHz to 20 kHz range. Also, even if the signal is naturally bandlimited, wideband
additive noise may fill in the higher frequency range, and as a result of sampling, these
noise components would be aliased into the low-frequency band. If we wish to avoid
aliasing, the input signal must be forced to be bandlimited to frequencies below one-half
the desired sampling rate. This can be accomplished by lowpass filtering the continuous-
time signal prior to C/D conversion, as shown in Figure 4.48. In this context, the lowpass
filter that precedes the C/D converter is called an antialiasing filter. Ideally, the frequency
response of the antialiasing filter would be

H aa(j�) =
{

1, |�| < �c ≤ π/T ,

0, |�| ≥ �c.
(4.118)

From the discussion of Section 4.4.1, it follows that the overall system, from the output
of the antialiasing filter xa(t) to the output yr(t), will always behave as an LTI system,
since the input to the C/D converter, xa(t), is forced by the antialiasing filter to be
bandlimited to frequencies below π/T radians/s. Thus, the overall effective frequency
response of Figure 4.48 will be the product of H aa(j�) and the effective frequency
response from xa(t) to yr(t). Combining Eqs. (4.118) and (4.38) gives

H eff(j�) =
{

H(ej�T), |�| < �c,

0, |�| ≥ �c.
(4.119)

Thus, for an ideal lowpass antialiasing filter, the system of Figure 4.48 behaves as an LTI
system with frequency response given by Eq. (4.119), even when Xc(j�) is not ban-
dlimited. In practice, the frequency response H aa(j�) cannot be ideally bandlimited,
but H aa(j�) can be made small for |�| > π/T so that aliasing is minimized. In this case,
the overall frequency response of the system in Figure 4.48 should be approximately

H eff(j�) ≈ H aa(j�)H(ej�T). (4.120)

To achieve a negligibly small frequency response above π/T , it would be necessary
for H aa(j�) to begin to “roll off,” i.e., begin to introduce attenuation, at frequencies
below π/T , Eq. (4.120) suggests that the roll-off of the antialiasing filter (and other
LTI distortions to be discussed later) could be at least partially compensated for by
taking them into account in the design of the discrete-time system. This is illustrated in
Problem 4.62.

Section 4.8 Digital Processing of Analog Signals 207

x [n] y [n]xc(t) xa(t)

Haa(j�)

yr(t)

T T

Anti-
aliasing

filter
C/D

Discrete-
time

system
D/C

Figure 4.48 Use of prefiltering to avoid aliasing.

xd[n]xc(t) xa(t) x [n]

Simple
antialiasing

filter
MC/D

Sharp
antialiasing

filter
cutoff = �/M

Sampling rate reduction by M

T = 1
M

�

�N

Figure 4.49 Using oversampled A/D conversion to simplify a continuous-time
antialiasing filter.

The preceding discussion requires sharp-cutoff antialiasing filters. Such sharp-
cutoff analog filters can be realized using active networks and integrated circuits. How-
ever, in applications involving powerful, but inexpensive, digital processors, these contin-
uous-time filters may account for a major part of the cost of a system for discrete-time
processing of analog signals. Sharp-cutoff filters are difficult and expensive to imple-
ment, and if the system is to operate with a variable sampling rate, adjustable filters
would be required. Furthermore, sharp-cutoff analog filters generally have a highly
nonlinear phase response, particularly at the passband edge. Thus, it is desirable for
several reasons to eliminate the continuous-time filters or simplify the requirements on
them.

One approach is depicted in Figure 4.49. With �N denoting the highest frequency
component to eventually be retained after the antialiasing filtering is completed, we first
apply a very simple antialiasing filter that has a gradual cutoff with significant atten-
uation at M�N . Next, implement the C/D conversion at a sampling rate much higher
than 2�N, e.g., at 2M�N . After that, sampling rate reduction by a factor of M that
includes sharp antialiasing filtering is implemented in the discrete-time domain. Subse-
quent discrete-time processing can then be done at the low sampling rate to minimize
computation.

This use of oversampling followed by sampling rate conversion is illustrated in
Figure 4.50. Figure 4.50(a) shows the Fourier transform of a signal that occupies the
band |�| < �N, plus the Fourier transform of what might correspond to high-frequency
“noise” or unwanted components that we eventually want to eliminate with the an-
tialiasing filter. Also shown (dotted line) is the frequency response of an antialiasing
filter that does not cut off sharply but gradually falls to zero at frequencies above the
frequency �N . Figure 4.50(b) shows the Fourier transform of the output of this filter. If
the signal xa(t) is sampled with period T such that (2π/T − �c) ≥ �N , then the DTFT

208 Chapter 4 Sampling of Continuous-Time Signals

�N �c �–�N–�c

Xc(j�)

1
Signal

(a)

�N = �NT = � = �T–�N

1

–2� 2�
�

T

M

X(e j�)

� = �Td

(d)

–2� –� 2��

Xd(e j�)
1

Td

Td = MT

T = �/(M�N)

Simple anti-
aliasing filter

High-frequency
noise

�N �c �–�N–�c

Xa(j�)
1 Signal

(b)

Filtered
noise

1

(c)

Aliased noise
Sharp-cutoff

decimation filter

Figure 4.50 Use of oversampling followed by decimation in C/D conversion.

of the sequence x̂[n] will be as shown in Figure 4.50(c). Note that the “noise” will be
aliased, but aliasing will not affect the signal band |ω| < ωN = �NT . Now, if T and Td

are chosen so that Td = MT and π/Td = �N , then x̂[n] can be filtered by a sharp-cutoff
discrete-time filter (shown idealized in Figure 4.50(c)) with unity gain and cutoff fre-
quency π/M . The output of the discrete-time filter can be downsampled by M to obtain
the sampled sequence xd [n] whose Fourier transform is shown in Figure 4.50(d). Thus,
all the sharp-cutoff filtering has been done by a discrete-time system, and only nominal
continuous-time filtering is required. Since discrete-time FIR filters can have an exactly
linear phase, it is possible using this oversampling approach to implement antialiasing
filtering with virtually no phase distortion. This can be a significant advantage in situa-
tions where it is critical to preserve not only the frequency spectrum, but the waveshape
as well.

Section 4.8 Digital Processing of Analog Signals 209

xa(t) xB[n]x0(t)

T T

Sample
and
hold

A/D
converter

Figure 4.51 Physical configuration for
A/D conversion.

4.8.2 A/D Conversion

An ideal C/D converter converts a continuous-time signal into a discrete-time signal,
where each sample is known with infinite precision. As an approximation to this for
digital signal processing, the system of Figure 4.51 converts a continuous-time (analog)
signal into a digital signal, i.e., a sequence of finite-precision or quantized samples.
The two systems in Figure 4.51 are available as physical devices. The A/D converter is a
physical device that converts a voltage or current amplitude at its input into a binary code
representing a quantized amplitude value closest to the amplitude of the input. Under
the control of an external clock, the A/D converter can be caused to start and complete
an A/D conversion every T seconds. However, the conversion is not instantaneous, and
for this reason, a high-performance A/D system typically includes a sample-and-hold,
as in Figure 4.51. The ideal sample-and-hold system is the system whose output is

x0(t) =
∞∑

n=−∞
x[n]h0(t − nT), (4.121)

where x[n] = xa(nT) are the ideal samples of xa(t) and h0(t) is the impulse response
of the zero-order-hold system, i.e.,

h0(t) =
{

1, 0 < t < T,

0, otherwise.
(4.122)

If we note that Eq. (4.121) has the equivalent form

x0(t) = h0(t) ∗
∞∑

n=−∞
xa(nT)δ(t − nT), (4.123)

we see that the ideal sample-and-hold is equivalent to impulse train modulation followed
by linear filtering with the zero-order-hold system, as depicted in Figure 4.52(a). The
relationship between the Fourier transform of x0(t) and the Fourier transform of xa(t)

can be worked out following the style of analysis of Section 4.2, and we will do a similar
analysis when we discuss the D/A converter. However, the analysis is unnecessary at
this point, since everything we need to know about the behavior of the system can
be seen from the time-domain expression. Specifically, the output of the zero-order
hold is a staircase waveform where the sample values are held constant during the
sampling period of T seconds. This is illustrated in Figure 4.52(b). Physical sample-and-
hold circuits are designed to sample xa(t) as nearly instantaneously as possible and to
hold the sample value as nearly constant as possible until the next sample is taken.
The purpose of this is to provide the constant input voltage (or current) required by
the A/D converter. The details of the wide variety of A/D conversion processes and
the details of sample-and-hold and A/D circuit implementations are outside the scope
of this book. Many practical issues arise in obtaining a sample-and-hold that samples

210 Chapter 4 Sampling of Continuous-Time Signals

�

–T–2T–3T 3T t0
2TT

xa(t)

xa(t)

s(t) =

xs(t) x0(t)

x0(t)

(a)

Sample and hold

(b)

�(t – nT)��
n = –�

Zero-order
hold
h0(t)

Figure 4.52 (a) Representation
of an ideal sample-and-hold.
(b) Representative input and output
signals for the sample-and-hold.

quickly and holds the sample value constant with no decay or “glitches.” Likewise,
many practical concerns dictate the speed and accuracy of conversion of A/D converter
circuits. Such questions are considered in Hnatek (1988) and Schmid (1976), and details
of the performance of specific products are available in manufacturers’ specification
and data sheets. Our concern in this section is the analysis of the quantization effects in
A/D conversion.

Since the purpose of the sample-and-hold in Figure 4.51 is to implement ideal
sampling and to hold the sample value for quantization by the A/D converter, we can
represent the system of Figure 4.51 by the system of Figure 4.53, where the ideal C/D
converter represents the sampling performed by the sample-and-hold and, as we will
describe later, the quantizer and coder together represent the operation of the A/D
converter.

The quantizer is a nonlinear system whose purpose is to transform the input sample
x[n] into one of a finite set of prescribed values. We represent this operation as

x̂[n] = Q(x[n]) (4.124)

x [n] x [n] xB[n]xa(t)

T

C/D Quantizer Coder

Figure 4.53 Conceptual representation
of the system in Figure 4.51.

Section 4.8 Digital Processing of Analog Signals 211

�

�

2�

2

3�

–2�

3�

–3�

–4�

–�

–

–

–––

�

2

2
3�

2
5�

2
5�

2
7�

2
7�

2
9�

2
x9�

2

x = Q(x)

2Xm

Two’s-complement
code

Offset binary
code

011

010

001

000

111

110

101

100

111

110

101

100

011

010

001

000

Figure 4.54 Typical quantizer for A/D conversion.

and refer to x̂[n] as the quantized sample. Quantizers can be defined with either uni-
formly or nonuniformly spaced quantization levels; however, when numerical calcula-
tions are to be done on the samples, the quantization steps usually are uniform. Figure
4.54 shows a typical uniform quantizer characteristic,2 in which the sample values are
rounded to the nearest quantization level.

Several features of Figure 4.54 should be emphasized. First, note that this quan-
tizer would be appropriate for a signal whose samples are both positive and negative
(bipolar). If it is known that the input samples are always positive (or negative), then
a different distribution of the quantization levels would be appropriate. Next, observe
that the quantizer of Figure 4.54 has an even number of quantization levels. With an
even number of levels, it is not possible to have a quantization level at zero amplitude
and also have an equal number of positive and negative quantization levels. Generally,
the number of quantization levels will be a power of two, but the number will be much
greater than eight, so this difference is usually inconsequential.

Figure 4.54 also depicts coding of the quantization levels. Since there are eight
quantization levels, we can label them by a binary code of 3 bits. (In general, 2B+1 levels
can be coded with a (B + 1)-bit binary code.) In principle, any assignment of symbols

2Such quantizers are also called linear quantizers because of the linear progression of quantization
steps.

212 Chapter 4 Sampling of Continuous-Time Signals

can be used, and many binary coding schemes exist, each with its own advantages and
disadvantages, depending on the application. For example, the right-hand column of
binary numbers in Figure 4.54 illustrates the offset binary coding scheme, in which the
binary symbols are assigned in numeric order, starting with the most negative quantiza-
tion level. However, in digital signal processing, we generally wish to use a binary code
that permits us to do arithmetic directly with the code words as scaled representations
of the quantized samples.

The left-hand column in Figure 4.54 shows an assignment according to the two’s
complement binary number system. This system for representing signed numbers is
used in most computers and microprocessors; thus, it is perhaps the most convenient
labeling of the quantization levels. Note, incidentally, that the offset binary code can be
converted to two’s-complement code simply by complementing the most significant bit.

In the two’s-complement system, the leftmost, or most significant, bit is considered
as the sign bit, and we take the remaining bits as representing either binary integers
or fractions. We will assume the latter; i.e., we assume a binary fraction point between
the two most significant bits. Then, for the two’s-complement interpretation, the binary
symbols have the following meaning for B = 2:

Binary symbol Numeric value, x̂B

0�1 1 3/4
0�1 0 1/2
0�0 1 1/4
0�0 0 0
1�1 1 −1/4
1�1 0 −1/2
1�0 1 −3/4
1�0 0 −1

In general, if we have a (B + 1)-bit binary two’s-complement fraction of the form

a0�a1a2 . . . aB,

then its value is

−a020 + a12−1 + a22−2 + · · · + aB2−B.

Note that the symbol � denotes the “binary point” of the number. The relationship
between the code words and the quantized signal levels depends on the parameter Xm

in Figure 4.54. This parameter determines the full-scale level of the A/D converter.
From Figure 4.54, we see that the step size of the quantizer would in general be

	 = 2Xm

2B+1
= Xm

2B
. (4.125)

The smallest quantization levels (±) correspond to the least significant bit of the
binary code word. Furthermore, the numeric relationship between the code words and
the quantized samples is

x̂[n] = Xmx̂B [n], (4.126)

since we have assumed that x̂B [n] is a binary number such that −1 ≤ x̂B [n] < 1 (for two’s
complement). In this scheme, the binary coded samples x̂B [n] are directly proportional

Section 4.8 Digital Processing of Analog Signals 213

–4�

0 T t2T 3T 4T 5T

000xB[n]: 011 100 110 011 011

–3�

–2�

–�

0

�

2�

3�

A
m

pl
itu

de
Quantized samples

Unquantized samples

Output of ideal sample and hold

Output of D/A converter

Original
signal

Figure 4.55 Sampling, quantization, coding, and D/A conversion with a 3-bit quantizer.

to the quantized samples (in two’s-complement binary); therefore, they can be used
as a numeric representation of the amplitude of the samples. Indeed, it is generally
appropriate to assume that the input signal is normalized, so that the numeric values of
x̂[n] and x̂B [n] are identical and there is no need to distinguish between the quantized
samples and the binary coded samples.

Figure 4.55 shows a simple example of quantization and coding of the samples of
a sine wave using a 3-bit quantizer. The unquantized samples x[n] are illustrated with
solid dots, and the quantized samples x̂[n] are illustrated with open circles. Also shown
is the output of an ideal sample-and-hold. The dotted lines labeled “output of D/A
converter” will be discussed later. Figure 4.55 shows, in addition, the 3-bit code words
that represent each sample. Note that, since the analog input xa(t) exceeds the full-scale
value of the quantizer, some of the positive samples are “clipped.”

Although much of the preceding discussion pertains to two’s-complement cod-
ing of the quantization levels, the basic principles of quantization and coding in A/D
conversion are the same regardless of the binary code used to represent the samples.
A more detailed discussion of the binary arithmetic systems used in digital computing
can be found in texts on computer arithmetic. (See, for example, Knuth, 1998.) We now
turn to an analysis of the effects of quantization. Since this analysis does not depend on
the assignment of binary code words, it will lead to rather general conclusions.

214 Chapter 4 Sampling of Continuous-Time Signals

x [n] x [n] = Q(x [n])

x [n] = x [n] + e [n]x [n]

e [n]

+

Quantizer
Q(•)

Figure 4.56 Additive noise model for
quantizer.

4.8.3 Analysis of Quantization Errors

From Figures 4.54 and 4.55, we see that the quantized sample x̂[n] will generally be dif-
ferent from the true sample value x[n]. The difference between them is the quantization
error, defined as

e[n] = x̂[n] − x[n]. (4.127)

For example, for the 3-bit quantizer of Figure 4.54, if 	/2 < x[n] ≤ 3	/2, then x̂[n] = 	,
and it follows that

−	/2 ≤ e[n] < 	/2. (4.128)

In the case of Figure 4.54, Eq. (4.128) holds whenever

−9	/2 < x[n] ≤ 7	/2. (4.129)

In the general case of a (B + 1)-bit quantizer with 	 given by Eq. (4.125), the quanti-
zation error satisfies Eq. (4.128) whenever

(−Xm − 	/2) < x[n] ≤ (Xm − 	/2). (4.130)

If x[n] is outside this range, as it is for the sample at t = 0 in Figure 4.55, then the
quantization error may be larger in magnitude than 	/2, and such samples are said to
be clipped, and the quantizer is said to be overloaded.

A simplified, but useful, model of the quantizer is depicted in Figure 4.56. In this
model, the quantization error samples are thought of as an additive noise signal. The
model is exactly equivalent to the quantizer if we know e[n]. In most cases, however,
e[n] is not known, and a statistical model based on Figure 4.56 is then often useful in
representing the effects of quantization. We will also use such a model in Chapters 6 and
9 to describe the effects of quantization in signal-processing algorithms. The statistical
representation of quantization errors is based on the following assumptions:

1. The error sequence e[n] is a sample sequence of a stationary random process.

2. The error sequence is uncorrelated with the sequence x[n].3
3. The random variables of the error process are uncorrelated; i.e., the error is a

white-noise process.

4. The probability distribution of the error process is uniform over the range of
quantization error.

3This does not, of course, imply statistical independence, since the error is directly determined by the
input signal.

Section 4.8 Digital Processing of Analog Signals 215

As we will see, the preceding assumptions lead to a rather simple, but effective,
analysis of quantization effects that can yield useful predictions of system performance.
It is easy to find situations where these assumptions are not valid. For example, if xa(t)

is a step function, the assumptions would not be justified. However, when the signal
is a complicated signal, such as speech or music, where the signal fluctuates rapidly in
a somewhat unpredictable manner, the assumptions are more realistic. Experimental
measurements and theoretical analyses for random signal inputs have shown that, when
the quantization step size (and therefore the error) is small and when the signal varies
in a complicated manner, the measured correlation between the signal and the quanti-
zation error decreases, and the error samples also become uncorrelated. (See Bennett,
1948; Widrow, 1956, 1961; Sripad and Snyder, 1977; and Widrow and Kollár, 2008.) In
a heuristic sense, the assumptions of the statistical model appear to be valid when the
quantizer is not overloaded and when the signal is sufficiently complex, and the quanti-
zation steps are sufficiently small, so that the amplitude of the signal is likely to traverse
many quantization steps from sample to sample.

Example 4.10 Quantization Error for a Sinusoidal Signal

As an illustration, Figure 4.57(a) shows the sequence of unquantized samples of the
cosine signal x[n] = 0.99 cos(n/10). Figure 4.57(b) shows the quantized sample se-
quence x̂[n] = Q{x[n]} for a 3-bit quantizer (B + 1 = 3), assuming that Xm = 1. The
dashed lines in this figure show the eight possible quantization levels. Figures 4.57(c)
and 4.57(d) show the quantization error e[n] = x̂[n] − x[n] for 3- and 8-bit quantiza-
tion, respectively. In each case, the scale of the quantization error is adjusted so that
the range ±	/2 is indicated by the dashed lines.

Notice that in the 3-bit case, the error signal is highly correlated with the un-
quantized signal. For example, around the positive and negative peaks of the cosine,
the quantized signal remains constant over many consecutive samples, so that the error
has the shape of the input sequence during these intervals. Also, note that during the
intervals around the positive peaks, the error is greater than 	/2 in magnitude because
the signal level is too large for this setting of the quantizer parameters. On the other
hand, the quantization error for 8-bit quantization has no apparent patterns.4 Visual
inspection of these figures supports the preceding assertions about the quantization-
noise properties in the finely quantized (8-bit) case; i.e., the error samples appear to
vary randomly, with no apparent correlation with the unquantized signal, and they
range between −	/2 and +	/2.

0 50 100 150 n

1

–1

0

(a)

Figure 4.57 Example of quantization noise. (a) Unquantized samples of the signal
x [n] = 0.99 cos(n/10).

4For periodic cosine signals, the quantization error would, of course, be periodic, too; and therefore,
its power spectrum would be concentrated at multiples of the frequency of the input signal. We used the
frequency ω0 = 1/10 to avoid this case in the example.

216 Chapter 4 Sampling of Continuous-Time Signals

0 50 100 150 n

1

–1

0

0 50 100 150 n

0.2

–0.2

0

0 50

 10–3

100 150 n

5

–5

0

(b)

(c)

(d)

Figure 4.57 (continued) (b) Quantized samples of the cosine waveform in part
(a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of
the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal
in (a).

For quantizers that round the sample value to the nearest quantization level, as
shown in Figure 4.54, the amplitude of the quantization noise is in the range

−	/2 ≤ e[n] < 	/2. (4.131)

For small 	, it is reasonable to assume that e[n] is a random variable uniformly dis-
tributed from −	/2 to 	/2. Therefore, the 1st-order probability density assumed for
the quantization noise is as shown in Figure 4.58. (If truncation rather than rounding
is used in implementing quantization, then the error would always be negative, and we
would assume a uniform probability density from −	 to 0.) To complete the statistical
model for the quantization noise, we assume that successive noise samples are uncor-
related with each other and that e[n] is uncorrelated with x[n]. Thus, e[n] is assumed to
be a uniformly distributed white-noise sequence. The mean value of e[n] is zero, and its

pen
(e)

e�

2
– �

2

� � = 2–BXm

1

Figure 4.58 Probability density
function of quantization error for a
rounding quantizer such as that of
Figure 4.54.

Section 4.8 Digital Processing of Analog Signals 217

variance is

σ 2
e =
∫ 	/2

−	/2
e2 1

	
de = 	2

12
. (4.132)

For a (B + 1)-bit quantizer with full-scale value Xm, the noise variance, or power, is

σ 2
e = 2−2BX 2

m

12
. (4.133)

Equation (4.133) completes the white-noise model of quantization noise since the au-
tocorrelation function would be φee[m] = σ 2

e δ[m] and the corresponding power density
spectrum would be

Pee(e
jω) = σ 2

e = 2−2BX 2
m

12
|ω| ≤ π. (4.134)

Example 4.11 Measurements of Quantization Noise

To confirm and illustrate the validity of the model for quantization noise, consider again
quantization of the signal x[n] = .99 cos(n/10) which can be computed with 64-bit
floating-point precisions (for all practical purposes unquantized) and then quantized
to B + 1 bits. The quantization noise sequence can also be computed since we know
both the input and the output of the quantizer. An amplitude histogram, which gives a
count of the number of samples lying in each of a set of contiguous amplitude intervals
or “bins,” is often used as an estimate of the probability distribution of a random signal.
Figure 4.59 shows histograms of the quantization noise for 16- and 8-bit quantization

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
� 10−5

� 10−3

0

500

1000

1500
Histograms for Quantization Noise Samples

N
um

be
r

e

B+1 = 16

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

N
um

be
r

e

B+1 = 8

Figure 4.59 Histograms of quantization noise for (a) B + 1 = 16 and
(b) B + 1 = 8.

218 Chapter 4 Sampling of Continuous-Time Signals

with Xm = 1. Since the total number of samples was 101000, and the number of bins was
101, we should expect approximately 1000 samples in each bin if the noise is uniformly
distributed. Furthermore the total range of samples should be ±1/216 = 1.53 × 10−5

for 16-bit quantization and ±1/28 = 3.9×10−3 for 8-bit quantization. The histograms
of Figure 4.59 are consistent with these values, although the 8-bit case shows some
obvious deviation from the uniform distribution.

In Chapter 10, we show how to calculate estimates of the power density spectrum.
Figure 4.60 shows such spectrum estimates for quantization noise signals where B+1 =
16, 12, 8, and 4 bits. Observe that in this example, when the number of bits is 8 or
greater, the spectrum is quite flat over the entire frequency range 0 ≤ ω ≤ π , and the
spectrum level (in dB) is quite close to the value

10 log10(Pee(e
jω)) = 10 log10

(
1

12(22B)

)
= −(10.79 + 6.02B),

which is predicted by the white-noise uniform-distribution model. Note that the curves
for B = 7, 11, and 15 differ at all frequencies by about 24 dB. Observe, however, that
when B + 1 = 4, the model fails to predict the shape of the power spectrum of the
noise.

0 0.2 0.4 0.6 0.8 1
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10
Power Spectra for Uniform Quantizers

�/�

 d
B

B = 15

B = 11

B = 7

B = 3

Figure 4.60 Spectra of quantization noise for several values of B .

This example demonstrates that the assumed model for quantization noise is use-
ful in predicting the performance of uniform quantizers. A common measure of the
amount of degradation of a signal by additive noise in general and quantization noise
in particular is the signal-to-noise ratio (SNR), defined as the ratio of signal variance
(power) to noise variance. Expressed in dB, the signal-to-quantization-noise ratio of a

Section 4.8 Digital Processing of Analog Signals 219

(B + 1)-bit uniform quantizer is

SNRQ = 10 log10

(
σ 2

x

σ 2
e

)
= 10 log10

(
12 · 22Bσ 2

x

X 2
m

)

= 6.02B + 10.8 − 20 log10

(
Xm

σx

)
.

(4.135)

From Eq. (4.135), we see that the SNR increases approximately 6 dB for each bit added
to the word length of the quantized samples, i.e., for each doubling of the number of
quantization levels. It is important to consider the term

−20 log10

(
Xm

σx

)
(4.136)

in Eq. (4.135). First, recall that Xm is a parameter of the quantizer, and it would usually
be fixed in a practical system. The quantity σx is the rms value of the signal amplitude,
and it would necessarily be less than the peak amplitude of the signal. For example, if
xa(t) is a sine wave of peak amplitude Xp, then σx = Xp/

√
2. If σx is too large, the peak

signal amplitude will exceed the full-scale amplitude Xm of the A/D converter. In this
case Eq. (4.135) is no longer valid, and severe distortion results. On the other hand, if
σx is too small, then the term in Eq. (4.136) will become large and negative, thereby
decreasing the SNR in Eq. (4.135). In fact, it is easily seen that when σx is halved, the
SNR decreases by 6 dB. Thus, it is very important that the signal amplitude be carefully
matched to the full-scale amplitude of the A/D converter.

Example 4.12 SNR for Sinusoidal Signal

Using the signal x[n] = A cos(n/10), we can compute the quantization error for differ-
ent values of B + 1 with Xm = 1 and A varying. Figure 4.61 shows estimates of SNR
as a function of Xm/σx obtained by computing the average power over many samples
of the signal and dividing by the corresponding estimate of the average power of the
noise; i.e.,

SNRQ = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎝
1
N

N−1∑
n=0

(x[n])2

1
N

N−1∑
n=0

(e[n])2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where in the case of Figure 4.61, N = 101000.
Observe that the curves in Figure 4.61 closely follow Eq. (4.135) over a wide

range of values of B. In particular, the curves are straight lines as a function of
log(Xm/σx), and they are offset from one another by 12 dB because the values of
B differ by 2. SNR increases as Xm/σx decreases since increasing σx with Xm fixed

220 Chapter 4 Sampling of Continuous-Time Signals

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100
SNR for Uniform Quantizers

Xm/�x

SN
R

 in
 d

B

B = 15

B = 13

B = 11

B = 9

B = 7

B = 5

Figure 4.61 Signal-to-quantization-noise ratio as a function of Xm/σx for several
values of B .

means that the signal uses more of the available quantization levels. However, note
the precipitous fall of the curves as Xm/σx → 1. Since σx = .707A for a sine wave, this
means that the amplitude A becomes greater than Xm = 1 and severe clipping occurs.
Thus, the SNR decreases rapidly after the amplitude exceeds Xm.

For analog signals such as speech or music, the distribution of amplitudes tends
to be concentrated about zero and falls off rapidly with increasing amplitude. In such
cases, the probability that the magnitude of a sample will exceed three or four times the
rms value is very low. For example, if the signal amplitude has a Gaussian distribution,
only 0.064 percent of the samples would have an amplitude greater than 4σx . Thus, to
avoid clipping the peaks of the signal (as is assumed in our statistical model), we might
set the gain of filters and amplifiers preceding the A/D converter so that σx = Xm/4.
Using this value of σx in Eq. (4.135) gives

SNRQ ≈ 6B − 1.25 dB. (4.137)

For example, obtaining a SNR of about 90–96 dB for use in high-quality music record-
ing and playback requires 16-bit quantization, but it should be remembered that such
performance is obtained only if the input signal is carefully matched to the full-scale
range of the A/D converter.

This trade-off between peak signal amplitude and absolute size of the quantization
noise is fundamental to any quantization process. We will see its importance again in
Chapter 6 when we discuss round-off noise in implementing discrete-time linear systems.

Section 4.8 Digital Processing of Analog Signals 221

4.8.4 D/A Conversion

In Section 4.3, we discussed how a bandlimited signal can be reconstructed from a
sequence of samples using ideal lowpass filtering. In terms of Fourier transforms, the
reconstruction is represented as

Xr(j�) = X (ej�T)Hr(j�), (4.138)

where X (ejω) is the DTFT of the sequence of samples and Xr(j�) is the Fourier
transform of the reconstructed continuous-time signal. The ideal reconstruction filter is

Hr(j�) =
{

T , |�| < π/T ,

0, |�| ≥ π/T .
(4.139)

For this choice of Hr(j�), the corresponding relation between xr(t) and x[n] is

xr(t) =
∞∑

n=−∞
x[n] sin[π(t − nT)/T]

π(t − nT)/T
. (4.140)

The system that takes the sequence x[n] as input and produces xr(t) as output is called
the ideal D/C converter. A physically realizable counterpart to the ideal D/C converter
is a digital-to-analog converter (D/A converter) followed by an analog lowpass filter. As
depicted in Figure 4.62, a D/A converter takes a sequence of binary code words x̂B [n]
as its input and produces a continuous-time output of the form

xDA(t) =
∞∑

n=−∞
Xmx̂B [n]h0(t − nT)

=
∞∑

n=−∞
x̂[n]h0(t − nT),

(4.141)

where h0(t) is the impulse response of the zero-order hold given by Eq. (4.122). The
dotted lines in Figure 4.55 show the output of a D/A converter for the quantized ex-
amples of the sine wave. Note that the D/A converter holds the quantized sample for
one sample period in the same way that the sample-and-hold holds the unquantized in-
put sample. If we use the additive-noise model to represent the effects of quantization,
Eq. (4.141) becomes

xDA(t) =
∞∑

n=−∞
x[n]h0(t − nT) +

∞∑
n=−∞

e[n]h0(t − nT). (4.142)

To simplify our discussion, we define

x0(t) =
∞∑

n=−∞
x[n]h0(t − nT), (4.143)

e0(t) =
∞∑

n=−∞
e[n]h0(t − nT), (4.144)

x [n] xDA(t)

Scale by
Xm

Convert to
impulses

Zero-order
holdxB[n]

Figure 4.62 Block diagram of D/A
converter.

222 Chapter 4 Sampling of Continuous-Time Signals

so that Eq. (4.142) can be written as

xDA(t) = x0(t) + e0(t). (4.145)

The signal component x0(t) is related to the input signal xa(t), since x[n] = xa(nT). The
noise signal e0(t) depends on the quantization-noise samples e[n] in the same way that
x0(t) depends on the unquantized signal samples. The Fourier transform of Eq. (4.143)
is

X 0(j�) =
∞∑

n=−∞
x[n]H 0(j�)e−j�nT

=
(∞∑

n=−∞
x[n]e−j�T n

)
H 0(j�)

= X (ej�T)H 0(j�).

(4.146)

Now, since

X (ej�T) = 1
T

∞∑
k=−∞

Xa

(
j

(
� − 2πk

T

))
, (4.147)

it follows that

X 0(j�) =
[

1
T

∞∑
k=−∞

Xa

(
j

(
� − 2πk

T

))]
H 0(j�). (4.148)

If Xa(j�) is bandlimited to frequencies below π/T , the shifted copies of Xa(j�) do
not overlap in Eq. (4.148), and if we define a compensated reconstruction filter as

H̃ r (j�) = Hr(j�)

H 0(j�)
, (4.149)

then the output of the filter will be xa(t) if the input is x0(t). The frequency response of
the zero-order-hold filter is easily shown to be

H 0(j�) = 2 sin(�T/2)

�
e−j�T/2. (4.150)

Therefore, the compensated reconstruction filter is

H̃ r (j�) =

⎧⎪⎨⎪⎩
�T/2

sin(�T/2)
ej�T/2, |�| < π/T ,

0, |�| ≥ π/T .

(4.151)

Figure 4.63(a) shows |H 0(j�)| as given by Eq. (4.150), compared with the magnitude
of the ideal interpolation filter |Hr(j�)| as given by Eq. (4.139). Both filters have a
gain of T at � = 0, but the zero-order-hold, although lowpass in nature, does not
cut off sharply at � = π/T . Figure 4.63(b) shows the magnitude of the frequency
response of the ideal compensated reconstruction filter to be used following a zero-
order-hold reconstruction system such as a D/A converter. The phase response would
ideally correspond to an advance time shift of T/2 seconds to compensate for the delay
of that amount introduced by the zero-order hold. Since such a time advance cannot be
realized in practical real-time approximations to the ideal compensated reconstruction

Section 4.8 Digital Processing of Analog Signals 223

Zero-order
hold

|H0(j�)|

Ideal interpolating
filter Hr(j�)

|Hr(j�)|

– 2�

1

(a)

(b)

0
T

2� �

�

T
– �

T

– �

T
�

T

�

T

T

~

Figure 4.63 (a) Frequency response of
zero-order hold compared with ideal
interpolating filter. (b) Ideal
compensated reconstruction filter for
use with a zero-order-hold output.

filter, only the magnitude response would normally be compensated, and often even
this compensation is neglected, since the gain of the zero-order hold drops only to 2/π

(or −4 dB) at � = π/T .
Figure 4.64 shows a D/A converter followed by an ideal compensated recon-

struction filter. As can be seen from the preceding discussion, with the ideal compen-
sated reconstruction filter following the D/A converter, the reconstructed output sig-
nal would be

x̂r (t) =
∞∑

n=−∞
x̂[n] sin[π(t − nT)/T]

π(t − nT)/T

=
∞∑

n=−∞
x[n] sin[π(t − nT)/T]

π(t − nT)/T
+

∞∑
n=−∞

e[n] sin[π(t − nT)/T]
π(t − nT)/T

.

(4.152)

In other words, the output would be

x̂r (t) = xa(t) + ea(t), (4.153)

where ea(t) would be a bandlimited white-noise signal.

x [n] xDA(t) xr(t)

D/A
converter

T

Compensated
reconstruction

filter
Hr(j�)
~

Figure 4.64 Physical configuration for
D/A conversion.

224 Chapter 4 Sampling of Continuous-Time Signals

Returning to a consideration of Figure 4.47(b), we are now in a position to un-
derstand the behavior of systems for digital processing of analog signals. If we assume
that the output of the antialiasing filter is bandlimited to frequencies below π/T , that
H̃ r (j�) is similarly bandlimited, and that the discrete-time system is linear and time
invariant, then the output of the overall system will be of the form

ŷr (t) = ya(t) + ea(t), (4.154)
where

T Ya(j�) = H̃ r (j�)H 0(j�)H(ej�T)H aa(j�)Xc(j�), (4.155)
in which H aa(j�), H 0(j�), and H̃ r (j�) are the frequency responses of the antialiasing
filter, the zero-order hold of the D/A converter, and the reconstruction lowpass filter,
respectively. H(ej�T) is the frequency response of the discrete-time system. Similarly,
assuming that the quantization noise introduced by the A/D converter is white noise
with variance σ 2

e = 	2/12, it can be shown that the power spectrum of the output noise is

Pea (j�) = |H̃ r (j�)H 0(j�)H(ej�T)|2σ 2
e , (4.156)

i.e., the input quantization noise is changed by the successive stages of discrete- and
continuous-time filtering. From Eq. (4.155), it follows that, under the model for the
quantization error and the assumption of negligible aliasing, the overall effective fre-
quency response from xc(t) to ŷr (t) is

T H eff(j�) = H̃ r (j�)H 0(j�)H(ej�T)H aa(j�). (4.157)
If the antialiasing filter is ideal, as in Eq. (4.118), and if the compensation of the re-
construction filter is ideal, as in Eq. (4.151), then the effective frequency response is
as given in Eq. (4.119). Otherwise Eq. (4.157) provides a reasonable model for the ef-
fective response. Note that Eq. (4.157) suggests that compensation for imperfections in
any of the four terms can, in principle, be included in any of the other terms; e.g., the
discrete-time system can include appropriate compensation for the antialiasing filter or
the zero-order hold or the reconstruction filter or all of these.

In addition to the filtering supplied by Eq. (4.157), Eq. (4.154) reminds us that
the output will also be contaminated by the filtered quantization noise. In Chapter 6 we
will see that noise can be introduced as well in the implementation of the discrete-time
linear system. This internal noise will, in general, be filtered by parts of the discrete-
time system implementation, by the zero-order hold of the D/A converter, and by the
reconstruction filter.

4.9 OVERSAMPLING AND NOISE SHAPING IN A/D AND
D/A CONVERSION

In Section 4.8.1, we showed that oversampling can make it possible to implement sharp-
cutoff antialiasing filtering by incorporating digital filtering and decimation. As we dis-
cuss in Section 4.9.1, oversampling and subsequent discrete-time filtering and down-
sampling also permit an increase in the step size 	 of the quantizer or, equivalently,
a reduction in the number of bits required in the A/D conversion. In Section 4.9.2 we
show how the step size can be reduced even further by using oversampling together
with quantization-noise feedback, and in Section 4.9.3 we show how the oversampling
principle can be applied in D/A conversion.

Section 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 225

xd[n]xa(t) x [n]x [n]
Quantizer MC/D

LPF
�c = �/M

Sampling rate conversionA/D conversion

T

Figure 4.65 Oversampled A/D conversion with simple quantization and down-
sampling.

4.9.1 Oversampled A/D Conversion with Direct
Quantization

To explore the relation between oversampling and the quantization step size, we con-
sider the system in Figure 4.65. To analyze the effect of oversampling in this system, we
consider xa(t) to be a zero-mean, wide-sense-stationary, random process with power-
spectral density denoted by�xaxa (j�)and autocorrelation function denoted byφxaxa (τ).
To simplify our discussion, we assume initially that xa(t) is already bandlimited to �N ,
i.e.,

�xaxa (j�) = 0, |�| ≥ �N, (4.158)

and we assume that 2π/T = 2M�N . The constant M , which is assumed to be an integer,
is called the oversampling ratio. Using the additive noise model discussed in detail
in Section 4.8.3, we can replace Figure 4.65 by Figure 4.66. The decimation filter in
Figure 4.66 is an ideal lowpass filter with unity gain and cutoff frequency ωc = π/M .
Because the entire system of Figure 4.66 is linear, its output xd [n] has two components,
one due to the signal input xa(t) and one due to the quantization noise input e[n]. We
denote these components by xda[n] and xde[n], respectively.

Our goal is to determine the ratio of signal power E{x2
da[n]} to quantization-noise

power E{x2
de[n]} in the output xd [n] as a function of the quantizer step size 	 and the

oversampling ratio M . Since the system of Figure 4.66 is linear, and since the noise is
assumed to be uncorrelated with the signal, we can treat the two sources separately in
computing the respective powers of the signal and noise components at the output.

First, we will consider the signal component of the output. We begin by relating
the power spectral density, autocorrelation function, and signal power of the sampled
signal x[n] to the corresponding functions for the continuous-time analog signal xa(t).

xda[n] + xde[n]

xd[n] =

xa(t) x [n] + e [n]x [n]
+

e [n]

MC/D
LPF

�c = � /M

T = �

�NM

x [n] =

Figure 4.66 System of Figure 4.65 with quantizer replaced by linear noise model.

226 Chapter 4 Sampling of Continuous-Time Signals

Let φxx[m] and �xx(e
jω) respectively denote the autocorrelation and power spectral

density of x[n]. Then, by definition, φxx[m] = E{x[n+m]x[n]}, and since x[n] = xa(nT)

and x[n + m] = xa(nT + mT),

E{x[n + m]x[n]} = E{xa((n + m)T)xa(nT)}. (4.159)

Therefore,

φxx[m] = φxaxa (mT); (4.160)

i.e., the autocorrelation function of the sequence of samples is a sampled version of the
autocorrelation function of the corresponding continuous-time signal. In particular the
wide-sense-stationarity assumption implies that E{x2

a (t)} is a constant independent of t .
It then follows that

E{x2[n]} = E{x2
a (nT)} = E{x2

a (t)} for all n or t . (4.161)

Since the power spectral densities are the Fourier transforms of the autocorrelation
functions, as a consequence of Eq. (4.160),

�xx(e
j�T) = 1

T

∞∑
k=−∞

�xaxa

[
j

(
� − 2πk

T

)]
. (4.162)

Assuming that the input is bandlimited as in Eq. (4.158), and assuming oversampling
by a factor of M so that 2π/T = 2M�N , we obtain, by substituting � = ω/T into
Eq. (4.162)

�xx(e
jω) =

⎧⎪⎨⎪⎩
1
T

�xaxa

(
j

ω

T

)
, |ω| < π/M,

0, π/M < ω ≤ π.

(4.163)

For example, if �xaxa (j�) is as depicted in Figure 4.67(a), and if we choose the sampling
rate to be 2π/T = 2M�N , then �xx(e

jω) will be as depicted in Figure 4.67(b).
It is instructive to demonstrate that Eq. (4.161) is true by utilizing the power

spectrum. The total power of the original analog signal is given by

E{x2
a (t)} = 1

2π

∫ �N

−�N

�xaxa (j�)d�.

�N �–�N

�xaxa
(j�)

1

(a)

–�/M �/M–� � �

�xx(e j�)

(b)

=
T �

�NM1

Figure 4.67 Illustration of frequency and amplitude scaling between �xaxa (j�)

and �xx (ejω).

Section 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 227

From Eq. (4.163), the total power of the sampled signal is

E{x2[n]} = 1
2π

∫ π

−π

�xx(e
jω)dω (4.164)

= 1
2π

∫ π/M

−π/M

1
T

�xaxa

(
j

ω

T

)
dω. (4.165)

Using the fact that �NT = π/M and making the substitution � = ω/T in Eq. (4.165)
gives

E{x2[n]} = 1
2π

∫ �N

−�N

�xaxa (j�)d� = E{x2
a (t)}.

Thus, the total power of the sampled signal and the total power of the original analog
signal are exactly the same as was also shown in Eq. (4.161). Since the decimation filter is
an ideal lowpass filter with cutoff ωc = π/M , the signal x[n] passes unaltered through the
filter. Therefore, the downsampled signal component at the output, xda[n] = x[nM] =
xa(nMT), also has the same total power. This can be seen from the power spectrum by
noting that, since �xx(e

jω) is bandlimited to |ω| < π/M ,

�xdaxda
(ejω) = 1

M

M−1∑
k=0

�xx(e
j (ω−2πk)/M)

= 1
M

�xx(e
jω/M) |ω| < π. (4.166)

Using Eq. (4.166), we obtain

E{x2
da[n]} = 1

2π

∫ π

−π

�xdaxda
(ejω)dω

= 1
2π

∫ π

−π

1
M

�xx(e
jω/M)dω

= 1
2π

∫ π/M

−π/M

�xx(e
jω) dω = E{x2[n]},

which shows that the power of the signal component stays the same as it traverses the
entire system from the input xa(t) to the corresponding output component xda[n]. In
terms of the power spectrum, this occurs because, for each scaling of the frequency axis
that results from sampling, we have a counterbalancing inverse scaling of the amplitude,
so that the area under the power spectrum remains the same as we go from �xaxa (j�)

to �xx(e
jω) to �xdaxda

(ejω) by sampling.
Now let us consider the noise component that is generated by quantization. Ac-

cording to the model in Section 4.8.3, we assume that e[n] is a wide-sense-stationary
white-noise process with zero mean and variance5

σ 2
e = 	2

12
.

5Since the random process has zero mean, the average power and the variance are the same.

228 Chapter 4 Sampling of Continuous-Time Signals

=
T �

�NM

–�/M �/M–� � �

�xx(e j�)1

�ee(e j�) = �e
2

Figure 4.68 Power spectral density of
signal and quantization noise with an
oversampling factor of M .

Consequently, the autocorrelation function and power density spectrum for e[n] are,
respectively,

φee[m] = σ 2
e δ[m] (4.167)

and

�ee(e
jω) = σ 2

e |ω| < π. (4.168)

In Figure 4.68, we show the power density spectrum of e[n] and of x[n]. The power
density spectrum of the quantized signal x̂[n] is the sum of these, since the signal and
quantization-noise samples are assumed to be uncorrelated in our model.

Although we have shown that the power in either x[n] or e[n] does not depend
on M , we note that as the oversampling ratio M increases, less of the quantization-
noise spectrum overlaps with the signal spectrum. It is this effect of the oversampling
that lets us improve the signal-to-quantization-noise ratio by sampling-rate reduction.
Specifically, the ideal lowpass filter removes the quantization noise in the band π/M <

|ω| ≤ π , while it leaves the signal component unaltered. The noise power at the output
of the ideal lowpass filter is

E{e2[n]} = 1
2π

∫ π/M

−π/M

σ 2
e dω = σ 2

e

M
.

Next, the lowpass filtered signal is downsampled, and, as we have seen, the signal power
in the downsampled output remains the same. In Figure 4.69, we show the resulting
power density spectrum of both xda[n] and xde[n]. Comparing Figures 4.68 and 4.69, we
can see that the area under the power density spectrum for the signal has not changed,
since the frequency axis and amplitude axis scaling have been inverses of each other.
On the other hand, the noise power in the decimated output is the same as at the output
of the lowpass filter; i.e.,

E{x2
de[n]} = 1

2π

∫ π

−π

σ 2
e

M
dω = σ 2

e

M
= 	2

12M
. (4.169)

Thus, the quantization-noise power E{x2
de[n]} has been reduced by a factor of M through

the filtering and downsampling, while the signal power has remained the same.

–� � �

�xdaxda
(e j�)

�ee(e j�) = �e /M

1 =
T'

2

�N

�

Figure 4.69 Power spectral density of
signal and quantization noise after
downsampling.

Section 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 229

From Eq. (4.169), we see that for a given quantization noise power, there is a
clear trade-off between the oversampling factor M and the quantizer step size 	. Equa-
tion (4.125) states that for a quantizer with (B + 1) bits and maximum input signal level
between plus and minus Xm, the step size is

	 = Xm/2B,

and therefore,

E{x2
de[n]} = 1

12M

(
Xm

2B

)2

. (4.170)

Equation (4.170) shows that for a fixed quantizer, the noise power can be decreased
by increasing the oversampling ratio M . Since the signal power is independent of M ,
increasing M will increase the signal-to-quantization-noise ratio. Alternatively, for a
fixed quantization noise power Pde = E{x2

de[n]}, the required value for B is

B = −1
2

log2 M − 1
2

log2 12 − 1
2

log2 Pde + log2 Xm. (4.171)

From Eq. (4.171), we see that for every doubling of the oversampling ratio M , we need
1/2 bit less to achieve a given signal-to-quantization-noise ratio, or, in other words, if
we oversample by a factor M = 4, we need one less bit to achieve a desired accuracy in
representing the signal.

4.9.2 Oversampled A/D Conversion with Noise Shaping

In the previous section, we showed that oversampling and decimation can improve the
signal-to-quantization-noise ratio. This seems to be a somewhat remarkable result. It
implies that we can, in principle, use very crude quantization in our initial sampling of
the signal, and if the oversampling ratio is high enough, we can still obtain an accurate
representation of the original samples by doing digital computation on the noisy sam-
ples. The problem with what we have seen so far is that, to make a significant reduction
in the required number of bits, we need very large oversampling ratios. For example, to
reduce the number of bits from 16 to 12 would require M = 44 = 256. This seems to be
a rather high cost. However, the basic oversampling principle can lead to much higher
gains if we combine it with the concept of noise spectrum shaping by feedback.

As was indicated in Figure 4.68, with direct quantization the power density spec-
trum of the quantization noise is constant over the entire frequency band. The basic
concept in noise shaping is to modify the A/D conversion procedure so that the power
density spectrum of the quantization noise is no longer uniform, but rather, is shaped
such that most of the noise power is outside the band |ω| < π/M. In that way, the
subsequent filtering and downsampling removes more of the quantization-noise power.

The noise-shaping quantizer, generally referred to as a sampled-data Delta-Sigma
modulator, is shown in Figure 4.70. (See Candy and Temes, 1992 and Schreier and Temes,
2005.) Figure 4.70(a) shows a block diagram of how the system is implemented with inte-
grated circuits. The integrator is a switched-capacitor discrete-time integrator. The A/D
converter can be implemented in many ways, but generally, it is a simple 1-bit quantizer
or comparator. The D/A converter converts the digital output back to an analog pulse
that is subtracted from the input signal at the input to the integrator. This system can

230 Chapter 4 Sampling of Continuous-Time Signals

xdc[n] + xde[n]

xd[n] =
+

+

–x [n]

y [n]

H(z)

LPF
�c = � /M

T

xa(t)

xa(t) y [n]

C/D
1

1 – z–1

+
+

–

z–1

MQuantizer

Sampled
data

integrator

A/D
converter

D/A
converter

(b)

(a)

Figure 4.70 Oversampled quantizer with noise shaping.

be represented by the discrete-time equivalent system shown in Figure 4.70(b). The
switched-capacitor integrator is represented by an accumulator system, and the delay
in the feedback path represents the delay introduced by the D/A converter.

As before, we model the quantization error as an additive noise source so that the
system in Figure 4.70 can be replaced by the linear model in Figure 4.71. In this system,
the output y[n] is the sum of two components: yx[n] due to the input x[n] alone and ê[n]
due to the noise e[n] alone.

We denote the transfer function from x[n] to y[n] as Hx(z) and from e[n] to y[n]
as He(z). These transfer functions can both be calculated in a straightforward manner
and are

Hx(z) = 1, (4.172a)

He(z) = (1 − z−1). (4.172b)

xd[n]
+ +

+

–

e [n]

x [n]

y [n] LPF
�c = � /M

T

xa(t)
C/D

1

1 – z–1

z–1

M

Figure 4.71 System of Figure 4.70 from xa (t) to xd [n] with quantizer replaced by
a linear noise model.

Section 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 231

y [n] = x [n] + e [n]

T = �

�NM

+
x [n]

e [n]

e [n]

xa(t)
C/D

1 – z–1

xd[n]

LPF
�c = � /M M

Figure 4.72 Equivalent representation of Figure 4.71.

Consequently,

yx[n] = x[n], (4.173a)

and

ê[n] = e[n] − e[n − 1]. (4.173b)

Therefore, the output y[n] can be represented equivalently as y[n] = x[n]+ ê[n], where
x[n] appears unmodified at the output and the quantization noise e[n] is modified by the
first-difference operator He(z). This is depicted in the block diagram in Figure 4.72. With
the power density spectrum for e[n] given by Eq. (4.168), the power density spectrum
of the quantization noise ê[n] that is present in y[n] is

�êê(e
jω) = σ 2

e |He(e
jω)|2

= σ 2
e [2 sin(ω/2)]2.

(4.174)

In Figure 4.73, we show the power density spectrum of ê[n], the power spectrum of e[n],
and the same signal power spectrum that was shown in Figure 4.67(b) and Figure 4.68.
It is interesting to observe that the total noise power is increased from E{e2[n]} = σ 2

e

–� �–
M

� � �

M

T
1

0

�NM

�
=

�ee(e j�) = 4�e sin2 (�/2)

�e
2

2

�xx(e j�)

Figure 4.73 The power spectral density of the quantization noise and the signal.

232 Chapter 4 Sampling of Continuous-Time Signals

–� � �0

�xde xde(e j�) =

�xdaxda(e j�)

sin2 (�/(2M))
4�e

M

2

1 =
Td

�N

�

Figure 4.74 Power spectral density of the signal and quantization noise after downsampling.

at the quantizer to E{ê2[n]} = 2σ 2
e at the output of the noise-shaping system. However,

note that in comparison with Figure 4.68, the quantization noise has been shaped in
such a way that more of the noise power is outside the signal band |ω| < π/M than in
the direct oversampled case, where the noise spectrum is flat.

In the system of Figure 4.70, this out-of-band noise power is removed by the low-
pass filter. Specifically, in Figure 4.74 we show the power density spectrum of�xdaxda

(ejω)

superimposed on the power density spectrum of �xdexde
(ejω). Since the downsampler

does not remove any of the signal power, the signal power in xda[n] is

Pda = E{x2
da[n]} = E{x2[n]} = E{x2

a (t)}.
The quantization-noise power in the final output is

Pde = 1
2π

∫ π

−π

�xdexde
(ejω)dω = 1

2π

	2

12M

∫ π

−π

(
2 sin
(ω

2M

))2
dω. (4.175)

To compare this approximately with the results in Section 4.9.1, assume that M is suffi-
ciently large so that

sin
(ω

2M

)
≈ ω

2M
.

With this approximation, Eq. (4.175) is easily evaluated to obtain

Pde = 1
36

	2π2

M 3
. (4.176)

From Eq. (4.176), we see again a trade-off between the oversampling ratio M and
the quantizer step size 	. For a (B + 1)-bit quantizer and maximum input signal level
between plus and minus Xm, 	 = Xm/2B . Therefore, to achieve a given quantization-
noise power Pde, we must have

B = −3
2

log2 M + log2(π/6) − 1
2

log2 Pde + log2 Xm. (4.177)

Comparing Eq. (4.177) with Eq. (4.171), we see that, whereas with direct quantization
a doubling of the oversampling ratio M gained 1/2 bit in quantization, the use of noise
shaping results in a gain of 1.5 bits.

Table 4.1 gives the equivalent savings in quantizer bits over direct quantization
with no oversampling (M = 1) for (a) direct quantization with oversampling, as dis-
cussed in Section 4.9.1, and (b) oversampling with noise shaping, as examined in this
section.

Section 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 233

TABLE 4.1 EQUIVALENT SAVINGS IN
QUANTIZER BITS RELATIVE TO M = 1 FOR
DIRECT QUANTIZATION AND 1st-ORDER
NOISE SHAPING

Direct Noise
M quantization shaping

4 1 2.2
8 1.5 3.7

16 2 5.1
32 2.5 6.6
64 3 8.1

The noise-shaping strategy in Figure 4.70 can be extended by incorporating a
second stage of accumulation as shown in Figure 4.75. In this case, with the quantizer
again modeled as an additive noise source e[n], it can be shown that

y[n] = x[n] + ê[n]
where, in the two-stage case, ê[n] is the result of processing the quantization noise e[n]
through the transfer function

He(z) = (1 − z−1)2. (4.178)
The corresponding power density spectrum of the quantization noise now present in
y[n] is

�êê(e
jω) = σ 2

e [2 sin(ω/2)]4, (4.179)
with the result that, although the total noise power at the output of the two-stage noise-
shaping system is greater than for the one-stage case, even more of the noise lies outside
the signal band. More generally, p stages of accumulation and feedback can be used,
with corresponding noise shaping given by

�êê(e
jω) = σ 2

e [2 sin(ω/2)]2p. (4.180)
In Table 4.2, we show the equivalent reduction in quantizer bits as a function of the order
p of the noise shaping and the oversampling ratio M . Note that with p = 2 and M = 64,
we obtain almost 13 bits of increase in accuracy, suggesting that a 1-bit quantizer could
achieve about 14-bit accuracy at the output of the decimator.

Although multiple feedback loops such as the one shown in Figure 4.75 promise
greatly increased noise reduction, they are not without problems. Specifically, for large
values of p, there is an increased potential for instability and oscillations to occur.
An alternative structure known as multistage noise shaping (MASH) is considered in
Problem 4.68.

+ +
+ +

– –x [n] y [n]

T

xa(t)
C/D

1

1 – z–1

z–1

1

1 – z–1 Quantizer

Figure 4.75 Oversampled quantizer with 2nd-order noise shaping.

234 Chapter 4 Sampling of Continuous-Time Signals

TABLE 4.2 REDUCTION IN QUANTIZER
BITS AS ORDER p OF NOISE SHAPING

Oversampling factor M

Quantizer
order p 4 8 16 32 64

0 1.0 1.5 2.0 2.5 3.0
1 2.2 3.7 5.1 6.6 8.1
2 2.9 5.4 7.9 10.4 12.9
3 3.5 7.0 10.5 14.0 17.5
4 4.1 8.5 13.0 17.5 22.0
5 4.6 10.0 15.5 21.0 26.5

4.9.3 Oversampling and Noise Shaping in D/A
Conversion

In Sections 4.9.1 and 4.9.2, we discussed the use of oversampling to simplify the process
of A/D conversion. As we mentioned, the signal is initially oversampled to simplify
antialias filtering and improve accuracy, but the final output xd [n] of the A/D converter
is sampled at the Nyquist rate for xa(t). The minimum sampling rate is, of course, highly
desirable for digital processing or for simply representing the analog signal in digital
form, as in the CD audio recording system. It is natural to apply the same principles in
reverse to achieve improvements in the D/A conversion process.

The basic system, which is the counterpart to Figure 4.65, is shown in Figure 4.76.
The sequence yd [n], which is to be converted to a continuous-time signal, is first up-
sampled to produce the sequence ŷ[n], which is then requantized before sending it to
a D/A converter that accepts binary samples with the number of bits produced by the
requantization process. We can use a simple D/A converter with few bits if we can be
assured that the quantization noise does not occupy the signal band. Then the noise can
be removed by inexpensive analog filtering.

In Figure 4.77, we show a structure for the quantizer that shapes the quantization
noise in a similar manner to the 1st-order noise shaping provided by the system in
Figure 4.70. In our analysis we assume that yd [n] is effectively unquantized or so finely
quantized relative to y[n] that the primary source of quantizer error is the quantizer in
Figure 4.76. To analyze the system in Figures 4.76 and 4.77, we replace the quantizer
in Figure 4.77 by an additive white-noise source e[n], so that Figure 4.77 is replaced by
Figure 4.78. The transfer function from ŷ[n] to y[n] is unity, i.e., the upsampled signal

ya(t)yd[n]

Sampling rate increase by M

M
LPF

Gain = M
cutoff = �/M

T

y [n] y [n]
Quantizer D/C

Figure 4.76 Oversampled D/A conversion.

Section 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 235

e [n]

+

+

+

+

–

–

y [n] y [n]

z–1

Quantizer

Figure 4.77 1st-order noise-shaping
system for oversampled D/A
quantization.

e [n]

e [n]

+ +

+

+

+

–

–

y [n] y [n]

z–1
Figure 4.78 System of Figure 4.77
with quantizer replaced by linear noise
model.

ŷ[n] appears at the output unaltered. The transfer function He(z) from e[n] to y[n] is
He(z) = 1 − z−1.

Therefore, the quantization noise component ê[n] that appears at the output of the
noise-shaping system in Figure 4.78 has the power density spectrum

�êê(e
jω) = σ 2

e (2 sin ω/2)2, (4.181)
where, again, σ 2

e = 	2/12.
An illustration of this approach to D/A conversion is given in Figure 4.79. Fig-

ure 4.79(a) shows the power spectrum �ydyd
(ejω) of the input yd [n] in Figure 4.76. Note

that we assume that the signal yd [n] is sampled at the Nyquist rate. Figure 4.79(b) shows
the corresponding power spectrum at the output of the upsampler (by M), and Fig-
ure 4.79(c) shows the quantization noise spectrum at the output of the quantizer/noise-
shaper system. Finally, Figure 4.79(d) shows the power spectrum of the signal component
superimposed on the power spectrum of the noise component at the analog output of
the D/C converter of Figure 4.76. In this case, we assume that the D/C converter has an
ideal lowpass reconstruction filter with cutoff frequency π/(MT), which will remove as
much of the quantization noise as possible.

In a practical setting, we would like to avoid sharp-cutoff analog reconstruction
filters. From Figure 4.79(d), it is clear that if we can tolerate somewhat more quantization
noise, then the D/C reconstruction filter need not roll off so sharply. Furthermore, if we
use multistage techniques in the noise shaping, we can obtain an output noise spectrum
of the form

�êê(e
jω) = σ 2

e (2 sin ω/2)2p,

which would push more of the noise to higher frequencies. In this case, the analog
reconstruction filter specifications could be relaxed even further.

236 Chapter 4 Sampling of Continuous-Time Signals

� �–� 0

1

(a)

�ydyd(e j�)

�yaya(j�)

�–� 0

(b)

�yy(e j�)

�– 0
MT

MT

�

MT

�–
M

�

M

M

� �

�

�

–� 0

(c)

(d)

�ee(e j�) =

�ee(e j� T) =

4�e sin2 (�/2)2

4�e T sin2 (�T /2)2

Figure 4.79 (a) Power spectral density of signal yd [n]. (b) Power spectral density
of signal ŷ [n]. (c) Power spectral density of quantization noise. (d) Power spectral
density of the continuous-time signal and the quantization noise.

4.10 SUMMARY

In this chapter, we developed and explored the relationship between continuous-time
signals and the discrete-time sequences obtained by periodic sampling. The fundamen-
tal theorem that allows the continuous-time signal to be represented by a sequence of
samples is the Nyquist-Shannon theorem, which states that, for a bandlimited signal,
periodic samples are a sufficient representation, as long as the sampling rate is suffi-
ciently high relative to the highest frequency in the continuous-time signal. Under this
condition, the continuous-time signal can be reconstructed by lowpass filtering from
knowledge of only the original bandwidth, the sampling rate and the samples. This cor-
responds to bandlimited interpolation. If the sampling rate is too low relative to the

Chapter 4 Problems 237

bandwidth of the signal, then aliasing distortion occurs and the original signal cannot
be reconstructed by bandlimited interpolation.

The ability to represent signals by sampling permits the discrete-time processing of
continuous-time signals. This is accomplished by first sampling, then applying discrete-
time processing, and, finally, reconstructing a continuous-time signal from the result.
Examples given were lowpass filtering and differentiation.

Sampling rate changes are an important class of digital signal processing oper-
ations. Downsampling a discrete-time signal corresponds in the frequency domain to
an amplitude-scaled replication of the discrete-time spectrum and rescaling of the fre-
quency axis, which may require additional bandlimiting to avoid aliasing. Upsampling
corresponds to effectively increasing the sampling rate and is also represented in the fre-
quency domain by a rescaling of the frequency axis. By combining upsampling and down-
sampling by integer amounts, noninteger sampling rate conversion can be achieved. We
also showed how this can be efficiently done using multirate techniques.

In the final sections of the chapter, we explored a number of practical considera-
tions associated with the discrete-time processing of continuous-time signals, including
the use of prefiltering to avoid aliasing, quantization error in A/D conversion, and some
issues associated with the filtering used in sampling and reconstructing the continuous-
time signals. Finally, we showed how discrete-time decimation and interpolation and
noise shaping can be used to simplify the analog side of A/D and D/A conversion.

The focus of this chapter has been on periodic sampling as a process for obtaining
a discrete representation of a continuous-time signal. While such representations are by
far the most common and are the basis for almost all of the topics to be discussed in the
remainder of this text, there are other approaches to obtaining discrete representations
that may lead to more compact representations for signals where other information
(besides bandwidth) is known about the signal. Some examples can be found in Unser
(2000).

Problems

Basic Problems with Answers

4.1. The signal

xc(t) = sin (2π(100)t)

was sampled with sampling period T = 1/400 second to obtain a discrete-time signal x[n].
What is the resulting sequence x[n]?

4.2. The sequence

x[n] = cos
(π

4
n
)

, −∞ < n < ∞,

was obtained by sampling the continuous-time signal

xc(t) = cos (�0t), −∞ < t < ∞,

at a sampling rate of 1000 samples/s. What are two possible positive values of �0 that could
have resulted in the sequence x[n]?

238 Chapter 4 Sampling of Continuous-Time Signals

4.3. The continuous-time signal
xc(t) = cos (4000πt)

is sampled with a sampling period T to obtain the discrete-time signal

x[n] = cos
(πn

3

)
.

(a) Determine a choice for T consistent with this information.
(b) Is your choice for T in part (a) unique? If so, explain why. If not, specify another choice

of T consistent with the information given.

4.4. The continuous-time signal
xc(t) = sin (20πt) + cos (40πt)

is sampled with a sampling period T to obtain the discrete-time signal

x[n] = sin
(πn

5

)
+ cos

(
2πn

5

)
.

(a) Determine a choice for T consistent with this information.
(b) Is your choice for T in part (a) unique? If so, explain why. If not, specify another choice

of T consistent with the information given.

4.5. Consider the system of Figure 4.10, with the discrete-time system an ideal lowpass filter
with cutoff frequency π/8 radians/s.
(a) If xc(t) is bandlimited to 5 kHz, what is the maximum value of T that will avoid aliasing

in the C/D converter?
(b) If 1/T = 10 kHz, what will the cutoff frequency of the effective continuous-time filter

be?
(c) Repeat part (b) for 1/T = 20 kHz.

4.6. Let hc(t) denote the impulse response of an LTI continuous-time filter and hd [n] the impulse
response of an LTI discrete-time filter.
(a) If

hc(t) =
{

e−at , t ≥ 0,

0, t < 0,

where a is a positive real constant, determine the continuous-time filter frequency
response and sketch its magnitude.

(b) If hd [n] = T hc(nT) with hc(t) as in part (a), determine the discrete-time filter fre-
quency response and sketch its magnitude.

(c) For a given value of a, determine, as a function of T , the minimum magnitude of the
discrete-time filter frequency response.

4.7. A simple model of a multipath communication channel is indicated in Figure P4.7-1. Assume
that sc(t) is bandlimited such that Sc(j�) = 0 for |�| ≥ π/T and that xc(t) is sampled with
a sampling period T to obtain the sequence

x[n] = xc(nT).

sc(t)
+

Delay
�d

�
xc(t) = sc(t) + � sc(t – �d)

Figure P4.7-1

Chapter 4 Problems 239

(a) Determine the Fourier transform of xc(t) and the Fourier transform of x[n] in terms
of Sc(j�).

(b) We want to simulate the multipath system with a discrete-time system by choosing
H(ejω) in Figure P4.7-2 so that the output r[n] = xc(nT) when the input is s[n] =
sc(nT). Determine H(ejω) in terms of T and τd .

(c) Determine the impulse response h[n] in Figure P4.7 when (i) τd = T and (ii) τd = T/2.

s [n] = sc(nT) r [n] = xc(nT)
H(e j�)

Figure P4.7-2

4.8. Consider the system in Figure P4.8 with the following relations:

Xc(j�) = 0, |�| ≥ 2π × 104,

x[n] = xc(nT),

y[n] = T

n∑
k=−∞

x[k].

xc(t) x [n] y [n]
C/D

T

h [n]
H(e j�)

Figure P4.8

(a) For this system, what is the maximum allowable value of T if aliasing is to be avoided,
i.e., so that xc(t) can be recovered from x[n].

(b) Determine h[n].
(c) In terms of X (ejω), what is the value of y[n] for n → ∞?
(d) Determine whether there is any value of T for which

y[n]
∣∣∣∣
n=∞

=
∫ ∞
−∞

xc(t)dt. (P4.8-1)

If there is such a value for T , determine the maximum value. If there is not, explain and
specify how T would be chosen so that the equality in Eq. (P4.8-1) is best approximated.

4.9. Consider a stable discrete-time signal x[n] whose discrete-time Fourier transform X (ejω)

satisfies the equation

X (ejω) = X
(
ej (ω−π)

)
and has even symmetry, i.e., x[n] = x[−n].
(a) Show that X (ejω) is periodic with a period π .
(b) Find the value of x[3]. (Hint: Find values for all odd-indexed points.)
(c) Let y[n] be the decimated version of x[n], i.e., y[n] = x[2n]. Can you reconstruct x[n]

from y[n] for all n. If yes, how? If no, justify your answer.

240 Chapter 4 Sampling of Continuous-Time Signals

4.10. Each of the following continuous-time signals is used as the input xc(t) for an ideal C/D
converter as shown in Figure 4.1 with the sampling period T specified. In each case, find
the resulting discrete-time signal x[n].
(a) xc(t) = cos (2π(1000)t) , T = (1/3000) sec
(b) xc(t) = sin (2π(1000)t) , T = (1/1500) sec
(c) xc(t) = sin (2π(1000)t) / (πt) , T = (1/5000) sec

4.11. The following continuous-time input signals xc(t) and corresponding discrete-time output
signals x[n] are those of an ideal C/D as shown in Figure 4.1. Specify a choice for the
sampling period T that is consistent with each pair of xc(t) and x[n]. In addition, indicate
whether your choice of T is unique. If not, specify a second possible choice of T consistent
with the information given.

(a) xc(t) = sin(10πt), x[n] = sin(πn/4)

(b) xc(t) = sin(10πt)/(10πt), x[n] = sin(πn/2)/(πn/2).

4.12. In the system of Figure 4.10, assume that

H(ejω) = jω/T , −π ≤ ω < π,

and T = 1/10 sec.

(a) For each of the following inputs xc(t), find the corresponding output yc(t).

(i) xc(t) = cos(6πt).
(ii) xc(t) = cos(14πt).

(b) Are the outputs yc(t) those you would expect from a differentiator?

4.13. In the system shown in Figure 4.15, hc(t) = δ(t − T/2).

(a) Suppose the input x[n] = sin(πn/2) and T = 10. Find y[n].
(b) Suppose you use the same x[n] as in part (a), but halve T to be 5. Find the resulting

y[n].
(c) In general, how does the continuous-time LTI system hc(t) limit the range of the

sampling period T that can be used without changing y[n]?
4.14. Which of the following signals can be downsampled by a factor of 2 using the system in

Figure 4.19 without any loss of information?

(a) x[n] = δ[n − n0], for n0 some unknown integer
(b) x[n] = cos(πn/4)

(c) x[n] = cos(πn/4) + cos(3πn/4)

(d) x[n] = sin (πn/3) /(πn/3)

(e) x[n] = (−1)n sin (πn/3) /(πn/3).

4.15. Consider the system shown in Figure P4.15. For each of the following input signals x[n],
indicate whether the output xr [n] = x[n].
(a) x[n] = cos(πn/4)

(b) x[n] = cos(πn/2)

(c)

x[n] =
[

sin(πn/8)

πn

]2
Hint: Use the modulation property of the Fourier transform to find X (ejω).

Chapter 4 Problems 241

xr[n]x [n] xd[n] xe[n]
3 3

3

–� /3 � /3 �

H(e j�)

Figure P4.15

4.16. Consider the system in Figure 4.29. The input x[n] and corresponding output x̃d [n] are given
for a specific choice of M/L in each of the following parts. Determine a choice for M/L

based on the information given, and specify whether your choice is unique.

(a) x[n] = sin (πn/3) /(πn/3), x̃d [n] = sin (5πn/6) /(5πn/6)

(b) x[n] = cos (3πn/4) , x̃d [n] = cos(πn/2).

4.17. Each of the following parts lists an input signal x[n] and the upsampling and downsampling
rates L and M for the system in Figure 4.29. Determine the corresponding output x̃d [n].
(a) x[n] = sin(2πn/3)/πn, L = 4, M = 3
(b) x[n] = sin(3πn/4), L = 6, M = 7.

4.18. For the system shown in Figure 4.29, X (ejω), the Fourier transform of the input signal
x[n], is shown in Figure P4.18. For each of the following choices of L and M, specify the
maximum possible value of ω0 such that X̃d (ejω) = aX (ejMω/L) for some constant a.

�–� �0–�0

1

X(e j�)

Figure P4.18

(a) M = 3, L = 2
(b) M = 5, L = 3
(c) M = 2, L = 3.

4.19. The continuous-time signal xc(t) with the Fourier transform Xc(j�) shown in Figure P4.19-
1 is passed through the system shown in Figure P4.19-2. Determine the range of values for
T for which xr (t) = xc(t).

Xc(j�)

�–�0 �0�0– 0

1 1

2
3

�0
2
3 Figure P4.19-1

xc(t) x [n] xr(t)

T T

C/D D/C

Figure P4.19-2

242 Chapter 4 Sampling of Continuous-Time Signals

4.20. Consider the system in Figure 4.10. The input signal xc(t) has the Fourier transform shown
in Figure P4.20 with �0 = 2π(1000) radians/second. The discrete-time system is an ideal
lowpass filter with frequency response

H(ejω) =
{

1, |ω| < ωc,

0, otherwise.

�0 �–�0

X(j�)

1

Figure P4.20

(a) What is the minimum sampling rate Fs = 1/T such that no aliasing occurs in sampling
the input?

(b) If ωc = π/2, what is the minimum sampling rate such that yr (t) = xc(t)?

Basic Problems

4.21. Consider a continuous-time signal xc(t) with Fourier transform Xc (j�) shown in Fig-
ure P4.21-1.

Xc(jΩ)

0

11

− 2
3−Ω0 Ω0

2
3 Ω0 Ω0

�

Figure P4.21-1 Fourier transform Xc (j�)

(a) A continuous-time signal xr (t) is obtained through the process shown in Figure P4.21-
2. First, xc(t) is multiplied by an impulse train of period T1 to produce the waveform
xs(t), i.e.,

xs(t) =
+∞∑

n=−∞
x[n]δ(t − nT1).

Next, xs(t) is passed through a low pass filter with frequency response Hr(j�). Hr(j�)

is shown in Figure P4.21-3.

Chapter 4 Problems 243

xc(t) xs(t) xr(t)
Hr(jΩ)

�(t − nT1)
n=−�

�

Figure P4.21-2 Conversion system for part (a)

Hr(jΩ)

0− �
T1

�
T1

Ω

T1

Figure P4.21-3 Frequency response Hr (j�)

Determine the range of values for T1 for which xr (t) = xc(t).
(b) Consider the system in Figure P4.21-4. The system in this case is the same as the

one in part (a), except that the sampling period is now T2. The system Hs(j�) is
some continuous-time ideal LTI filter. We want xo(t) to be equal to xc(t) for all t , i.e.,
xo(t) = xc(t) for some choice of Hs(j�). Find all values of T2 for which xo(t) = xc(t)

is possible. For the largest T2 you determined that would still allow recovery of xc(t),
choose Hs(j�) so that xo(t) = xc(t). Sketch Hs(j�).

xc(t) x2(t) xo(t)
Hs(jΩ)

�(t − nT2)
n=−�

�

Figure P4.21-4 Conversion system for part (b)

4.22. Suppose that the bandlimited differentiator of Example 4.4 has input xc(t) = cos(�0t) with
�0 < π/T . In this problem, we wish to verify that the continuous-time signal reconstructed
from the output of the bandlimited differentiator is indeed the derivative of xc(t).

(a) The sampled input will be x[n] = cos(ω0n), where ω0 = �0T < π . Determine an
expression for X(ejω) that is valid for |ω| ≤ π .

(b) Now use Eq. (4.46) to determine the DTFT of Y (ejω), the output of the discrete-time
system.

(c) From Eq. (4.32) determine Yr (j�), the continuous-time Fourier transform of the out-
put of the D/C converter.

(d) Use the result of (c) to show that

yr (t) = −�0 sin(�0t) = d

dt
[xc(t)] .

244 Chapter 4 Sampling of Continuous-Time Signals

4.23. Figure P4.23-1 shows a continuous-time filter that is implemented using an LTI discrete-time
filter ideal lowpass filter with frequency response over −π ≤ ω ≤ π as

H(ejω) =
{

1 |ω| < ωc

0 ωc < |ω| ≤ π.

(a) If the continuous-time Fourier transform of xc(t), namely Xc(j�), is as shown in Figure
P4.23-2 and ωc = π

5 , sketch and label X(ejω), Y (ejω) and Yc(j�) for each of the
following cases:

(i) 1/T1 = 1/T2 = 2 × 104

(ii) 1/T1 = 4 × 104, 1/T2 = 104

(iii) 1/T1 = 104, 1/T2 = 3 × 104.

(b) For 1/T1 = 1/T2 = 6 × 103, and for input signals xc(t) whose spectra are bandlimited
to |�| < 2π × 5 × 103 (but otherwise unconstrained), what is the maximum choice of
the cutoff frequency ωc of the filter H(ejω) for which the overall system is LTI? For
this maximum choice of ωc, specify Hc(j�).

x [n]xc(t)

T1

y [n] yc(t)
C/D

T2

D/CH(e j�)

Hc(jΩ)

Figure P4.23-1

Xc(jΩ)
1

–2� � 5 � 103 2� � 5 � 103 Ω Figure P4.23-2

4.24. Consider the system shown in Figure P4.24-1.

xd[n]xc(t) yd[n] yc(t)

T

D/C

T

C/D
v(t)

CT Filter

Anti-Aliasing

Hd(e j�), h[n]

H(jΩ)

Figure P4.24-1

The anti-aliasing filter is a continuous-time filter with the frequency response L(j�) shown
in Figure P4.24-2.

Chapter 4 Problems 245

L(jΩ)

0− �
T

�
T

Ω

1

Figure P4.24-2

The frequency response of the LTI discrete-time system between the converters is given
by:

Hd(ejω) = e−j ω
3 , |ω| < π

(a) What is the effective continuous-time frequency response of the overall system,H(j�)?
(b) Choose the most accurate statement:

(i) yc(t) = d
dt

xc(3t).

(ii) yc(t) = xc(t − T
3).

(iii) yc(t) = d
dt

xc(t − 3T).

(iv) yc(t) = xc(t − 1
3).

(a) Express yd [n] in terms of yc(t).
(b) Determine the impulse response h[n] of the discrete-time LTI system.

4.25. Two bandlimited signals, x1(t) and x2(t), are multiplied, producing the product signal
w(t) = x1(t)x2(t). This signal is sampled by a periodic impulse train yielding the signal

wp(t) = w(t)

∞∑
n=−∞

δ(t − nT) =
∞∑

n=−∞
w(nT)δ(t − nT).

Assume that x1(t) is bandlimited to �1, and x2(t) is bandlimited to �2; that is,

X1(j�) = 0, |�| ≥ �1

X2(j�) = 0, |�| ≥ �2.

Determine the maximum sampling interval T such that w(t) is recoverable from wp(t)

through the use of an ideal lowpass filter.

4.26. The system of Figure P4.26 is to be used to filter continuous time music signals using a
sampling rate of 16kHz.

xc(t)

T

yc(t)
C/D

T

D/CH(e j�)

Figure P4.26

H(ejω) is an ideal lowpass filter with a cutoff of π/2. If the input has been bandlimited
such that Xc(j�) = 0 for |�| > �c, how should �c be chosen so that the overall system in
Figure P4.26 is LTI?

246 Chapter 4 Sampling of Continuous-Time Signals

4.27. The system shown in Figure P4.27 is intended to approximate a differentiator for bandlim-
ited continuous-time input waveforms.

xd[n]xc(t)

T

yc(t)
C/D

T

D/CHd(e j�)

Hc(jΩ)

yd[n]

Figure P4.27

• The continuous-time input signal xc(t) is bandlimited to |�| < �M .

• The C/D converter has sampling rate T = π

�M
, and produces the signal

xd [n] = xc(nT).
• The discrete-time filter has frequency response

Hd(ejω) = ejω/2 − e−jω/2

T
, |ω| ≤ π .

• The ideal D/C converter is such that yd [n] = yc(nT).

(a) Find the continuous-time frequency response Hc(j�) of the end-to-end system.
(b) Find xd [n], yc(t), and yd [n], when the input signal is

xc(t) = sin(�Mt)

�Mt
.

4.28. Consider the representation of the process of sampling followed by reconstruction shown
in Figure P4.28.

xc(t) xs(t) xr(t)
Hr(jΩ)

�(t − nT)
n=−�

�

s(t) =

Figure P4.28

Assume that the input signal is

xc(t) = 2 cos(100πt − π/4) + cos(300πt + π/3) − ∞ < t < ∞
The frequency response of the reconstruction filter is

Hr(j�) =
{

T |�| ≤ π/T

0 |�| > π/T

(a) Determine the continuous-time Fourier transform Xc(j�) and plot it as a function of
�.

(b) Assume that fs = 1/T = 500 samples/sec and plot the Fourier transform Xs(j�) as
a function of � for −2π/T ≤ � ≤ 2π/T . What is the output xr (t) in this case? (You
should be able to give an exact equation for xr (t).)

(c) Now, assume that fs = 1/T = 250 samples/sec. Repeat part (b) for this condition.

Chapter 4 Problems 247

(d) Is it possible to choose the sampling rate so that

xr (t) = A + 2 cos(100πt − π/4)

where A is a constant? If so, what is the sampling rate fs = 1/T , and what is the
numerical value of A?

4.29. In Figure P4.29, assume that Xc(j�) = 0, |�| ≥ π/T 1. For the general case in which
T 1 �= T 2 in the system, express yc(t) in terms of xc(t). Is the basic relationship different for
T 1 > T 2 and T 1 < T 2?

xc(t) yc(t)x [n]
C/D D/C

T1 T2 Figure P4.29

4.30. In the system of Figure P4.30, Xc(j�) and H(ejω) are as shown. Sketch and label the
Fourier transform of yc(t) for each of the following cases:

(a) 1/T 1 = 1/T 2 = 104

(b) 1/T 1 = 1/T 2 = 2 × 104

(c) 1/T 1 = 2 × 104, 1/T 2 = 104

(d) 1/T 1 = 104, 1/T 2 = 2 × 104.

�–2� � 5 � 103 2� � 5 � 103

Xc(j�)

1

H(e j�)

1

�–�

2
– � � �

2

xc(t) yc(t)

T1 T2

C/D H(e j�) D/C

Figure P4.30

248 Chapter 4 Sampling of Continuous-Time Signals

4.31. Figure P4.31-1 shows the overall system for filtering a continuous-time signal using a
discrete-time filter. The frequency responses of the reconstruction filter Hr(j�) and the
discrete-time filter H(ejω) are shown in Figure P4.31-2.

�
xc(t) yr(t)

s(t) =

xs(t) ys(t)x [n] y [n]

C/D D/C

�(t – nT)��
n = –�

Convert from
impulse train

to discrete-time
sequence

Convert to
impulse

train

Ideal
reconstruction

filter
Hr(j�)

H(e j�)

Figure P4.31-1

�

5 � 10–5

2� � 104

Hr(j�) H(e j�)
1

�

4
– � �

4 Figure P4.31-2

(a) For Xc(j�) as shown in Figure P4.31-3 and 1/T = 20 kHz, sketch Xs(j�) and X (ejω).

�–2� � 104 2� � 104

Xc(j�)

1

Figure P4.31-3

For a certain range of values of T , the overall system, with input xc(t) and output yc(t),
is equivalent to a continuous-time lowpass filter with frequency response H eff (j�)

sketched in Figure P4.31-4.

Heff(j�)

�c �–�c

1

Figure P4.31-4

(b) Determine the range of values of T for which the information presented in (a) is true
when Xc(j�) is bandlimited to |�| ≤ 2π × 104 as shown in Figure P4.31-3.

(c) For the range of values determined in (b), sketch �c as a function of 1/T .
Note: This is one way of implementing a variable-cutoff continuous-time filter using fixed
continuous-time and discrete-time filters and a variable sampling rate.

Chapter 4 Problems 249

4.32. Consider the discrete-time system shown in Figure P4.32-1

H(e j�)L M
y[n]ye[n]xe[n]x [n]

Figure P4.32-1

where
(i) L and M are positive integers.

(ii) xe[n] =
{

x[n/L] n = kL, k is any integer
0 otherwise.

(iii) y[n] = ye[nM].
(iv) H(ejω) =

{
M |ω| ≤ π

4
0 π

4 < |ω| ≤ π .

(a) Assume that L = 2 and M = 4, and that X(ejω), the DTFT of x[n], is real and is as
shown in Figure P4.32-2. Make an appropriately labeled sketch of Xe(e

jω), Ye(e
jω),

and Y (ejω), the DTFTs of xe[n], ye[n], and y[n], respectively. Be sure to clearly label
salient amplitudes and frequencies.

X(e j�)

−� �−�/2 �/2
�

1

Figure P4.32-2

(b) Now assume L = 2 and M = 8. Determine y[n] in this case.
Hint: See which diagrams in your answer to part (a) change.

4.33. For the system shown in Figure P4.33, find an expression for y[n] in terms of x[n]. Simplify
the expression as much as possible.

x [n] y[n]
53 35

Figure P4.33

Advanced Problems

4.34. In the system shown in Figure P4.34, the individual blocks are defined as indicated.

yc(t)s(t)

T1 h1(t)

Sys. A
xd[n]

T

C/D
yd[n]

T

C/D
xc(t)

H(jΩ)

Figure P4.34

250 Chapter 4 Sampling of Continuous-Time Signals

H(j�): H(j�) =
{

1, |�| < π · 10−3 rad/sec
0, |�| > π · 10−3 rad/sec

System A: yc(t) =
∞∑

k=−∞
xd [k]h1(t − kT1)

Second C/D: yd [n] = yc(nT)

(a) Specify a choice for T , T1, and h1(t) so that yc(t) and xc(t) are guaranteed to be equal
for any choice of s(t).

(b) State whether your choice in (a) is unique or whether there are other choices for T ,
T1, and h1(t) that will guarantee that yc(t) and xc(t) are equal. As usual, clearly show
your reasoning.

(c) For this part, we are interested in what is often referred to as consistent resampling.
Specifically, the system A constructs a continuous-time signal yc(t) from xd [n] the
sequence of samples of xc(t) and is then resampled to obtain yd [n]. The resampling is
referred to as consistent if yd [n] = xd [n]. Determine the most general conditions you
can on T , T1, and h1(t) so that yd [n] = xd [n].

4.35. Consider the system shown in Figure P4.35-1.
For parts (a) and (b) only, Xc(j�) = 0 for |�| > 2π ×103 and H(ejω) is as shown in Figure
P4.35-2 (and of course periodically repeats).

(a) Determine the most general condition on T , if any, so that the overall continuous-time
system from xc(t) to yc(t) is LTI.

(b) Sketch and clearly label the overall equivalent continuous-time frequency response
Heff(j�) that results when the condition determined in (a) holds.

(c) For this part only assume that Xc(j�) in Figure P4.35-1 is bandlimited to avoid alias-
ing, i.e., Xc(j�) = 0 for |�| ≥ π

T
. For a general sampling period T , we would like to

choose the system H(ejω) in Figure P4.35-1 so that the overall continuous-time system
from xc(t) to yc(t) is LTI for any input xc(t) bandlimited as above. Determine the most
general conditions on H(ejω), if any, so that the overall CT system is LTI. Assum-
ing that these conditions hold, also specify in terms of H(ejω) the overall equivalent
continuous-time frequency response Heff(j�).

xL[n]

T

C/D

T

D/C
yc(t)xc(t)

2
y[n] yM[n]

2
x[n]

H(e j�)

Figure P4.35-1

H(e j�)

− �
4

�
4

�

A

Figure P4.35-2

Chapter 4 Problems 251

4.36. We have a discrete-time signal, x[n], arriving from a source at a rate of 1
T1

samples per

second. We want to digitally resample it to create a signal y[n] that has 1
T2

samples per

second, where T2 = 3
5T1.

(a) Draw a block diagram of a discrete-time system to perform the resampling. Specify
the input/output relationship for all the boxes in the Fourier domain.

(b) For an input signal x[n] = δ[n] =
{

1, n = 0
0, otherwise,

determine y[n].

4.37. Consider the decimation filter structure shown in Figure P4.37-1:

x[n]

z−1

2
y0[n]x0[n]

H0(z)

2
y1[n]

y[n]

x1[n]
H1(z)

+

Figure P4.37-1

where y0[n] and y1[n] are generated according to the following difference equations:

y0[n] = 1
4
y0[n − 1] − 1

3
x0[n] + 1

8
x0[n − 1]

y1[n] = 1
4
y1[n − 1] + 1

12
x1[n]

(a) How many multiplies per output sample does the implementation of the filter structure
require? Consider a divide to be equivalent to a multiply.

The decimation filter can also be implemented as shown in Figure P4.37-2,

x[n] y[n]
2

v[n]
H(z)

Figure P4.37-2

where v[n] = av[n − 1] + bx[n] + cx[n − 1].
(b) Determine a, b, and c.
(c) How many multiplies per output sample does this second implementation require?

4.38. Consider the two systems of Figure P4.38.
(a) For M = 2, L = 3, and any arbitrary x[n], will yA[n] = yB [n]? If your answer is yes,

justify your answer. If your answer is no, clearly explain or give a counterexample.
(b) How must M and L be related to guarantee yA[n] = yB [n] for arbitrary x[n]?

x[n] yA[n]
MSystem A: L

wA[n]

x[n] yB[n]
LSystem B: M

wB[n]

Figure P4.38

252 Chapter 4 Sampling of Continuous-Time Signals

4.39. In system A, a continuous-time signal xc(t) is processed as indicated in Figure P4.39-1.

1 xL(t)xc(t)

T =

yc(t)
C/D

System A

x[n]

−�fc �fc

1
fc

y[n]

2T

D/CM

Figure P4.39-1

(a) If M = 2 and xc(t) has the Fourier transform shown in Figure P4.39-2, determine y[n].
Clearly show your work on this part.

Xc(jΩ)

−2�fc 2�fc

Ω

1

Figure P4.39-2

We would now like to modify system A by appropriately placing additional processing
modules in the cascade chain of system A (i.e., blocks can be added at any point in the
cascade chain—at the beginning, at the end, or even in between existing blocks). All of the
current blocks in system A must be kept. We would like the modified system to be an ideal
LTI lowpass filter, as indicated in Figure P4.39-3.

xc(t) yc(t)
H(jΩ)

Figure P4.39-3

H(j�) =
{

1 |�| <
2πfc

5
0 otherwise

We have available an unlimited number of the six modules specified in the table given in
Figure P4.39-4. The per unit cost for each module is indicated, and we would like the final
cost to be as low as possible. Note that the D/C converter is running at a rate of “2T ”.

(b) Design the lowest-cost modified system if M = 2 in System A. Specify the parameters
for all the modules used.

(c) Design the lowest-cost modified system if M = 4 in System A. Specify the parameters
for all the modules used.

Chapter 4 Problems 253

Continuous to Discrete-
Time Converter
Parameters: T
Cost : 10

Discrete to Continuous Time-
Converter
Parameters: T
Cost : 10

Discrete-Time Lowpass Filter
Parameters: A, T
Cost : 10

Continuous-Time Lowpass
Filter
Parameters: A, R
Cost : 20

Expander
Parameters: L
Cost : 5

Compressor
Parameters: M
Cost : 5

C/Dx(t) x[n]

T

D/C x(t)x[n]

T

x[n] y[n]
A

x(t) y(t)
A

L

M

−�/T �/T

−�/R �/R

Figure P4.39-4

4.40. Consider the discrete-time system shown in Figure P4.40-1.

H(e j�)M M
y[n]ye[n]xe[n]x [n]

Figure P4.40-1

where
(i) M is an integer.

(ii) xe[n] =
{

x[n/M] n = kM, k is any integer
0 otherwise.

(iii) y[n] = ye[nM].
(iv) H(ejω) =

{
M |ω| ≤ π

4
0 π

4 < |ω| ≤ π .

(a) Assume that M = 2 and that X(ejω), the DTFT of x[n], is real and is as shown
in Figure P4.40-2. Make an appropriately labeled sketch of Xe(e

jω), Ye(e
jω), and

Y (ejω), the DTFTs of xe[n], ye[n], and y[n], respectively. Be sure to clearly label salient
amplitudes and frequencies.

X(e j�)

−� −�/2 �/2 �
�

1

1/2

Figure P4.40-2

254 Chapter 4 Sampling of Continuous-Time Signals

(b) For M = 2 and X(ejω) as given in Figure P4.40-2, find the value of

ε =
∞∑

n=−∞
|x[n] − y[n]|2 .

(c) For M = 2, the overall system is LTI. Determine and sketch the magnitude of the
frequency response of the overall system |Heff(ejω)|.

(d) For M = 6, the overall system is still LTI. Determine and sketch the magnitude of the
overall system’s frequency response |Heff(ejω)|.

4.41. (a) Consider the system in Figure P4.41-1 where a filter H(z) is followed by a compressor.
Suppose that H(z) has an impulse response given by:

h[n] =
{

(1
2)n, 0 ≤ n ≤ 11

0, otherwise.
(P4.41-1)

H(z) 2
y[n]x [n]

Figure P4.41-1

The efficiency of this system can be improved by implementing the filter H(z) and the
compressor using a polyphase decomposition. Draw an efficient polyphase structure
for this system with two polyphase components. Please specify the filters you use.

(b) Now consider the system in Figure P4.41-2 where a filter H(z) is preceded by an ex-
pander. Suppose that H(z) has the impulse response as given in Eq. (P4.41-1).

H(z)3
y[n]x [n]

Figure P4.41-2

The efficiency of this system can be improved by implementing the expander and filter
H(z) using a polyphase decomposition. Draw an efficient polyphase structure for this
system with three polyphase components. Please specify the filters you use.

4.42. For the systems shown in Figure P4.42-1 and Figure P4.42-2, determine whether or not it is
possible to specify a choice for H2(z) in System 2 so that y2[n] = y1[n] when x2[n] = x1[n]
and H1(z) is as specified. If it is possible, specify H2(z). If it is not possible, clearly explain.

System 1:

w1[n] =
x1[n/2] , n/2 integer

0 , otherwise

1 + z32
y1[n]w1[n]

H1(z)

x1[n]

Figure P4.42-1

Chapter 4 Problems 255

System 2:

y2[n] =
w2[n/2] , n/2 integer

0 , otherwise

H2(z) 2
y2[n]w2[n]x2[n]

Figure P4.42-2

4.43. The block diagram in Figure P4.43 represents a system that we would like to implement.
Determine a block diagram of an equivalent system consisting of a cascade of LTI systems,
compressor blocks, and expander blocks which results in the minimum number of multipli-
cations per output sample.

Note: By “equivalent system,” we mean that it produces the same output sequence for any
given input sequence.

x[n]
3 3

y[n]
2 2H(z)

Figure P4.43

H(z) = z−6

7 + z−6 − 2z−12

4.44. Consider the two systems shown in Figure P4.44.

yA[n]rA[n]xA[n]
H(z)

G(z)

Q(·)+

+

+

−

yB[n]rB[n]xB[n]

G(z)

Q(·)+
+

+

−

−

System A:

System B:

Figure P4.44

where Q(·) represents a quantizer which is the same in both systems. For any given G(z),
can H(z) always be specified so that the two systems are equivalent (i.e., yA[n] = yB [n]
when xA[n] = xB [n]) for any arbitrary quantizer Q(·)? If so, specify H(z). If not, clearly
explain your reasoning.

256 Chapter 4 Sampling of Continuous-Time Signals

4.45. The quantizer Q(·) in the system S1 (Figure P4.45-1) can be modeled with an additive noise.
Figure P4.45-2 shows system S2, which is a model for system S1

y[n]x[n] LPF
�c = Q(·) M�

M Figure P4.45-1 System S1

e[n] = yx[n] +ye[n]x[n] LPF
�c = M�

M

e [n]

+

Figure P4.45-2 System S2

The input x[n] is a zero-mean, wide-sense stationary random process with power spectral

density �xx(ejω) which is bandlimited to π/M and we have E
[
x2[n]
]

= 1. The additive

noise e[n] is wide-sense stationary white noise with zero mean and variance σ 2
e . Input and

additive noise are uncorrelated. The frequency response of the low-pass filter in all the
diagrams has a unit gain.

(a) For system S2 find the signal to noise ratio: SNR = 10 log E[y2
x [n]]

E[y2
e [n]] . Note that yx [n] is

the output due to x[n] alone and ye[n] is the output due to e[n] alone.
(b) To improve the SNR owing to quantization, the system of Figure P4.45-3 is proposed:

y1[n] = y1x[n] + y1e[n]x[n] LPF
�c = M�

M

1

1 − z−N

−z−N

Q(·)+

Figure P4.45-3

where N > 0 is an integer such that πN << M . Replace the quantizer with the additive
model, as in Figure P4.45-4. Express y1x [n] in terms of x[n] and y1e[n] in terms of e[n].

q[n]d[n]
Q(·)

e [n]

d[n] q[n]
+ Figure P4.45-4

(c) Assume that e[n] is a zero mean wide-sense stationary white noise that is uncorrelated
with input x[n]. Is y1e[n] a wide-sense stationary signal? How about y1[n]? Explain.

(d) Is the proposed method in part (b) improving the SNR? For which value of N is the
SNR of the system in part (b) maximized?

Chapter 4 Problems 257

4.46. The following are three proposed identities involving compressors and expanders. For each,
state whether or not the proposed identity is valid. If your answer is that it is valid, explicitly
show why. If your answer is no, explicitly give a simple counterexample.

(a) Proposed identity (a):

Half-sample delay2

z−1

2
z−2

Figure P4.46-1

(b) Proposed identity (b):

h[n]2
z−1 z

2

h[n + 1]2
z z−2

2
Figure P4.46-2

(c) Proposed identity (c):

AL

A L
Figure P4.46-3

where L is a positive integer, and A is defined in terms of X(ejω) and Y (ejω) (the
respective DTFTs of A’s input and output) as:

y[n]x[n]
A

Y (e j�) = X (e j�)
L

Figure P4.46-4

258 Chapter 4 Sampling of Continuous-Time Signals

4.47. Consider the system shown in Figure P4.47-1 for discrete-time processing of the continuous-
time input signal gc(t).

xc(t)

T

C-T
LTI

System
Haa(jΩ)

T

yc(t)gc(t) Ideal
C/D

Conv.

y[n]x[n] Ideal
D/C

Conv.

D-T
LTI

System
H1(e j�)

Figure P4.47-1

The continuous-time input signal to the overall system is of the form gc(t) = fc(t) + ec(t)

where fc(t) is considered to be the “signal” component and ec(t) is considered to be an
“additive noise” component. The Fourier transforms of fc(t) and ec(t) are as shown in
Figure P4.47-2.

Fc(jΩ)

400�−400�
Ω

A

Ec(jΩ)

400�−400�
Ω

B

Figure P4.47-2

Since the total input signal gc(t) does not have a bandlimited Fourier transform, a zero-
phase continuous-time antialiasing filter is used to combat aliasing distortion. Its frequency
response is given in Figure P4.47-3.

1 − |Ω|/(800�)
0

|Ω| < 800�

|Ω| > 800�
Haa(jΩ) =

−800� 400� 800�−400�
Ω

1

Figure P4.47-3

(a) If in Figure P4.47-1 the sampling rate is 2π/T = 1600π , and the discrete-time system
has frequency response

H1(ejω) =
{

1 |ω| < π/2
0 π/2 < |ω| ≤ π

sketch the Fourier transform of the continuous-time output signal for the input whose
Fourier transform is defined in Figure P4.47-2.

(b) If the sampling rate is 2π/T = 1600π , determine the magnitude and phase of H1(ejω)

(the frequency response of the discrete-time system) so that the output of the system
in Figure P4.47-1 is yc(t) = fc(t − 0.1). You may use any combination of equations or
carefully labeled plots to express your answer.

Chapter 4 Problems 259

(c) It turns out that since we are only interested in obtaining fc(t) at the output, we
can use a lower sampling rate than 2π/T = 1600π while still using the antialiasing
filter in Figure P4.47-3. Determine the minimum sampling rate that will avoid aliasing
distortion of Fc(j�) and determine the frequency response of the filter H1(ejω) that
can be used so that yc(t) = fc(t) at the output of the system in Figure P4.47-1.

(d) Now consider the system shown in Figure P4.47-4, where 2π/T = 1600π , and the
input signal is defined in Figure P4.47-2 and the antialiasing filter is as shown in Figure
P4.47-3.

xc(t)

T

C-T
LTI

System
Haa(jΩ)

y[n]gc(t) Ideal
C/D

Conv.

v[n]x[n]
D-T
LTI

System
H2(e j�)

3

Figure P4.47-4 Another System Block Diagram

where

v[n] =
{

x[n/3] n = 0, ±3, ±6, . . .

0 otherwise

What should H2(ejω) be if it is desired that y[n] = fc(nT /3)?

4.48. (a) A finite sequence b[n] is such that:
B(z) + B(−z) = 2c, c �= 0.

Explain the structure of b[n]. Is there any constraint on the length of b[n]?
(b) Is it possible to have B(z) = H(z)H(z−1)? Explain.
(c) A length-N filter H(z) is such that,

H(z)H(z−1) + H(−z)H(−z−1) = c. (P4.48-1)
Find G0(z) and G1(z) such that the filter shown in Figure P4.48 is LTI:

2

2

2

2 G1(z)

H(z) G0(z)

zN−1H(−z−1)

+

Figure P4.48

(d) For G0(z) and G1(z) given in part (c), does the overall system perfectly reconstruct the
input? Explain.

4.49. Consider the multirate system shown in Figure P4.49-1 with input x[n] and output y[n]:

x[n]

2

2

2

2

H0(e j�)

H1(e j�)

H0(e j�)

H1(e j�)

Q0(e j�)

Q1(e j�)

y[n]
+

Figure P4.49-1

260 Chapter 4 Sampling of Continuous-Time Signals

where Q0(ejω) and Q1(ejω) are the frequency responses of two LTI systems. H0(ejω) and
H1(ejω) are ideal lowpass and highpass filters, respectively, with cutoff frequency at π/2 as
shown in Figure P4.49-2:

H0(e j�)

−2 −�/2 �/2 �
�

1

H1(e j�)

−2 −�/2 �/2 �
�

1

Figure P4.49-2

The overall system is LTI if Q0(ejω) and Q1(ejω) are as shown in Figure P4.49-3:

Q0(e j�)

−2 −�/2 �/2 �
�

1

Q1(e j�)

−2 −�/2 �/2 �
�

1

Figure P4.49-3

For these choices of Q0(ejω) and Q1(ejω), sketch the frequency response

G(ejω) = Y (ejω)

X(ejω)

of the overall system.

4.50. Consider the QMF filterbank shown in Figure P4.50:

x[n]

G0(z) = H0(z)2

2

y[n]

2

2 G1(z) = −H0(z)

H0(z)

H1(z) = H0(−z)

+

Figure P4.50

Chapter 4 Problems 261

The input–output relationship is Y (z) = T (z)X(z), where

T (z) = 1
2
(H 2

0 (z) − H 2
0 (−z)) = 2z−1E0(z2)E1(z2)

and E0(z2), E1(z2) are the polyphase components of H0(z).

Parts (a) and (b) are independent.

(a) Explain whether the following two statements are correct:

(a1) If H0(z) is linear phase, then T (z) is linear phase.
(a2) If E0(z) and E1(z) are linear phase, then T (z) is linear phase.

(b) The prototype filter is known, h0[n] = δ[n] + δ[n − 1] + 1
4 δ[n − 2]:

(b1) What are h1[n], g0[n] and g1[n]?
(b2) What are e0[n] and e1[n]?
(b3) What are T (z) and t[n]?

4.51. Consider the system in Figure 4.10 with Xc(j�) = 0 for |�| ≥ 2π(1000) and the discrete-
time system a squarer, i.e., y[n] = x2[n]. What is the largest value of T such that
yc(t) = x2

c (t)?

4.52. In the system of Figure P4.52,

Xc(j�) = 0, |�| ≥ π/T ,

and

H(ejω) =
{

e−jω, |ω| < π/L,

0, π/L < |ω| ≤ π.

How is y[n] related to the input signal xc(t)?

H(e j�)
xc(t) x [n] = xc(nT) y [n]

LL

T

C/D

Figure P4.52

Extension Problems

4.53. In many applications, discrete-time random signals arise through periodic sampling of
continuous-time random signals. We are concerned in this problem with a derivation of
the sampling theorem for random signals. Consider a continuous-time, stationary, random
process defined by the random variables {xa(t)}, where t is a continuous variable. The
autocorrelation function is defined as

φxcxc (τ) = E{x(t)x∗(t + τ)},
and the power density spectrum is

Pxcxc (�) =
∫ ∞
−∞

φxcxc (τ)e−j�τ dτ.

A discrete-time random process obtained by periodic sampling is defined by the set of
random variables {x[n]}, where x[n] = xa(nT) and T is the sampling period.

262 Chapter 4 Sampling of Continuous-Time Signals

(a) What is the relationship between φxx [n] and φxcxc (τ)?
(b) Express the power density spectrum of the discrete-time process in terms of the power

density spectrum of the continuous-time process.
(c) Under what condition is the discrete-time power density spectrum a faithful represen-

tation of the continuous-time power density spectrum?

4.54. Consider a continuous-time random process xc(t) with a bandlimited power density spec-
trum Pxcxc (�) as depicted in Figure P4.54-1. Suppose that we sample xc(t) to obtain the
discrete-time random process x[n] = xc(nT).

�0 �–�0

Pxcxc(�)

1

Figure P4.54-1

(a) What is the autocorrelation sequence of the discrete-time random process?
(b) For the continuous-time power density spectrum in Figure P4.54-1, how should T be

chosen so that the discrete-time process is white, i.e., so that the power spectrum is
constant for all ω?

(c) If the continuous-time power density spectrum is as shown in Figure P4.54-2, how
should T be chosen so that the discrete-time process is white?

�0 �–�0

Pxcxc(�)
1

Figure P4.54-2

(d) What is the general requirement on the continuous-time process and the sampling
period such that the discrete-time process is white?

4.55. This problem explores the effect of interchanging the order of two operations on a signal,
namely, sampling and performing a memoryless nonlinear operation.

(a) Consider the two signal-processing systems in Figure P4.55-1, where the C/D and D/C
converters are ideal. The mapping g[x] = x2 represents a memoryless nonlinear device.
For the two systems in the figure, sketch the signal spectra at points 1, 2, and 3 when
the sampling rate is selected to be 1/T = 2fm Hz and xc(t) has the Fourier transform
shown in Figure P4.55-2. Is y1(t) = y2(t)? If not, why not? Is y1(t) = x2(t)? Explain
your answer.

Chapter 4 Problems 263

x [n]

w [n]

y [n]

T

xc(t)

xc(t)

wc(t)

y1(t)

y2(t)

T

T T

2 31

1 2 3

System 1:

System 2:

C/D

C/D

D/C

D/C

g [x] = x2

g [x] = x2

Figure P4.55-1

�–2�fm 2�fm0

X(j�)

1

Figure P4.55-2

(b) Consider System 1, and let x(t) = A cos (30πt). Let the sampling rate be 1/T = 40 Hz.
Is y1(t) = x2

c (t)? Explain why or why not.
(c) Consider the signal-processing system shown in Figure P4.55-3, where g[x] = x3

and g−1[v] is the (unique) inverse, i.e., g−1[g(x)] = x. Let x(t) = A cos (30πt) and
1/T = 40 Hz. Express v[n] in terms of x[n]. Is there spectral aliasing? Express y[n] in
terms of x[n]. What conclusion can you reach from this example? You may find the
following identity helpful:

cos3 �0t = 3
4 cos �0t + 1

4 cos 3�0t.

v [n] y [n]xc(t) vc(t)

T

C/Dg [x] = x3 g–1[v]

Figure P4.55-3

(d) One practical problem is that of digitizing a signal having a large dynamic range. Sup-
pose we compress the dynamic range by passing the signal through a memoryless
nonlinear device prior to A/D conversion and then expand it back after A/D conver-
sion. What is the impact of the nonlinear operation prior to the A/D converter in our
choice of the sampling rate?

4.56. Figure 4.23 depicts a system for interpolating a signal by a factor of L, where

xe[n] =
{

x[n/L], n = 0, ±L, ±2L , etc . . . ,

0, otherwise,

and the lowpass filter interpolates between the nonzero values of xe[n] to generate the
upsampled or interpolated signal xi [n]. When the lowpass filter is ideal, the interpolation is

264 Chapter 4 Sampling of Continuous-Time Signals

referred to as bandlimited interpolation. As indicated in Section 4.6.3, simple interpolation
procedures are adequate in many applications. Two simple procedures often used are zero-
order-hold and linear interpolation. For zero-order-hold interpolation, each value of x[n]
is simply repeated L times; i.e.,

xi [n] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xe[0], n = 0, 1, . . . , L − 1,

xe[L], n = L, L + 1, . . . , 2L − 1,

xe[2L], n = 2L, 2L + 1, . . . ,

...

Linear interpolation is described in Section 4.6.2.
(a) Determine an appropriate choice for the impulse response of the lowpass filter in

Figure 4.23 to implement zero-order-hold interpolation. Also, determine the corre-
sponding frequency response.

(b) Equation (4.91) specifies the impulse response for linear interpolation. Determine the
corresponding frequency response. (You may find it helpful to use the fact that hlin[n]
is triangular and consequently corresponds to the convolution of two rectangular se-
quences.)

(c) Sketch the magnitude of the filter frequency response for zero-order-hold and linear
interpolation. Which is a better approximation to ideal bandlimited interpolation?

4.57. We wish to compute the autocorrelation function of an upsampled signal, as indicated in
Figure P4.57-1. It is suggested that this can equivalently be accomplished with the system
of Figure P4.57-2. Can H 2(ejω) be chosen so that φ3[m] = φ1[m]? If not, why not? If so,
specify H 2(ejω).

x [n] xu[n] xi[n] 	1[m] =
L Autocorrelate

Ideal lowpass
filter cutoff

�/L xi[n+m]xi[n]
n=−�

�

Figure P4.57-1

x [n] 	2[m] 	2e[m] 	3[m]
H2(e j�)LAutocorrelate

Figure P4.57-2

4.58. We are interested in upsampling a sequence by a factor of 2, using a system of the form of
Figure 4.23. However, the lowpass filter in that figure is to be approximated by a five-point
filter with impulse response h[n] indicated in Figure P4.58-1. In this system, the output y1[n]
is obtained by direct convolution of h[n] with w[n].

x [n] w [n]

h [n]

a

y1[n]
2

0 1 2 3 4 n

b

c

d
e

h [n]

Figure P4.58-1

Chapter 4 Problems 265

(a) A proposed implementation of the system with the preceding choice of h[n] is shown
in Figure P4.58-2. The three impulse responses h1[n], h2[n], and h3[n] are all restricted
to be zero outside the range 0 ≤ n ≤ 2. Determine and clearly justify a choice for
h1[n], h2[n], and h3[n] so that y1[n] = y2[n] for any x[n], i.e., so that the two systems
are identical.

x [n]

w2[n] w3[n]

w1[n]

y2[n]

2

2

+

h1[n]

h2[n] h3[n]

Figure P4.58-2

(b) Determine the number of multiplications per output point required in the system of
Figure P4.58-1 and in the system of Figure P4.58-2. You should find that the system of
Figure P4.58-2 is more efficient.

4.59. Consider the analysis–synthesis system shown in Figure P4.59-1. The lowpass filter h0[n]
is identical in the analyzer and synthesizer, and the highpass filter h1[n] is identical in the
analyzer and synthesizer. The Fourier transforms of h0[n] and h1[n] are related by

H 1(ejω) = H 0(ej (ω+π)).

x [n]

x1[n]

x0[n]

g1[n]

g0[n]

y1[n]

y0[n]

r1[n]

r0[n]

LPF

Analyzer Synthesizer

HPF

LPF

HPF

y [n] = y0[n] – y1[n]

2 2

2 2

+

+

–

h0[n] h0[n]

h1[n] h1[n]

Figure P4.59-1

(a) If X (ejω) and H 0(ejω) are as shown in Figure P4.59-2, sketch (to within a scale factor)
X 0(ejω), G0(ejω), and Y 0(ejω).

(b) Write a general expression for G0(ejω) in terms of X (ejω) and H 0(ejω). Do not assume
that X (ejω) and H 0(ejω) are as shown in Figure P4.59-2.

266 Chapter 4 Sampling of Continuous-Time Signals

–�

–2�

� �0

X(e j�)
A

–� –
2
� � �0

1

H0(e j�)

2
�

Figure P4.59-2

(c) Determine a set of conditions on H 0(ejω) that is as general as possible and that will
guarantee that |Y (ejω)| is proportional to |X(ejω)| for any stable input x[n].

Note: Analyzer–synthesizer filter banks of the form developed in this problem are very
similar to quadrature mirror filter banks. (For further reading, see Crochiere and Rabiner
(1983), pp. 378–392.)

4.60. Consider a real-valued sequence x[n] for which

X (ejω) = 0,
π

3
≤ |ω| ≤ π.

One value of x[n] may have been corrupted, and we would like to approximately or exactly
recover it. With x̂[n] denoting the corrupted signal,

x̂[n] = x[n] for n �= n0,

and x̂[n0] is real but not related to x[n0]. In each of the following three cases, specify a
practical algorithm for exactly or approximately recovering x[n] from x̂[n]:
(a) The value of n0 is known.
(b) The exact value of n0 is not known, but we know that n0 is an even number.
(c) Nothing about n0 is known.

4.61. Communication systems often require conversion from time-division multiplexing (TDM)
to frequency-division multiplexing (FDM). In this problem, we examine a simple example
of such a system. The block diagram of the system to be studied is shown in Figure P4.61-1.
The TDM input is assumed to be the sequence of interleaved samples

w[n] =
⎧⎨⎩ x1[n/2] for n an even integer,

x2[(n − 1)/2] for n an odd integer.

Assume that the sequences x1[n] = xc1(nT) and x2[n] = xc2(nT) have been obtained by
sampling the continuous-time signals xc1(t) and xc2(t), respectively, without aliasing.

Chapter 4 Problems 267

y2[n]

y1[n]

y [n] yc(t)

x2[n]

x1[n]

w [n]
+

T' = T/L

TDM
signal

TDM
demultiplex

Modulator 1

Modulator 2

D/C

Figure P4.61-1

Assume also that these two signals have the same highest frequency, �N , and that the
sampling period is T = π/�N .

(a) Draw a block diagram of a system that produces x1[n] and x2[n] as outputs; i.e., obtain
a system for demultiplexing a TDM signal using simple operations. State whether or
not your system is linear, time invariant, causal, and stable.

The kth modulator system (k = 1 or 2) is defined by the block diagram in Figure
P4.61-2. The lowpass filter Hi(e

jω), which is the same for both channels, has gain L and
cutoff frequency π/L, and the highpass filters Hk(e

jω) have unity gain and cutoff frequency
ωk . The modulator frequencies are such that

ω2 = ω1 + π/L and ω2 + π/L ≤ π (assume ω1 > π/2).

yk[n]xk[n]
Hi(e j�) Hk(e j�)�L

cos �kn
LPF HPF

Figure P4.61-2

(b) Assume that �N = 2π × 5 × 103. Find ω1 and L so that, after ideal D/C conversion
with sampling period T/L, the Fourier transform of yc(t) is zero, except in the band of
frequencies

2π × 105 ≤ |ω| ≤ 2π × 105 + 2�N.

(c) Assume that the continuous-time Fourier transforms of the two original input signals
are as sketched in Figure P4.61-3. Sketch the Fourier transforms at each point in the
system.

�N �–�N

Xc1(j�)
A

�N �–�N

Xc2(j�)
B

Figure P4.61-3

(d) Based on your solution to parts (a)–(c), discuss how the system could be generalized
to handle M equal-bandwidth channels.

268 Chapter 4 Sampling of Continuous-Time Signals

4.62. In Section 4.8.1, we considered the use of prefiltering to avoid aliasing. In practice, the
antialiasing filter cannot be ideal. However, the nonideal characteristics can be at least
partially compensated for with a discrete-time system applied to the sequence x[n] that is
the output of the C/D converter.

Consider the two systems in Figure P4.62-1. The antialiasing filters H ideal(j�) and
H aa(j�) are shown in Figure P4.62-2. H(ejω) in Figure P4.62-1 is to be specified to com-
pensate for the nonideal characteristics of H aa(j�).

Sketch H(ejω) so that the two sequences x[n] and w[n] are identical.

xc(t) x[n]xa(t)

T

Hideal(j�)
System 1:

System 2:

C/D

xc(t) w [n]wa(t)

T

Haa(j�) C/D H(e j�)

Figure P4.62-1

Hideal(j�)

Haa(j�)
1

� –�p �p �

T
–

10
1

�

T

1

� �

T
– �

T

Figure P4.62-2

4.63. As discussed in Section 4.8.2, to process sequences on a digital computer, we must quantize
the amplitude of the sequence to a set of discrete levels. This quantization can be expressed
in terms of passing the input sequence x[n] through a quantizer Q(x) that has an input–
output relation as shown in Figure 4.54.

As discussed in Section 4.8.3, if the quantization interval 	 is small compared with
changes in the level of the input sequence, we can assume that the output of the quantizer
is of the form

y[n] = x[n] + e[n],
where e[n] = Q (x[n]) − x[n] and e[n] is a stationary random process with a 1st-order
probability density uniform between −	/2 and 	/2, uncorrelated from sample to sample
and uncorrelated with x[n], so that E{e[n]x[m]} = 0 for all m and n.

Chapter 4 Problems 269

Let x[n] be a stationary white-noise process with zero mean and variance σ 2
x .

(a) Find the mean, variance, and autocorrelation sequence of e[n].
(b) What is the signal-to-quantizing-noise ratio σ 2

x /σ 2
e ?

(c) The quantized signal y[n] is to be filtered by a digital filter with impulse response
h[n] = 1

2 [an + (−a)n]u[n]. Determine the variance of the noise produced at the output
due to the input quantization noise, and determine the SNR at the output.

In some cases we may want to use nonlinear quantization steps, for example, logarithmically
spaced quantization steps. This can be accomplished by applying uniform quantization to
the logarithm of the input as depicted in Figure P4.63, where Q[·] is a uniform quantizer as
specified in Figure 4.54. In this case, if we assume that 	 is small compared with changes in
the sequence ln(x[n]), then we can assume that the output of the quantizer is

ln(y[n]) = ln(x[n]) + e[n].
Thus,

y[n] = x[n] · exp(e[n]).
For small e, we can approximate exp(e[n]) by (1 + e[n]), so that

y[n] ≈ x[n](1 + e[n]) = x[n] + f [n]. (P4.63-1)

This equation will be used to describe the effect of logarithmic quantization. We assume
e[n] to be a stationary random process, uncorrelated from sample to sample, independent
of the signal x[n], and with 1st-order probability density uniform between ±	/2.

x [n] y [n]ln(x [n])
ln[•] Q [•] exp[•]

ln(y [n]) Figure P4.63

(d) Determine the mean, variance, and autocorrelation sequence of the additive noise f [n]
defined in Eq. (4.57).

(e) What is the signal-to-quantizing-noise ratio σ 2
x /σ 2

f
? Note that in this case σ 2

x /σ 2
f

is inde-

pendent of σ 2
x . Within the limits of our assumption, therefore, the signal-to-quantizing-

noise ratio is independent of the input signal level, whereas, for linear quantization,
the ratio σ 2

x /σ 2
e depends directly on σ 2

x .
(f) The quantized signal y[n] is to be filtered by means of a digital filter with impulse

response h[n] = 1
2 [an + (−a)n]u[n]. Determine the variance of the noise produced at

the output due to the input quantization noise, and determine the SNR at the output.

4.64. Figure P4.64-1 shows a system in which two continuous-time signals are multiplied and
a discrete-time signal is then obtained from the product by sampling the product at the
Nyquist rate; i.e., y1[n] is samples of yc(t) taken at the Nyquist rate. The signal x1(t) is
bandlimited to 25 kHz (X 1(j�) = 0 for |�| ≥ 5π × 104), and x2(t) is limited to 2.5 kHz
(X 2(j�) = 0 for |�| ≥ (π/2) × 104).

�

x1(t)

x2(t)

yc(t) y1[n] = yc(nT)

T = Nyquist rate

C/D

Figure P4.64-1

270 Chapter 4 Sampling of Continuous-Time Signals

In some situations (digital transmission, for example), the continuous-time signals have
already been sampled at their individual Nyquist rates, and the multiplication is to be
carried out in the discrete-time domain, perhaps with some additional processing before
and after multiplication, as indicated in Figure P4.64-2. Each of the systems A , B, and C

either is an identity or can be implemented using one or more of the modules shown in
Figure P4.64-3.

�
y2[n]

x2[n]

C

C/D

T2 = 2 �10–4sec

x1[n]

w2[n]

w1[n]x1(t)

x2(t)

C/D

B

A

T1 = 2 �10–5sec

Figure P4.64-2

s [n]
g[n] = s [n/L] n = 0, L, 2L, ...

0 otherwise
Module I

1

L

s [n]
g[n] = s[nM]Module II M

s [n]
g [n]Module III

–�c �c

H(e j�)

Figure P4.64-3

For each of the three systems A , B, and C, either specify that the system is an identity
system or specify an appropriate interconnection of one or more of the modules shown in
Figure P4.64-3. Also, specify all relevant parameters L, M , and ωc. The systems A , B, and
C should be constructed such that y2[n] is proportional to y1[n], i.e.,

y2[n] = ky1[n] = kyc(nT) = kx 1(nT) × x2(nT),

and these samples are at the Nyquist rate, i.e., y2[n] does not represent oversampling or
undersampling of yc(t).

4.65. Suppose sc(t) is a speech signal with the continuous-time Fourier transform Sc(j�) shown
in Figure P4.65-1. We obtain a discrete-time sequence sr [n] from the system shown in
Figure P4.65-2, where H(ejω) is an ideal discrete-time lowpass filter with cutoff frequency
ωc and a gain of L throughout the passband, as shown in Figure 4.29(b). The signal sr [n]
will be used as an input to a speech coder, which operates correctly only on discrete-time
samples representing speech sampled at an 8-kHz rate. Choose values of L , M , and ωc that
produce the correct input signal sr [n] for the speech coder.

Chapter 4 Problems 271

Sc(j�)

–2� • 4000 2� • 40000 �(rad/s) Figure P4.65-1

s [n] su[n] sf [n]
sr[n]sc(t) H(e j�) MLC/D

T = (1/44.1) ms

Figure P4.65-2

4.66. In many audio applications, it is necessary to sample a continuous-time signal xc(t) at
a sampling rate 1/T = 44 kHz. Figure P4.66-1 shows a straightforward system, includ-
ing a continuous-time antialias filter Ha0(j�), to acquire the desired samples. In many
applications, the “4x oversampling” system shown in Figure P4.66-2 is used instead of the
conventional system shown in Figure P4.66-1. In the system in Figure P4.66-2,

H(ejω) =
{

1, |ω| ≤ π/4,

0, otherwise,

xc(t) x [n]
C/DHa 0(j�)

(1/T) = 44 kHz Figure P4.66-1

is an ideal lowpass filter, and

Ha1(j�) =
{

1, |�| ≤ �p,

0, |�| > �s,

for some 0 ≤ �p ≤ �s ≤ ∞.

xc(t) x [n]
C/DHa1(j�)

(1/T) = 4 44 kHz = 176 kHz

4H(e j�)

Figure P4.66-2

Assuming that H(ejω) is ideal, find the minimal set of specifications on the antialias filter
Ha1(j�), i.e., the smallest �p and the largest �s , such that the overall system of Fig-
ure P4.66-2 is equivalent to the system in Figure P4.66-1.

272 Chapter 4 Sampling of Continuous-Time Signals

4.67. In this problem, we will consider the “double integration” system for quantization with
noise shaping shown in Figure P4.67. In this system,

H 1(z) = 1

1 − z−1
and H 2(z) = z−1

1 − z−1
,

and the frequency response of the decimation filter is

H 3(ejω) =
{

1, |ω| < π/M,

0, π/M ≤ |ω| ≤ π.

The noise source e[n], which represents a quantizer, is assumed to be a zero-mean white-
noise (constant power spectrum) signal that is uniformly distributed in amplitude and has
noise power σ 2

e = 	2/12.

+ + +

– –x [n] u [n] w [n] v [n] = w [Mn]

y [n]

e [n]

d1[n] d2[n]
H1(z) MH2(z) H3(z)

Figure P4.67

(a) Determine an equation for Y (z) in terms of X (z) and E(z). Assume for this part that
E(z) exists. From the z-transform relation, show that y[n] can be expressed in the form
y[n] = x[n − 1] + f [n], where f [n] is the output owing to the noise source e[n]. What
is the time-domain relation between f [n] and e[n]?

(b) Now assume that e[n] is a white-noise signal as described prior to part (a). Use the
result from part (a) to show that the power spectrum of the noise f [n] is

Pff (ejω) = 16σ 2
e sin4(ω/2).

What is the total noise power (σ 2
f

) in the noise component of the signal y[n]? On the

same set of axes, sketch the power spectra Pee(e
jω) and Pff (ejω) for 0 ≤ ω ≤ π.

(c) Now assume that X (ejω) = 0 for π/M < ω ≤ π . Argue that the output of H 3(z) is
w[n] = x[n − 1] + g[n]. State in words what g[n] is.

(d) Determine an expression for the noise power σ 2
g at the output of the decimation filter.

Assume that π/M � π , i.e., M is large, so that you can use a small-angle approximation
to simplify the evaluation of the integral.

(e) After the decimator, the output is v[n] = w[Mn] = x[Mn − 1] + q[n], where q[n] =
g[Mn]. Now suppose that x[n] = xc(nT) (i.e., x[n] was obtained by sampling a
continuous-time signal). What condition must be satisfied by Xc(j�) so that x[n − 1]
will pass through the filter unchanged? Express the “signal component” of the output
v[n] in terms of xc(t). What is the total power σ 2

q of the noise at the output? Give an
expression for the power spectrum of the noise at the output, and, on the same set of
axes, sketch the power spectra Pee(e

jω) and Pqq(ejω) for 0 ≤ ω ≤ π .

4.68. For sigma-delta oversampled A/D converters with high-order feedback loops, stability be-
comes a significant consideration. An alternative approach referred to as multi-stage noise
shaping (MASH) achieves high-order noise shaping with only 1st-order feedback. The

Chapter 4 Problems 273

structure for 2nd-order MASH noise shaping is shown in Figure P4.68-2 and analyzed in
this problem.

Figure P4.68-1 is a 1st-order sigma-delta (� −) noise shaping system, where the
effect of the quantizer is represented by the additive noise signal e[n]. The noise e[n] is
explicitly shown in the diagram as a second output of the system. Assume that the input
x[n] is a zero-mean wide-sense stationary random process. Assume also that e[n] is zero-
mean, white, wide-sense stationary, and has variance σ 2

e . e[n] is uncorrelated with x[n].

(a) For the system in Figure P4.68-1, the output y[n] has a component yx [n] due only to
x[n] and a component ye[n] due only to e[n], i.e., y[n] = yx [n] + ye[n].

(i) Determine yx [n] in terms of x[n].
(ii) Determine Pye (ω), the power spectral density of ye[n].

e [n]

1

Quantizer

Σ – Δ

e [n]

+ +

–

+

x [n] y [n]

z–1

1 – z–1

Figure P4.68-1

r [n]
+

–

+

x [n]

y2[n]

e1[n]

e2[n]

y1[n]
z–1� – �

� – � 1 – z–1

Figure P4.68-2

(a) The system of Figure P4.68 is now connected in the configuration shown in Figure P4.68,
which shows the structure of the MASH system. Notice that e1[n] and e2[n] are the
noise signals resulting from the quantizers in the sigma-delta noise shaping systems. The
output of the system r[n] has a component rx [n] owing only to x[n], and a component
re[n] due only to the quantization noise, i.e., r[n] = rx [n]+re[n]. Assume that e1[n] and
e2[n] are zero-mean, white, wide-sense stationary, each with variance σ 2

e . Also assume
that e1[n] is uncorrelated with e2[n].
(i) Determine rx [n] in terms of x[n].

(ii) Determine Pre (ω), the power spectral density of re[n].

5
Transform Analysis of

Linear Time-Invariant

Systems

5.0 INTRODUCTION

In Chapter 2, we developed the Fourier transform representation of discrete-time signals
and systems, and in Chapter 3 we extended that representation to the z-transform. In
both chapters, the emphasis was on the transforms and their properties, with only a
brief preview of the details of their use in the analysis of linear time-invariant (LTI)
systems. In this chapter, we develop in more detail the representation and analysis of
LTI systems using the Fourier and z-transforms. The material is essential background
for our discussion in Chapter 6 of the implementation of LTI systems and in Chapter 7
of the design of such systems.

As discussed in Chapter 2, an LTI system can be completely characterized in the
time domain by its impulse response h[n], with the output y[n] due to a given input x[n]
specified through the convolution sum

y[n] =
∞∑

k=−∞
x[k]h[n − k]. (5.1)

Alternatively, since the frequency response and impulse response are directly related
through the Fourier transform, the frequency response, assuming it exists (i.e., H(z) has
an ROC that includes z = ejω), provides an equally complete characterization of LTI
systems. In Chapter 3, we developed the z-transform as a generalization of the Fourier
transform. The z-transform of the output of an LTI system is related to the z-transform
of the input and the z-transform of the system impulse response by

Y (z) = H(z)X(z), (5.2)
where Y (z), X(z), and H(z) denote the z-transforms of y[n], x[n] and h[n] respectively
and have appropriate regions of convergence. H(z) is typically referred to as the system

274

Section 5.1 The Frequency Response of LTI Systems 275

function. Since a sequence and its z-transform form a unique pair, it follows that any LTI
system is completely characterized by its system function, again assuming convergence.

Both the frequency response, which corresponds to the system function evaluated
on the unit circle, and the system function more generally as a function of the com-
plex variable z, are extremely useful in the analysis and representation of LTI systems,
because we can readily infer many properties of the system response from them.

5.1 THE FREQUENCY RESPONSE OF LTI SYSTEMS

The frequency response H(ejω) of an LTI system was defined in Section 2.6 as the com-
plex gain (eigenvalue) that the system applies to a complex exponential input (eigen-
function) ejωn. Furthermore, as discussed in Section 2.9.6, since the Fourier transform of
a sequence represents a decomposition as a linear combination of complex exponentials,
the Fourier transforms of the system input and output are related by

Y (ejω) = H(ejω)X(ejω), (5.3)

where X(ejω) and Y (ejω) are the Fourier transforms of the system input and output,
respectively.

5.1.1 Frequency Response Phase and Group Delay

The frequency response is in general a complex number at each frequency. With the
frequency response expressed in polar form, the magnitude and phase of the Fourier
transforms of the system input and output are related by

|Y (ejω)| = |H(ejω)| · |X(ejω)|, (5.4a)

� Y (ejω) = � H(ejω) + � X(ejω), (5.4b)

where |H(ejω)| represents the magnitude response or the gain of the system, and � H(ejω)

the phase response or phase shift of the system.
The magnitude and phase effects represented by Eqs. (5.4a) and (5.4b) can be

either desirable, if the input signal is modified in a useful way, or undesirable, if the input
signal is changed in a deleterious manner. In the latter, we often refer to the effects of
an LTI system on a signal, as represented by Eqs. (5.4a) and (5.4b), as magnitude and
phase distortions, respectively.

The phase angle of any complex number is not uniquely defined, since any integer
multiple of 2π can be added without affecting the complex number. When the phase
is numerically computed with the use of an arctangent subroutine, the principal value
is typically obtained. We will denote the principal value of the phase of H(ejω) as
ARG[H(ejω)], where

−π < ARG[H(ejω)] ≤ π. (5.5)

276 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Any other angle that gives the correct complex value of the function H(ejω) can be
represented in terms of the principal value as

� H(ejω) = ARG[H(ejω)] + 2πr(ω), (5.6)

where r(ω) is a positive or negative integer that can be different at each value of ω. We
will in general use the angle notation on the left side of Eq. (5.6) to denote ambiguous
phase, since r(ω) is somewhat arbitrary.

In many cases, the principal value will exhibit discontinuities of 2π radians when
viewed as a function of ω. This is illustrated in Figure 5.1, which shows a continuous-
phase function arg[H(ejω)] and its principal value ARG[H(ejω)] plotted over the range

�

–�

–2�

–3�

��

–4�

(a)

arg[H(e j�)]

–1

1

2

–2

��

(c)

r(�)

�

–�

��

(b)

ARG[H(e j�)]

Figure 5.1 (a) Continuous-phase
curve for a system function evaluated on
the unit circle. (b) Principal value of the
phase curve in part (a). (c) Integer
multiples of 2π to be added to
ARG[H(ejω)] to obtain arg[H(ejω)].

Section 5.1 The Frequency Response of LTI Systems 277

0 ≤ ω ≤ π . The phase function plotted in Figure 5.1(a) exceeds the range −π to +π . The
principal value, shown in Figure 5.1(b), has jumps of 2π , owing to the integer multiples
of 2π that must be subtracted in certain regions to bring the phase curve within the
range of the principal value. Figure 5.1(c) shows the corresponding value of r(ω) in
Eq. (5.6).

Throughout this text, in our discussion of phase, we refer to ARG[H(ejω)] as the
“wrapped” phase, since the evaluation modulo 2π can be thought of as wrapping the
phase on a circle. In an amplitude and phase representation (in which the amplitude is
real-valued but can be positive or negative), ARG[H(ejω)] can be “unwrapped” to a
phase curve that is continuous in ω. The continuous (unwrapped) phase curve is denoted
as arg[H(ejω)]. Another particularly useful representation of phase is through the group
delay τ(ω) defined as

τ(ω) = grd[H(ejω)] = − d

dω
{arg[H(ejω)]}. (5.7)

It is worth noting that since the derivative of arg[H(ejω)] and ARG[H(ejω)] will be
identical except for the presence of impulses in the derivative of ARG[H(ejω)] at the
discontinuities, the group delay can be obtained from the principal value by differenti-
ating, except at the discontinuities. Similarly, we can express the group delay in terms
of the ambiguous phase � H(ejω) as

grd[H(ejω)] = − d

dω
{� H(ejω)}, (5.8)

with the interpretation that impulses caused by discontinuities of size 2π in � H(ejω)

are ignored.
To understand the effect of the phase and specifically the group delay of a linear

system, let us first consider the ideal delay system. The impulse response is

hid[n] = δ[n − nd], (5.9)

and the frequency response is

H id(ejω) = e−jωnd , (5.10)

or

|H id(ejω)| = 1, (5.11a)

� H id(ejω) = −ωnd, |ω| < π, (5.11b)

with periodicity 2π in ω assumed. From Eq. (5.11b) we note that time delay (or advance
if nd < 0) is associated with phase that is linear with frequency.

278 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

In many applications, delay distortion would be considered a rather mild form of
phase distortion, since its effect is only to shift the sequence in time. Often this would
be inconsequential, or it could easily be compensated for by introducing delay in other
parts of a larger system. Thus, in designing approximations to ideal filters and other
LTI systems, we frequently are willing to accept a linear-phase response rather than a
zero-phase response as our ideal. For example, an ideal lowpass filter with linear phase
would have frequency response

H lp(ejω) =
{

e−jωnd , |ω| < ωc,

0, ωc < |ω| ≤ π.
(5.12)

The corresponding impulse response is

hlp[n] = sin ωc(n − nd)

π(n − nd)
, −∞ < n < ∞. (5.13)

The group delay represents a convenient measure of the linearity of the phase.
Specifically, consider the output of a system with frequency response H(ejω) for a nar-
rowband input of the form x[n] = s[n] cos(ω0n). Since it is assumed that X(ejω) is
nonzero only around ω = ω0, the effect of the phase of the system can be approximated
in a narrow band around ω = ω0 with the linear approximation

arg[H(ejω)] � −φ0 − ωnd, (5.14)

where nd now represents the group delay. With this approximation, it can be shown
(see Problem 5.63) that the response y[n] to x[n] = s[n] cos(ω0n) is approximately
y[n] = |H(ejω0)|s[n − nd] cos(ω0n − φ0 − ω0nd). Consequently, the time delay of the
envelope s[n] of the narrowband signal x[n] with Fourier transform centered at ω0 is
given by the negative of the slope of the phase at ω0. In general, we can think of a broad-
band signal as a superposition of narrowband signals with different center frequencies.
If the group delay is constant with frequency then each narrowband component will
undergo identical delay. If the group delay is not constant, there will be different delays
applied to different frequency packets resulting in a dispersion in time of the output
signal energy. Thus, nonlinearity of the phase or equivalently nonconstant group delay
results in time dispersion.

5.1.2 Illustration of Effects of Group Delay and
Attenuation

As an illustration of the effects of phase, group delay, and attenuation, consider the
specific system having system function

H(z) =
(

(1 − .98ej.8πz−1)(1 − .98e−j.8πz−1)

(1 − .8ej.4πz−1)(1 − .8e−j.4πz−1)

)
︸ ︷︷ ︸

H1(z)

4∏
k=1

(
(c∗

k − z−1)(ck − z−1)

(1 − ckz−1)(1 − c∗
kz

−1)

)2

︸ ︷︷ ︸
H2(z)

(5.15)

with ck = 0.95ej (.15π+.02πk) for k = 1, 2, 3, 4 and H1(z) and H2(z) defined as indi-
cated. The pole-zero plot for the overall system function H(z) is shown in Figure 5.2,
where the factor H1(z) in Eq. (5.15) contributes the complex conjugate pair of poles
at z = 0.8e±j.4π as well as the pair of zeros close to the unit circle at z = .98e±j.8π .

Section 5.1 The Frequency Response of LTI Systems 279

−1 −0.5 0 0.5 1

−1

−0.8
−0.6
−0.4
−0.2

0

0.2

0.4

0.6

0.8

1

2

2

2

2

2

2

2

2

Im
ag

in
ar

y
P

ar
t

Real Part

2

2

2

2

2

2

2

2

Figure 5.2 Pole-zero plot for the filter
in the example of Section 5.1.2. (The
number 2 indicates double-order poles
and zeroes.)

The factor H2(z) in Eq. (5.15) contributes the groups of double-order poles at z =
ck = 0.95e±j (.15π+.02πk) and double-order zeros at z = 1/ck = 1/0.95e∓j (.15π+.02πk)

for k = 1, 2, 3, 4. By itself, H2(z) represents an allpass system (see Section 5.5), i.e.,
|H2(e

jω)| = 1 for all ω. As we will see, H2(z) introduces a large amount of group delay
over a narrow band of frequencies.

The frequency response functions for the overall system are shown in Figures
5.3 and 5.4. These figures illustrate several important points. First observe in Figure
5.3(a) that the principal value phase response exhibits multiple discontinuities of size
2π . These are due to the modulo 2π computation of the phase. Figure 5.3(b) shows the
unwrapped (continuous) phase curve obtained by appropriately removing the jumps of
size 2π .

Figure 5.4 shows the group delay and magnitude response of the overall system.
Observe that, since the unwrapped phase is monotonically decreasing except around
ω = ±.8π , the group delay is positive everywhere except in that region. Also, the group
delay has a large positive peak in the bands of frequencies .17π < |ω| < .23π where
the continuous phase has maximum negative slope. This frequency band corresponds
to the angular location of the clusters of poles and reciprocal zeros in Figure 5.2. Also
note the negative dip around ω = ±.8π , where the phase has positive slope. Since
H2(z) represents an allpass filter, the magnitude response of the overall filter is entirely
controlled by the poles and zeros of H1(z). Thus, since the frequency response is H(z)

evaluated for z = ejω, the zeros at z = .98e±j.8π cause the overall frequency response
to be very small in a band around frequencies ω = ±.8π .

In Figure 5.5(a) we show an input signal x[n] consisting of three narrowband pulses
separated in time. Figure 5.5(b) shows the corresponding DTFT magnitude |X(ejω)|.
The pulses are given by

x1[n] = w[n] cos(0.2πn), (5.16a)

x2[n] = w[n] cos(0.4πn − π/2), (5.16b)

x3[n] = w[n] cos(0.8πn + π/5). (5.16c)

280 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

−60

−40

−20

0

20

40

60

−4

−2

0

2

4

−� −0.8� −0.6� −0.�4 −0.2� 0 0.2� 0.4� 0.6� 0.8� �

(b) Unwrapped Phase Response
�

−� −0.8� −0.6� −0.4� −0.2� 0 0.2� 0.4� 0.6� 0.8� �

(a) Principle Value of Phase Response
�

A
R

G
[H

(e
j�

)]
ar

g[
H

(e
j�

)]

Figure 5.3 Phase response functions for system in the example of Section 5.1.2;
(a) Principal value phase, ARG[H(ejω)], (b) Continuous phase arg [H(ejω)].

where each sinusoid is shaped into a finite-duration pulse by the 61-point envelope
sequence

w[n] =
{

0.54 − 0.46 cos(2πn/M), 0 ≤ n ≤ M,

0, otherwise
(5.17)

with M = 60.1 The complete input sequence shown in Figure 5.5(a) is

x[n] = x3[n] + x1[n − M − 1] + x2[n − 2M − 2], (5.18)

i.e., the highest frequency pulse comes first, then the lowest, followed by the mid-
frequency pulse. From the windowing or modulation theorem for discrete-time Fourier
transforms (Section 2.9.7), the DTFT of a windowed (truncated-in-time) sinusoid is the
convolution of the DTFT of the infinite-duration sinusoid (comprised of impulses at
± the frequency of the sinusoid) with the DTFT of the window. The three sinusoidal
frequencies are ω1 = 0.2π , ω2 = 0.4π , and ω3 = 0.8π . Correspondingly, in the Fourier
transform magnitude in Figure 5.5(b) we see significant energy centered and concen-

1In Chapters 7 and 10, we will see that this envelope sequence is called a Hamming window when used
in filter design and spectrum analysis respectively.

Section 5.1 The Frequency Response of LTI Systems 281

0

0.5

1

1.5

2

2.5

−50

0

50

150

100

200

(b) Magnitude of Frequency Response

�

−� −0.8� −0.6� −0.4� −0.2� 0 0.2� 0.4� 0.6� 0.8� �

−� −0.8� −0.6� −0.4� −0.2� 0 0.2� 0.4� 0.6� 0.8� �

(a) Group delay of H(z)

�

gr
d[

H
(e

j�
)]

|H
(e

j�
)|

Figure 5.4 Frequency response of system in the example of Section 5.1.2;
(a) Group delay function, grd[H(ejω)], (b) Magnitude of frequency response,
|H(ejω)|.

trated around each of the three frequencies. Each pulse contributes (in the frequency
domain) a band of frequencies centered at the frequency of the sinusoid and with a
shape and width corresponding to the Fourier transform of the time window applied to
the sinusoid.2

When used as input to the system with system function H(z), each of the frequency
packets or groups associated with each of the narrowband pulses will be affected by the
filter response magnitude and group delay over the frequency band of that group. From
the filter frequency response magnitude, we see that the frequency group centered and
concentrated around ω = ω1 = 0.2π will experience a slight amplitude gain, and the
one around ω = ω2 = 0.4π will experience a gain of about 2. Since the magnitude of
the frequency response is very small around frequency ω = ω3 = 0.8π , the highest-
frequency pulse will be significantly attenuated. It will not be totally eliminated, of
course, since the frequency content of that group extends below and above frequency
ω = ω3 = 0.8π because of the windowing applied to the sinusoid. Examining the plot of

2As we will see later in Chapters 7 and 10, the width of the frequency bands is approximately inversely
proportional to the length of the window M + 1.

282 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

(a) Waveform of signal x[n]
Sample number (n)

−� −0.8� −0.6� −0.4� −0.2� 0 0.2� 0.4� 0.6� 0.8� �
0

5

10

15

20

(b) Magnitude of DTFT of x[n]
�

|X
(e

j�
)|

Figure 5.5 Input signal for example of Section 5.1.2; (a) Input signal x [n], (b) Cor-
responding DTFT magnitude |X(ejω)|.

the system group delay in Figure 5.4(a), we see that the group delay around frequency
ω = ω1 = 0.2π is significantly larger than for either ω = ω2 = 0.4π or ω = ω3 = 0.8π ,
and consequently the lowest-frequency pulse will experience the most delay through
the system.

The system output is shown in Figure 5.6. The pulse at frequency ω = ω3 = 0.8π

has been essentially eliminated, which is consistent with the low values of the frequency
response magnitude around that frequency. The two other pulses have been increased
in amplitude and delayed; the pulse at ω = 0.2π is slightly larger and delayed by about
150 samples, and the pulse at ω = 0.4π has about twice the amplitude and is delayed
by about 10 samples. This is consistent with the magnitude response and group delay
at those frequencies. In fact, since the low-frequency pulse is delayed by 140 samples
more than the mid-frequency pulse and the pulses are each only 61 samples long, these
two pulses are interchanged in time order in the output.

The example that we have presented in this subsection was designed to illustrate
how LTI systems can modify signals through the combined effects of amplitude scaling
and phase shift. For the specific signal that we chose, consisting of a sum of narrowband
components, it was possible to trace the effects on the individual pulses. This is because
the frequency response functions were smooth and varied only slightly across the narrow

Section 5.2 System Functions—Linear Constant-Coefficient Difference Equations 283

0 50 100 150 200 250 300
−2

−1

0

1

2
Waveform of signal y[n]

Sample number (n)

Figure 5.6 Output signal for the example of Section 5.1.2.

frequency bands occupied by the individual components. Therefore, all the frequencies
corresponding to a given pulse were subject to approximately the same gain and were
delayed by approximately the same amount, resulting in the pulse shape being replicated
with only scaling and delay at the output. For wideband signals, this would generally not
be the case, because different parts of the spectrum would be modified differently by the
system. In such cases, recognizable features of the input such as pulse shape generally
would not be obvious in the output signal, and individual pulses separated in time in
the input might cause overlapping contributions to the output.

This example has illustrated a number of important concepts that will be further
elaborated on in this and subsequent chapters. After completing a thorough study of this
chapter, it would be worthwhile to study the example of this subsection again carefully
to gain a greater appreciation of its nuances. To fully appreciate this example, it also
would be useful to duplicate it with variable parameters in a convenient programming
system such as MATLAB. Before testing the computer program, the reader should
attempt to predict what would happen, for example, when the window length is either
increased or decreased or when the frequencies of the sinusoids are changed.

5.2 SYSTEMS CHARACTERIZED BY LINEAR
CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

While ideal filters are useful conceptually, discrete-time filters are most typically realized
through the implementation of a linear constant-coefficient difference equation of the
form of Eq. (5.19).

N∑
k=0

aky[n − k] =
M∑

k=0

bkx[n − k]. (5.19)

In Chapter 6, we discuss various computational structures for realizing such systems,
and in Chapter 7, we discuss various procedures for obtaining the parameters of the
difference equation to approximate a desired frequency response. In this section, with
the aid of the z-transform, we examine the properties and characteristics of LTI systems
represented by Eq. (5.19). The results and insights will play an important role in many
of the later chapters.

284 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

As we saw in Section 3.5, applying the z-transform to both sides of Eq. (5.19) and
using the linearity property (Section 3.4.1) and the time-shifting property (Section 3.4.2),
it follows that, for a system whose input and output satisfy a difference equation of the
form of Eq. (5.19), the system function has the algebraic form

H(z) = Y (z)

X(z)
=

M∑
k=0

bkz
−k

N∑
k=0

akz
−k

. (5.20)

In Eq. (5.20) H(z) takes the form of a ratio of polynomials in z−1, because Eq. (5.19)
consists of two linear combinations of delay terms. Although Eq. (5.20) can, of course,
be rewritten so that the polynomials are expressed as powers of z rather than of z−1,
it is common practice not to do so. Also, it is often convenient to express Eq. (5.20) in
factored form as

H(z) =
(

b0

a0

) M∏
k=1

(1 − ckz
−1)

N∏
k=1

(1 − dkz
−1)

. (5.21)

Each of the factors (1 − ckz
−1) in the numerator contributes a zero at z = ck and a pole

at z = 0. Similarly, each of the factors (1−dkz
−1) in the denominator contributes a zero

at z = 0 and a pole at z = dk .
There is a straightforward relationship between the difference equation and the

corresponding algebraic expression for the system function. Specifically, the numera-
tor polynomial in Eq. (5.20) has the same coefficients and algebraic structure as the
right-hand side of Eq. (5.19) (the terms of the form bkz

−k correspond to bkx[n − k]),
whereas the denominator polynomial in Eq. (5.20) has the same coefficients and alge-
braic structure as the left-hand side of Eq. (5.19) (the terms of the form akz

−k correspond
to aky[n − k]). Thus, given either the system function in the form of Eq. (5.20) or the
difference equation in the form of Eq. (5.19), it is straightforward to obtain the other.
This is illustrated in the following example.

Example 5.1 2nd-Order System

Suppose that the system function of an LTI system is

H(z) = (1 + z−1)2(
1 − 1

2 z−1
) (

1 + 3
4 z−1
) . (5.22)

To find the difference equation that is satisfied by the input and output of this system, we
express H(z) in the form of Eq. (5.20) by multiplying the numerator and denominator
factors to obtain the ratio of polynomials

H(z) = 1 + 2z−1 + z−2

1 + 1
4 z−1 − 3

8z−2
= Y (z)

X(z)
. (5.23)

Section 5.2 System Functions—Linear Constant-Coefficient Difference Equations 285

Thus, (
1 + 1

4 z−1 − 3
8z−2
)

Y (z) = (1 + 2z−1 + z−2)X(z),

and the difference equation is

y[n] + 1
4y[n − 1] − 3

8y[n − 2] = x[n] + 2x[n − 1] + x[n − 2]. (5.24)

5.2.1 Stability and Causality

To obtain Eq. (5.20) from Eq. (5.19), we assumed that the system was linear and time
invariant, so that Eq. (5.2) applied, but we made no further assumption about stability
or causality. Correspondingly, from the difference equation, we can obtain the algebraic
expression for the system function, but not the region of convergence (ROC). Specif-
ically, the ROC of H(z) is not determined from the derivation leading to Eq. (5.20),
since all that is required for Eq. (5.20) to hold is that X(z) and Y (z) have overlapping
ROCs. This is consistent with the fact that, as we saw in Chapter 2, the difference equa-
tion does not uniquely specify the impulse response of an LTI system. For the system
function of Eq. (5.20) or (5.21), there are a number of choices for the ROC. For a given
ratio of polynomials, each possible choice for the ROC will lead to a different impulse
response, but they will all correspond to the same difference equation. However, if we
assume that the system is causal, it follows that h[n] must be a right-sided sequence, and
therefore, the ROC of H(z) must be outside the outermost pole. Alternatively, if we
assume that the system is stable, then, from the discussion in Section 2.4, the impulse
response must be absolutely summable, i.e.,

∞∑
n=−∞

|h[n]| < ∞. (5.25)

Since Eq. (5.25) is identical to the condition that

∞∑
n=−∞

|h[n]z−n| < ∞ (5.26)

for |z| = 1, the condition for stability is equivalent to the condition that the ROC of
H(z) includes the unit circle. Determining the ROC to associate with the system function
obtained from the difference equation is illustrated in the following example.

Example 5.2 Determining the ROC

Consider the LTI system with input and output related through the difference equation
y[n] − 5

2 y[n − 1] + y[n − 2] = x[n]. (5.27)
From the previous discussions, the algebraic expression for H(z) is given by

H(z) = 1

1 − 5
2 z−1 + z−2

= 1(
1 − 1

2 z−1
)

(1 − 2z−1)
. (5.28)

The corresponding pole–zero plot for H(z) is indicated in Figure 5.7. There are three
possible choices for the ROC. If the system is assumed to be causal, then the ROC

286 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

is outside the outermost pole, i.e., |z| > 2. In this case, the system will not be stable,
since the ROC does not include the unit circle. If we assume that the system is stable,
then the ROC will be 1

2 < |z| < 2, and h[n] will be a two-sided sequence. For the third

possible choice of ROC, |z| < 1
2 , the system will be neither stable nor causal.

Re

Im

Unit circle

2

z-plane

1
2

Figure 5.7 Pole–zero plot for Example 5.2.

As Example 5.2 suggests, causality and stability are not necessarily compatible
requirements. For an LTI system whose input and output satisfy a difference equation
of the form of Eq. (5.19) to be both causal and stable, the ROC of the corresponding
system function must be outside the outermost pole and include the unit circle. Clearly,
this requires that all the poles of the system function be inside the unit circle.

5.2.2 Inverse Systems

For a given LTI system with system function H(z), the corresponding inverse system
is defined to be the system with system function Hi(z) such that if it is cascaded with
H(z), the overall effective system function is unity; i.e.,

G(z) = H(z)H i(z) = 1. (5.29)

This implies that

Hi(z) = 1
H(z)

. (5.30)

The time-domain condition equivalent to Eq. (5.29) is

g[n] = h[n] ∗ hi[n] = δ[n]. (5.31)

From Eq. (5.30), the frequency response of the inverse system, if it exists, is

Hi(e
jω) = 1

H(ejω)
; (5.32)

Section 5.2 System Functions—Linear Constant-Coefficient Difference Equations 287

i.e., Hi(e
jω) is the reciprocal of H(ejω). Equivalently, the log magnitude, phase, and

group delay of the inverse system are negatives of the corresponding functions for
the original system. Not all systems have an inverse. For example, the ideal lowpass
filter does not. There is no way to recover the frequency components above the cutoff
frequency that are set to zero by such a filter.

Many systems do have inverses, and the class of systems with rational system
functions provides a very useful and interesting example. Specifically, consider

H(z) =
(

b0

a0

) M∏
k=1

(1 − ckz
−1)

N∏
k=1

(1 − dkz
−1)

, (5.33)

with zeros at z = ck and poles at z = dk, in addition to possible zeros and/or poles at
z = 0 and z = ∞. Then

Hi(z) =
(

a0

b0

) N∏
k=1

(1 − dkz
−1)

M∏
k=1

(1 − ckz
−1)

; (5.34)

i.e., the poles of Hi(z) are the zeros of H(z) and vice versa. The question arises as to
what ROC to associate with Hi(z). The answer is provided by the convolution theorem,
expressed in this case by Eq. (5.31). For Eq. (5.31) to hold, the ROC of H(z) and Hi(z)

must overlap. If H(z) is causal, its ROC is

|z| > max
k

|dk|. (5.35)

Thus, any appropriate ROC forHi(z) that overlaps with the region specified by Eq. (5.35)
is a valid ROC for Hi(z). Examples 5.3 and 5.4 will illustrate some of the possibilities.

Example 5.3 Inverse System for 1st-Order System

Let H(z) be

H(z) = 1 − 0.5z−1

1 − 0.9z−1

with ROC |z| > 0.9. Then Hi(z) is

Hi(z) = 1 − 0.9z−1

1 − 0.5z−1
.

Since Hi(z) has only one pole, there are only two possibilities for its ROC, and the
only choice for the ROC of Hi(z) that overlaps with |z| > 0.9 is |z| > 0.5. Therefore,
the impulse response of the inverse system is

hi [n] = (0.5)nu[n] − 0.9(0.5)n−1u[n − 1].
In this case, the inverse system is both causal and stable.

288 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Example 5.4 Inverse for System with a Zero in the ROC

Suppose that H(z) is

H(z) = z−1 − 0.5

1 − 0.9z−1
, |z| > 0.9.

The inverse system function is

Hi(z) = 1 − 0.9z−1

z−1 − 0.5
= −2 + 1.8z−1

1 − 2z−1
.

As before, there are two possible ROCs that could be associated with this al-
gebraic expression for Hi(z): |z| < 2 and |z| > 2. In this case, however, both regions
overlap with |z| > 0.9, so both are valid inverse systems. The corresponding impulse
response for an ROC |z| < 2 is

hi1[n] = 2(2)nu[−n − 1] − 1.8(2)n−1u[−n]
and, for an ROC |z| > 2, is

hi2[n] = −2(2)nu[n] + 1.8(2)n−1u[n − 1].
We see that hi1[n] is stable and noncausal, while hi2[n] is unstable and causal. Theo-
retically, either system cascaded with H(z) will result in the identity system.

A generalization from Examples 5.3 and 5.4 is that if H(z) is a causal system with
zeros at ck , k = 1, . . ., M , then its inverse system will be causal if and only if we associate
the ROC,

|z| > max
k

|ck|,
with Hi(z). If we also require that the inverse system be stable, then the ROC of Hi(z)

must include the unit circle, in which case
max

k
|ck| < 1;

i.e., all the zeros of H(z) must be inside the unit circle. Thus, an LTI system is stable
and causal and also has a stable and causal inverse if and only if both the poles and the
zeros of H(z) are inside the unit circle. Such systems are referred to as minimum-phase
systems and will be discussed in more detail in Section 5.6.

5.2.3 Impulse Response for Rational System Functions

The discussion of the partial fraction expansion technique for finding inverse z-transforms
(Section 3.3.2) can be applied to the system function H(z) to obtain a general expression
for the impulse response of a system that has a rational system function as in Eq. (5.21).
Recall that any rational function of z−1 with only 1st-order poles can be expressed in
the form

H(z) =
M−N∑
r=0

Brz
−r +

N∑
k=1

Ak

1 − dkz−1
, (5.36)

where the terms in the first summation would be obtained by long division of the denom-
inator into the numerator and would be present only if M ≥ N . The coefficients Ak in
the second set of terms are obtained using Eq. (3.43). If H(z) has a multiple-order pole,

Section 5.2 System Functions—Linear Constant-Coefficient Difference Equations 289

its partial fraction expansion would have the form of Eq. (3.46). If the system is assumed
to be causal, then the ROC is outside all of the poles in Eq. (5.36), and it follows that

h[n] =
M−N∑
r=0

Brδ[n − r] +
N∑

k=1

Akd
n
k u[n], (5.37)

where the first summation is included only if M ≥ N.

In discussing LTI systems, it is useful to identify two classes. In the first class, at
least one nonzero pole of H(z) is not canceled by a zero. In this case, h[n] will have at
least one term of the form Ak(dk)

nu[n], and h[n] will not be of finite length, i.e., will not
be zero outside a finite interval. Consequently, systems of this class are infinite impulse
response (IIR) systems.

For the second class of systems, H(z) has no poles except at z = 0; i.e., N = 0
in Eqs. (5.19) and (5.20). Thus, a partial fraction expansion is not possible, and H(z) is
simply a polynomial in z−1 of the form

H(z) =
M∑

k=0

bkz
−k. (5.38)

(We assume, without loss of generality, that a0 = 1.) In this case, H(z) is determined to
within a constant multiplier by its zeros. From Eq. (5.38), h[n] is seen by inspection to
be

h[n] =
M∑

k=0

bk δ[n − k] =
{

bn, 0 ≤ n ≤ M,

0, otherwise.
(5.39)

In this case, the impulse response is finite in length; i.e., it is zero outside a finite interval.
Consequently, these systems are finite impulse response (FIR) systems. Note that for
FIR systems, the difference equation of Eq. (5.19) is identical to the convolution sum, i.e.,

y[n] =
M∑

k=0

bkx[n − k]. (5.40)

Example 5.5 gives a simple example of an FIR system.

Example 5.5 A Simple FIR System

Consider an impulse response that is a truncation of the impulse response of an IIR
system with system function

G(z) = 1

1 − az−1
, |z| > |a|,

i.e.,

h[n] =
{

an, 0 ≤ n ≤ M,

0 otherwise.

Then, the system function is

H(z) =
M∑

n=0

anz−n = 1 − aM+1z−M−1

1 − az−1
. (5.41)

290 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Since the zeros of the numerator are at z-plane locations

zk = aej2πk/(M+1), k = 0, 1, . . . , M, (5.42)

where a is assumed real and positive, the pole at z = a is canceled by the zero denoted
z0. The pole–zero plot for the case M = 7 is shown in Figure 5.8.

The difference equation satisfied by the input and output of the LTI system is
the discrete convolution

y[n] =
M∑

k=0

akx[n − k]. (5.43)

However, Eq. (5.41) suggests that the input and output also satisfy the difference
equation

y[n] − ay[n − 1] = x[n] − aM+1x[n − M − 1]. (5.44)

These two equivalent difference equations result from the two equivalent forms of
H(z) in Eq. (5.41).

Re

Im

7th-order
pole

z-plane

a

Figure 5.8 Pole–zero plot for Example 5.5.

5.3 FREQUENCY RESPONSE FOR RATIONAL SYSTEM
FUNCTIONS

If a stable LTI system has a rational system function, i.e., if its input and output satisfy
a difference equation of the form of Eq. (5.19), then its frequency response (the system
function of Eq. (5.20) evaluated on the unit circle) has the form

H(ejω) =

M∑
k=0

bke
−jωk

N∑
k=0

ake
−jωk

. (5.45)

Section 5.3 Frequency Response for Rational System Functions 291

That is, H(ejω) is a ratio of polynomials in the variable e−jω. To determine the magni-
tude, phase, and group delay associated with the frequency response of such systems, it
is useful to express H(ejω) in terms of the poles and zeros of H(z). Such an expression
results from substituting z = ejω into Eq. (5.21) to obtain

H(ejω) =
(

b0

a0

) M∏
k=1

(1 − cke
−jω)

N∏
k=1

(1 − dke
−jω)

. (5.46)

From Eq. (5.46), it follows that

|H(ejω)| =
∣∣∣∣b0

a0

∣∣∣∣
M∏

k=1

|1 − cke
−jω|

N∏
k=1

|1 − dke
−jω|

. (5.47)

Correspondingly, the magnitude-squared function is

|H(ejω)|2 = H(ejω)H ∗(ejω) =
(

b0

a0

)2

M∏
k=1

(1 − cke
−jω)(1 − c∗

ke
jω)

N∏
k=1

(1 − dke
−jω)(1 − d∗

k ejω)

. (5.48)

From Eq. (5.47), we note that |H(ejω)| is the product of the magnitudes of all the zero
factors of H(z) evaluated on the unit circle, divided by the product of the magnitudes
of all the pole factors evaluated on the unit circle. Expressed in decibels (dB), the gain
is defined as

Gain in dB = 20 log10 |H(ejω)| (5.49)

Gain in dB = 20 log10

∣∣∣∣b0

a0

∣∣∣∣+ M∑
k=1

20 log10 |1 − cke
−jω|

−
N∑

k=1

20 log10 |1 − dke
−jω|.

(5.50)

The phase response for a rational system function has the form

arg
[
H(ejω)

]
= arg

[
b0

a0

]
+

M∑
k=1

arg
[
1 − cke

−jω
]

−
N∑

k=1

arg
[
1 − dke

−jω
]
, (5.51)

where arg[] represents the continuous (unwrapped) phase.
The corresponding group delay for a rational system function is

grd[H(ejω)] =
N∑

k=1

d

dω
(arg[1 − dke

−jω]) −
M∑

k=1

d

dω
(arg[1 − cke

−jω]). (5.52)

292 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

An equivalent expression is

grd[H(ejω)] =
N∑

k=1

|dk|2 − Re{dke
−jω}

1 + |dk|2 − 2Re{dke−jω} −
M∑

k=1

|ck|2 − Re{cke
−jω}

1 + |ck|2 − 2Re{cke−jω} . (5.53)

In Eq. (5.51), as written, the phase of each of the terms is ambiguous; i.e., any integer
multiple of 2π can be added to each term at each value of ω without changing the
value of the complex number. The expression for the group delay, on the other hand, is
defined in terms of the derivative of the unwrapped phase.

Equations (5.50), (5.51), and (5.53) represent the magnitude in dB, the phase, and
the group delay, respectively, as a sum of contributions from each of the poles and zeros
of the system function. Consequently, to gain an understanding of how the pole and zero
locations of higher-order stable systems impact the frequency response, it is useful to
consider in detail the frequency response of 1st-order and 2nd-order systems in relation
to their pole and zero locations.

5.3.1 Frequency Response of 1st-Order Systems

In this section, we examine the properties of a single factor of the form (1 − rejθ e−jω),
where r is the radius and θ is the angle of the pole or zero in the z-plane. This factor is
typical of either a pole or a zero at a radius r and angle θ in the z-plane.

The square of the magnitude of such a factor is

|1 − rejθ e−jω|2 = (1 − rejθ e−jω)(1 − re−jθ ejω) = 1 + r2 − 2r cos(ω − θ). (5.54)

The gain in dB associated with this factor is

(+/−)20 log10 |1 − rejθ e−jω| = (+/−)10 log10[1 + r2 − 2r cos(ω − θ)], (5.55)

with a positive sign if the factor represents a zero and a negative sign if it represents a
pole.

The contribution to the principal value of the phase for such a factor is

(+/−)ARG[1 − rejθ e−jω] = (+/−) arctan
[

r sin(ω − θ)

1 − r cos(ω − θ)

]
. (5.56)

Differentiating the right-hand side of Eq. (5.56) (except at discontinuities) gives the
contribution to the group delay of the factor as

(+/−)grd[1 − rejθ e−jω] = (+/−)
r2 − r cos(ω − θ)

1 + r2 − 2r cos(ω − θ)
= (+/−)

r2 − r cos(ω − θ)

|1 − rejθ e−jω|2 .

(5.57)
again, with the positive sign for a zero and a negative sign for a pole. The functions in
Eqs. (5.54)–(5.57) are, of course, periodic in ω with period 2π . Figure 5.9(a) shows a
plot of Eq. (5.55) as a function of ω over one period (0 ≤ ω < 2π) for several values of
θ with r = 0.9.

Figure 5.9(b) shows the phase function in Eq. (5.56) as a function of ω for r = 0.9
and several values of θ . Note that the phase is zero at ω = θ and that, for fixed r , the
function simply shifts with θ . Figure 5.9(c) shows the group delay function in Eq. (5.57)
for the same conditions on r and θ . Note that the high positive slope of the phase around
ω = θ corresponds to a large negative peak in the group delay function at ω = θ .

In inferring frequency response characteristics from pole–zero plots of either
continuous-time or discrete-time systems, the associated vector diagrams in the

dB
Radian frequency (�)

0
2

� � 3� 2�
–25

–20

–15

–10

0

–5

5

10

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–1.5

–1.0

–0.5

0

1.0

0.5

1.5

2

(b)

Sa
m

pl
es

Radian frequency (�)

0

 = 0

 =

 = �

�

2
� � 3� 2�

–10

–8

–6

–4

–2

2

0

2

(c)

2

Figure 5.9 Frequency response for a single zero, with r = 0.9 and the three
values of θ shown. (a) Log magnitude. (b) Phase. (c) Group delay. 293

294 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Re

Im z-plane

v2 v1

v3

	3

�

Figure 5.10 z -plane vectors for a
1st-order system function evaluated on
the unit circle, with r < 1.

complex plane are typically helpful. In this construction, each pole and zero factor can
be represented by a vector in the z-plane from the pole or zero to a point on the unit
circle. For a 1st-order system function of the form

H(z) = (1 − rejθ z−1) = (z − rejθ)

z
, r < 1, (5.58)

the pole–zero pattern is illustrated in Figure 5.10. Also indicated in this figure are the
vectors v1, v2, and v3 = v1 − v2, representing the complex numbers ejω, rejθ , and
(ejω − rejθ), respectively. In terms of these vectors, the magnitude of the complex
number

ejω − rejθ

ejω

is the ratio of the magnitudes of the vectors v3 and v1, i.e.,

|1 − rejθ e−jω| =
∣∣∣∣ejω − rejθ

ejω

∣∣∣∣ = |v3|
|v1| , (5.59)

or, since |v1| = 1, Eq. (5.59) is just equal to |v3|. The corresponding phase is
� (1 − rejθ e−jω) = � (ejω − rejθ) − � (ejω) = � (v3) − � (v1)

= φ3 − φ1 = φ3 − ω.
(5.60)

Thus, the contribution of a single factor (1 − rejθ z−1) to the magnitude function at
frequency ω is the length of the vector v3 from the zero to the point z = ejω on the unit
circle. The vector has minimum length when ω = θ . This accounts for the sharp dip in
the magnitude function at ω = θ in Figure 5.9(a). The vector v1 from the pole at z = 0 to
z = ejω always has unit length. Thus, it does not have any effect on the magnitude re-
sponse. Equation (5.60) states that the phase function is equal to the difference between
the angle of the vector from the zero at rejθ to the point z = ejω and the angle of the
vector from the pole at z = 0 to the point z = ejω.

The dependence of the frequency-response contributions of a single factor
(1 − rejθ e−jω) on the radius r is shown in Figure 5.11 for θ = π and several values of r .

dB
Radian frequency (�)

0
2

� � 3� 2�
–30

–20

–10

0

10

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–2

–1

0

1

2

2

(b)

Sa
m

pl
es

Radian frequency (�)

0

r = 0.5

r = 1

r = 0.7

r = 0.9

2
� � 3� 2�

–10

–8

–6

–4

–2

2

0

2

(c)

Figure 5.11 Frequency response for a single zero, with θ = π, r = 1, 0.9, 0.7,
and 0.5. (a) Log magnitude. (b) Phase. (c) Group delay for r = 0.9, 0.7, and 0.5. 295

296 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Note that the log magnitude function plotted in Figure 5.11(a) dips more sharply as
r becomes closer to 1; indeed, the magnitude in dB approaches −∞ at ω = θ as r

approaches 1. The phase function plotted in Figure 5.11(b) has positive slope around
ω = θ , which becomes infinite as r approaches 1. Thus, for r = 1, the phase function is
discontinuous, with a jump of π radians at ω = θ . Away from ω = θ , the slope of the
phase function is negative. Since the group delay is the negative of the slope of the phase
curve, the group delay is negative around ω = θ , and it dips sharply as r approaches 1
becoming an impulse (not shown) when r = 1. Figure 5.11(c) shows that as we move
away from ω = θ , the group delay becomes positive and relatively flat.

5.3.2 Examples with Multiple Poles and Zeros

In this section, we utilize and expand the discussion of Section 5.3.1 to determine the
frequency response of systems with rational system functions.

Example 5.6 2nd-Order IIR System

Consider the 2nd-order system

H(z) = 1

(1 − rejθ z−1)(1 − re−jθ z−1)
= 1

1 − 2r cos θz−1 + r2z−2
. (5.61)

The difference equation satisfied by the input and output of the system is

y[n] − 2r cos θy[n − 1] + r2y[n − 2] = x[n].
Using the partial fraction expansion technique, we can show that the impulse response
of a causal system with this system function is

h[n] = rn sin[θ(n + 1)]
sin θ

u[n]. (5.62)

The system function in Eq. (5.61) has a pole at z = rejθ and at the conjugate
location, z = re−jθ , and two zeros at z = 0. The pole–zero plot is shown in Figure 5.12.

Re

Im z-plane

v2

v1

v3

–

�

Unit circle

Figure 5.12 Pole–zero plot for Example 5.6.

Section 5.3 Frequency Response for Rational System Functions 297

From our discussion in Section 5.3.1,

20 log10 |H(ejω)| = − 10 log10[1 + r2 − 2r cos(ω − θ)]
− 10 log10[1 + r2 − 2r cos(ω + θ)],

(5.63a)

� H(ejω) = − arctan
[

r sin(ω − θ)

1 − r cos(ω − θ)

]
− arctan

[
r sin(ω + θ)

1 − r cos(ω + θ)

]
, (5.63b)

and

grd[H(ejω)] = − r2 − r cos(ω − θ)

1 + r2 − 2r cos(ω − θ)
− r2 − r cos(ω + θ)

1 + r2 − 2r cos(ω + θ)
. (5.63c)

These functions are plotted in Figure 5.13 for r = 0.9 and θ = π/4.
Figure 5.12 shows the pole and zero vectors v1, v2, and v3. The magnitude re-

sponse is the product of the lengths of the zero vectors (which in this case are always
unity), divided by the product of the lengths of the pole vectors. That is,

|H(ejω)| = |v3|2
|v1| · |v2| = 1

|v1| · |v2| . (5.64)

When ω ≈ θ , the length of the vector v1 = ejω − rejθ becomes small and changes
significantly as ω varies about θ , whereas the length of the vector v2 = ejω − re−jθ

changes only slightly as ω varies around ω = θ . Thus, the pole at angle θ dominates
the frequency response around ω = θ , as is evident from Figure 5.13. By symmetry,
the pole at angle −θ dominates the frequency response around ω = −θ .

dB

Radian frequency (�)

0
2

� � 3� 2�
–10

–6

0

5

10

15

20

2

(a)

Figure 5.13 Frequency response for a complex-conjugate pair of poles as in
Example 5.6, with r = 0.9, θ = π/4. (a) Log magnitude.

298 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–2

–1

0

1

2

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
–2

0

2

4

6

8

10

2

(c)

Figure 5.13 (continued) Frequency response for a complex-conjugate pair of
poles as in Example 5.6, with r = 0.9, θ = π/4. (b) Phase. (c) Group delay.

Example 5.7 2nd-Order FIR System

In this example we consider an FIR system whose impulse response is

h[n] = δ[n] − 2r cos θδ[n − 1] + r2δ[n − 2]. (5.65)

The corresponding system function is

H(z) = 1 − 2r cos θz−1 + r2z−2, (5.66)

which is the reciprocal of the system function in Example 5.6. Therefore, the frequency-
response plots for this FIR system are simply the negative of the plots in Figure 5.13.
Note that the pole and zero locations are interchanged in the reciprocal.

Section 5.3 Frequency Response for Rational System Functions 299

Example 5.8 3rd–Order IIR System

In this example, we consider a lowpass filter designed using one of the approximation
methods to be described in Chapter 7. The system function to be considered is

H(z) = 0.05634(1 + z−1)(1 − 1.0166z−1 + z−2)

(1 − 0.683z−1)(1 − 1.4461z−1 + 0.7957z−2)
, (5.67)

and the system is specified to be stable. The zeros of this system function are at the
following locations:

Radius Angle

1 π rad
1 ±1.0376 rad (59.45◦)

The poles are at the following locations:

Radius Angle

0.683 0
0.892 ±0.6257 rad (35.85◦)

The pole–zero plot for this system is shown in Figure 5.14. Figure 5.15 shows the log
magnitude, phase, and group delay of the system. The effect of the zeros that are on the
unit circle at ω = ±1.0376 and π is clearly evident. However, the poles are placed so
that, rather than peaking for frequencies close to their angles, the total log magnitude
remains close to 0 dB over a band from ω = 0 to ω = 0.2π (and, by symmetry,
from ω = 1.8π to ω = 2π), and then it drops abruptly and remains below −25 dB
from about ω = 0.3π to 1.7π . As suggested by this example, useful approximations
to frequency-selective filter responses can be achieved using poles to build up the
magnitude response and zeros to suppress it.

Re

Im
Unit circle

z-plane

Figure 5.14 Pole–zero plot for the lowpass filter of Example 5.8.

300 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

dB

Radian frequency (�)

0
2

� � 3� 2�
–100

–80

–60

–40

–20

0

20

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
0

2

4

6

8

10

2

(c)

Figure 5.15 Frequency response for the lowpass filter of Example 5.8. (a) Log
magnitude. (b) Phase. (c) Group delay.

Section 5.4 Relationship between Magnitude and Phase 301

In this example, we see both types of discontinuities in the plotted phase curve. At
ω ≈ 0.22π , there is a discontinuity of 2π owing to the use of the principal value in plotting.
At ω = ±1.0376 and ω = π , the discontinuities of π are due to the zeros on the unit circle.

5.4 RELATIONSHIP BETWEEN MAGNITUDE AND PHASE

In general, knowledge about the magnitude of the frequency response of an LTI system
provides no information about the phase, and vice versa. However, for systems described
by linear constant-coefficient difference equations, i.e., rational system functions, there
is some constraint between magnitude and phase. In particular, as we discuss in this
section, if the magnitude of the frequency response and the number of poles and zeros
are known, then there are only a finite number of choices for the associated phase.
Similarly, if the number of poles and zeros and the phase are known, then, to within a
scale factor, there are only a finite number of choices for the magnitude. Furthermore,
under a constraint referred to as minimum phase, the frequency-response magnitude
specifies the phase uniquely, and the frequency-response phase specifies the magnitude
to within a scale factor.

To explore the possible choices of system function, given the square of the mag-
nitude of the system frequency response, we consider |H(ejω)|2 expressed as

|H(ejω)|2 = H(ejω)H ∗(ejω)

= H(z)H ∗(1/z∗)|z=ejω .
(5.68)

Restricting the system function H(z) to be rational in the form of Eq. (5.21), i.e.,

H(z) =
(

b0

a0

) M∏
k=1

(1 − ckz
−1)

N∏
k=1

(1 − dkz
−1)

, (5.69)

we see that H ∗(1/z∗) in Eq. (5.68) is

H ∗
(

1
z∗

)
=
(

b0

a0

) M∏
k=1

(1 − c∗
kz)

N∏
k=1

(1 − d∗
k z)

, (5.70)

wherein we have assumed that a0 and b0 are real. Therefore, Eq. (5.68) states that the
square of the magnitude of the frequency response is the evaluation on the unit circle

302 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

of the z-transform

C(z) = H(z)H ∗(1/z∗) (5.71)

=
(

b0

a0

)2

M∏
k=1

(1 − ckz
−1)(1 − c∗

kz)

N∏
k=1

(1 − dkz
−1)(1 − d∗

k z)

. (5.72)

If we know |H(ejω)|2 expressed as a function of ejω, then by replacing ejω by z, we
can construct C(z). From C(z), we would like to infer as much as possible about H(z).
We first note that for each pole dk of H(z), there is a pole of C(z) at dk and (d∗

k)−1.
Similarly, for each zero ck of H(z), there is a zero of C(z) at ck and (c∗

k)
−1. Consequently,

the poles and zeros of C(z) occur in conjugate reciprocal pairs, with one element of
each pair associated with H(z) and one element of each pair associated with H ∗(1/z∗).
Furthermore, if one element of each pair is inside the unit circle, then the other (i.e.,
the conjugate reciprocal) will be outside the unit circle. The only other alternative is for
both to be on the unit circle in the same location.

If H(z) is assumed to correspond to a causal, stable system, then all its poles must
lie inside the unit circle. With this constraint, the poles of H(z) can be identified from the
poles of C(z). However, with this constraint alone, the zeros of H(z) cannot be uniquely
identified from the zeros of C(z). This can be seen from the following example.

Example 5.9 Different Systems with the Same C(z)

Consider two different stable systems with system functions

H 1(z) = 2(1 − z−1)(1 + 0.5z−1)

(1 − 0.8ejπ/4z−1)(1 − 0.8e−jπ/4z−1)
(5.73)

and

H 2(z) = (1 − z−1)(1 + 2z−1)

(1 − 0.8ejπ/4z−1)(1 − 0.8e−jπ/4z−1)
. (5.74)

The pole–zero plots for these systems are shown in Figures 5.16(a) and 5.16(b), re-
spectively. The two systems have identical pole locations and both have a zero at z = 1
but differ in the location of the second zero.

Now,

C1(z) = H 1(z)H∗
1(1/z∗)

= 2(1 − z−1)(1 + 0.5z−1)2(1 − z)(1 + 0.5z)

(1 − 0.8ejπ/4z−1)(1 − 0.8e−jπ/4z−1)(1 − 0.8e−jπ/4z)(1 − 0.8ejπ/4z)

(5.75)

and

C2(z) = H 2(z)H∗
2(1/z∗)

= (1 − z−1)(1 + 2z−1)(1 − z)(1 + 2z)

(1 − 0.8ejπ/4z−1)(1 − 0.8e−jπ/4z−1)(1 − 0.8e−jπ/4z)(1 − 0.8ejπ/4z)
.
(5.76)

Section 5.4 Relationship between Magnitude and Phase 303

Using the fact that

4(1 + 0.5z−1)(1 + 0.5z) = (1 + 2z−1)(1 + 2z), (5.77)

we see that C1(z) = C2(z). The pole–zero plot for C1(z) and C2(z), which are identical,
is shown in Figure 5.16(c).

Re

Im

Unit circle

(a)

z-plane

Re

Im

Unit circle

(b)

z-plane

Re

Im

Unit circle

(c)

z-plane

Figure 5.16 Pole–zero plots for two system functions and their common magnitude-
squared function. (a) H1(z). (b) H2(z). (c) C1(z), C2(z).

The system functions H 1(z) and H 2(z) in Example 5.9 differ only in the location
of one of the zeros. In the example, the factor 2(1+ 0.5z−1) = (z−1 + 2) contributes the
same to the square of the magnitude of the frequency response as the factor (1 + 2z−1),
and consequently, |H 1(e

jω)| and |H 2(e
jω)| are equal. However, the phase functions for

these two frequency responses are different.

304 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Example 5.10 Determination of H(z) from C(z)

Suppose we are given the pole–zero plot for C(z) in Figure 5.17 and want to determine
the poles and zeros to associate with H(z). The conjugate reciprocal pairs of poles and
zeros for which one element of each is associated with H(z) and one with H∗(1/z∗)

are as follows:

Pole pair 1 : (p 1, p 4)

Pole pair 2 : (p 2, p 5)

Pole pair 3 : (p 3, p 6)

Zero pair 1 : (z 1, z 4)

Zero pair 2 : (z 2, z 5)

Zero pair 3 : (z 3, z 6)

Knowing that H(z) corresponds to a stable, causal system, we must choose the poles
from each pair that are inside the unit circle, i.e., p 1, p 2, and p 3. No such constraint
is imposed on the zeros. However, if we assume that the coefficients ak and bk are
real in Eqs. (5.19) and (5.20), the zeros (and poles) either are real or occur in complex
conjugate pairs. Consequently, the zeros to associate with H(z) are

z 3 or z 6

and

(z 1, z 2) or (z 4, z 5).

Therefore, there are a total of four different stable, causal systems with three poles
and three zeros for which the pole–zero plot of C(z) is that shown in Figure 5.17 and,
equivalently, for which the frequency-response magnitude is the same. If we had not
assumed that the coefficients ak and bk were real, the number of choices would be
greater. Furthermore, if the number of poles and zeros of H(z) were not restricted,
the number of choices for H(z) would be unlimited. To see this, assume that H(z) has
a factor of the form

z−1 − a∗
1 − az−1

,

i.e.,

H(z) = H 1(z)
z−1 − a∗
1 − az−1

. (5.78)

Factors of this form represent all-pass factors, since they have unity magnitude on the
unit circle; they are discussed in more detail in Section 5.5. It is easily verified that for
H(z) in Eq. (5.78),

C(z) = H(z)H∗(1/z∗) = H 1(z)H∗
1(1/z∗); (5.79)

i.e., all-pass factors cancel in C(z) and therefore would not be identifiable from the
pole–zero plot of C(z). Consequently, if the number of poles and zeros of H(z) is
unspecified, then, given C(z), any choice for H(z) can be cascaded with an arbitrary
number of all-pass factors with poles inside the unit circle (i.e., |a| < 1).

Section 5.5 All-Pass Systems 305

Re

Im

Unit circle

z-plane

z1

z2

z3

z4

z5

z6p3

p2

p5

p4

p1

p6

Figure 5.17 Pole–zero plot for the magnitude-squared function in Example 5.10.

5.5 ALL-PASS SYSTEMS

As indicated in the discussion of Example 5.10, a stable system function of the form

H ap(z) = z−1 − a∗

1 − az−1
(5.80)

has a frequency-response magnitude that is independent of ω. This can be seen by
writing H ap(ejω) in the form

H ap(ejω) = e−jω − a∗

1 − ae−jω

= e−jω 1 − a∗ejω

1 − ae−jω
.

(5.81)

In Eq. (5.81), the term e−jω has unity magnitude, and the remaining numerator and
denominator factors are complex conjugates of each other and therefore have the same
magnitude. Consequently, |H ap(ejω)| = 1. A system for which the frequency-response
magnitude is a constant, referred to as an all-pass system, passes all of the frequency
components of its input with constant gain or attenuation.3

The most general form for the system function of an all-pass system with a real-
valued impulse response is a product of factors like Eq. (5.80), with complex poles being

3In some discussions, an all-pass system is defined to have gain of unity. In this text, we use the term
all-pass system to refer to a system that passes all frequencies with a constant gain A that is not restricted to
be unity.

306 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Re

Im
Unit
circle

2

0.8

z-plane

1
2

�
4

3
4

–4
3

–

Figure 5.18 Typical pole–zero plot for
an all-pass system.

paired with their conjugates; i.e.,

H ap(z) = A

Mr∏
k=1

z−1 − dk

1 − dkz−1

Mc∏
k=1

(z−1 − e∗
k)(z

−1 − ek)

(1 − ekz−1)(1 − e∗
kz

−1)
, (5.82)

where A is a positive constant and the dks are the real poles, and the eks the complex
poles, of H ap(z). For causal and stable all-pass systems, |dk| < 1 and |ek| < 1. In terms
of our general notation for system functions, all-pass systems have M = N = 2Mc +Mr

poles and zeros. Figure 5.18 shows a typical pole–zero plot for an all-pass system. In
this case Mr = 2 and Mc = 1. Note that each pole of H ap(z) is paired with a conjugate
reciprocal zero.

The frequency response for a general all-pass system can be expressed in terms
of the frequency responses of 1st-order all-pass systems like that specified in Eq. (5.80).
For a causal all-pass system, each of these terms consists of a single pole inside the unit
circle and a zero at the conjugate reciprocal location. The magnitude response for such a
term is unity, as we have shown. Thus, the log magnitude in dB is zero. With a expressed
in polar form as a = rejθ , the phase function for Eq. (5.80) is

� [e−jω − re−jθ

1 − rejθ e−jω

]
= −ω − 2 arctan

[
r sin(ω − θ)

1 − r cos(ω − θ)

]
. (5.83)

Likewise, the phase of a 2nd-order all-pass system with poles at z = rejθ and
z = re−jθ is

� [(e−jω − re−jθ)(e−jω − rejθ)

(1 − rejθ e−jω)(1 − re−jθ e−jω)

]
= −2ω − 2 arctan

[
r sin(ω − θ)

1 − r cos(ω − θ)

]

−2 arctan
[

r sin(ω + θ)

1 − r cos(ω + θ)

]
.

(5.84)

Section 5.5 All-Pass Systems 307

Example 5.11 1st- and 2nd-Order All-Pass Systems

Figure 5.19 shows plots of the log magnitude, phase, and group delay for two 1st-order
all-pass systems, one with a pole at z = 0.9 (θ = 0, r = 0.9) and another with a

dB
Radian frequency (�)

0
2

� � 3� 2�
–2

–1

0

1

2

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
0

5

10

15

20

2

(c)

z = 0.9

z = –0.9

Figure 5.19 Frequency response for all-pass filters with real poles at z = 0.9
(solid line) and z = −0.9 (dashed line). (a) Log magnitude. (b) Phase (principal
value). (c) Group delay.

308 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

pole at z = −0.9 (θ = π, r = 0.9). For both systems, the radii of the poles are r = 0.9.
Likewise, Figure 5.20 shows the same functions for a 2nd-order all-pass system with
poles at z = 0.9ejπ/4 and z = 0.9e−jπ/4.

dB

Radian frequency (�)
0

2
� � 3� 2�

–2

–1

0

1

2

2
(a)

R
ad

ia
ns

Radian frequency (�)
0

2
� � 3� 2�

–4

–2

0

2

4

2
(b)

Sa
m

pl
es

Radian frequency (�)
0

2
� � 3� 2�

0

5

10

15

20

2
(c)

Figure 5.20 Frequency response of 2nd-order all-pass system with poles at z =
0.9e±jπ/4. (a) Log magnitude. (b) Phase (principal value). (c) Group delay.

Section 5.5 All-Pass Systems 309

Example 5.11 illustrates a general property of causal all-pass systems. In Fig-
ure 5.19(b), we see that the phase is nonpositive for 0 < ω < π . Similarly, in Fig-
ure 5.20(b), if the discontinuity of 2π resulting from the computation of the principal
value is removed, the resulting continuous-phase curve is nonpositive for 0 < ω < π .
Since the more general all-pass system given by Eq. (5.82) is a product of only such 1st-
and 2nd-order factors, we can conclude that the (unwrapped) phase, arg[H ap(ejω)], of
a causal all-pass system is always nonpositive for 0 < ω < π . This may not appear to
be true if the principal value is plotted, as is illustrated in Figure 5.21, which shows the
log magnitude, phase, and group delay for an all-pass system with poles and zeros as in
Figure 5.18. However, we can establish this result by first considering the group delay.

The group delay of the simple one-pole all-pass system of Eq. (5.80) is the negative
derivative of the phase given by Eq. (5.83). With a small amount of algebra, it can be
shown that

grd
[
e−jω − re−jθ

1 − rejθ e−jω

]
= 1 − r2

1 + r2 − 2r cos(ω − θ)
= 1 − r2

|1 − rejθ e−jω|2 . (5.85)

Since r < 1 for a stable and causal all-pass system, from Eq. (5.85) the group delay
contributed by a single causal all-pass factor is always positive. Since the group delay of
a higher-order all-pass system will be a sum of positive terms, as in Eq. (5.85), it is true
in general that the group delay of a causal rational all-pass system is always positive.
This is confirmed by Figures 5.19(c), 5.20(c), and 5.21(c), which show the group delay
for 1st-order, 2nd-order, and 3rd-order all-pass systems, respectively.

The positivity of the group delay of a causal all-pass system is the basis for a simple
proof of the negativity of the phase of such a system. First, note that

arg[H ap(ejω)] = −
∫ ω

0
grd[H ap(ejφ)]dφ + arg[H ap(ej0)] (5.86)

for 0 ≤ ω ≤ π . From Eq. (5.82), it follows that

H ap(ej0) = A

Mr∏
k=1

1 − dk

1 − dk

Mc∏
k=1

|1 − ek|2
|1 − ek|2 = A. (5.87)

Therefore, arg[H ap(ej0)] = 0, and since

grd[H ap(ejω)] ≥ 0, (5.88)

it follows from Eq. (5.86) that

arg[H ap(ejω)] ≤ 0 for 0 ≤ ω < π. (5.89)

The positivity of the group delay and the nonpositivity of the unwrapped phase are
important properties of causal all-pass systems.

All-pass systems have importance in many contexts. They can be used as compen-
sators for phase (or group delay) distortion, as we will see in Chapter 7, and they are use-
ful in the theory of minimum-phase systems, as we will see in Section 5.6. They are also
useful in transforming frequency-selective lowpass filters into other frequency-selective
forms and in obtaining variable-cutoff frequency-selective filters. These applications are
discussed in Chapter 7 and applied in the problems in that chapter.

dB

Radian frequency (�)

0
2

� � 3� 2�
–2

–1

0

1

2

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
0

3

6

9

12

2

(c)

Figure 5.21 Frequency response for
an all-pass system with the pole–zero
plot in Figure 5.18. (a) Log magnitude.
(b) Phase (principal value). (c) Group
delay.

310

Section 5.6 Minimum-Phase Systems 311

5.6 MINIMUM-PHASE SYSTEMS

In Section 5.4, we showed that the frequency-response magnitude for an LTI system
with rational system function does not uniquely characterize the system. If the system is
stable and causal, the poles must be inside the unit circle, but stability and causality place
no such restriction on the zeros. For certain classes of problems, it is useful to impose
the additional restriction that the inverse system (one with system function 1/H(z))

also be stable and causal. As discussed in Section 5.2.2, this then restricts the zeros, as
well as the poles, to be inside the unit circle, since the poles of 1/H(z) are the zeros of
H(z). Such systems are commonly referred to as minimum-phase systems. The name
minimum-phase comes from a property of the phase response, which is not obvious
from the preceding definition. This and other fundamental properties that we discuss
are unique to this class of systems, and therefore, any one of them could be taken as the
definition of the class. These properties are developed in Section 5.6.3.

If we are given a magnitude-squared function in the form of Eq. (5.72), and we
know that both the system and its inverse are causal and stable (i.e., is a minimum-phase
system), then H(z) is uniquely determined and will consist of all the poles and zeros of
C(z) = H(z)H ∗(1/z∗) that lie inside the unit circle.4 This approach is often followed
in filter design when only the magnitude response is determined by the design method
used. (See Chapter 7.)

5.6.1 Minimum-Phase and All-Pass Decomposition

In Section 5.4, we saw that, from the square of the magnitude of the frequency response
alone, we could not uniquely determine the system function H(z), since any choice
that had the given frequency-response magnitude could be cascaded with arbitrary all-
pass factors without affecting the magnitude. A related observation is that any rational
system function5 can be expressed as

H(z) = Hmin(z)H ap(z), (5.90)
where Hmin(z) is a minimum-phase system and H ap(z) is an all-pass system.

To show this, suppose that H(z) has one zero outside the unit circle at z = 1/c∗,
where |c| < 1, and the remaining poles and zeros are inside the unit circle. Then H(z)

can be expressed as
H(z) = H 1(z)(z

−1 − c∗), (5.91)
where, by definition, H 1(z) is minimum phase. An equivalent expression for H(z) is

H(z) = H 1(z)(1 − cz−1)
z−1 − c∗

1 − cz−1
. (5.92)

Since |c| < 1, the factor H 1(z)(1−cz−1) also is minimum phase, and it differs from H(z)

only in that the zero of H(z) that was outside the unit circle at z = 1/c∗ is reflected inside
the unit circle to the conjugate reciprocal location z = c. The term (z−1 − c∗)/(1− cz−1)

4We have assumed that C(z) has no poles or zeros on the unit circle. Strictly speaking, systems with
poles on the unit circle are unstable and are generally to be avoided in practice. Zeros on the unit circle,
however, often occur in practical filter designs. By our definition, such systems are nonminimum phase, but
many of the properties of minimum-phase systems hold even in this case.

5Somewhat for convenience, we will restrict the discussion to stable, causal systems, although the
observation applies more generally.

312 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

is all-pass. This example can be generalized in a straightforward way to include more
zeros outside the unit circle, thereby showing that, in general, any system function can
be expressed as

H(z) = Hmin(z)H ap(z), (5.93)

where Hmin(z) contains all the poles and zeros of H(z) that lie inside the unit circle, to-
gether with zeros that are the conjugate reciprocals of the zeros of H(z) that lie outside
the unit circle. The system function H ap(z) is comprised of all the zeros of H(z) that lie
outside the unit circle, together with poles to cancel the reflected conjugate reciprocal
zeros in Hmin(z).

Using Eq. (5.93), we can form a nonminimum-phase system from a minimum-
phase system by reflecting one or more zeros lying inside the unit circle to their conjugate
reciprocal locations outside the unit circle, or, conversely, we can form a minimum-
phase system from a nonminimum-phase system by reflecting all the zeros lying outside
the unit circle to their conjugate reciprocal locations inside. In either case, both the
minimum-phase and the nonminimum-phase systems will have the same frequency-
response magnitude.

Example 5.12 Minimum-Phase/All-Pass Decomposition

To illustrate the decomposition of a stable, causal system into the cascade of a minimum-
phase and an all-pass system, consider the two stable, causal systems specified by the
system functions

H 1(z) = (1 + 3z−1)

1 + 1
2 z−1

and

H 2(z) =
(

1 + 3
2 e+jπ/4z−1

) (
1 + 3

2 e−jπ/4z−1
)

(
1 − 1

3z−1
) .

The first system function, H 1(z), has a pole inside the unit circle at z = − 1
2 , and

a zero outside at z = −3. We will need to choose the appropriate all-pass system to
reflect this zero inside the unit circle. From Eq. (5.91), we have c = − 1

3 . Therefore,
from Eqs. (5.92) and (5.93), the all-pass component will be

H ap(z) = z−1 + 1
3

1 + 1
3z−1

,

and the minimum-phase component will be

H min(z) = 3
1 + 1

3z−1

1 + 1
2 z−1

;

i.e.,

H 1(z) =
(

3
1 + 1

3z−1

1 + 1
2 z−1

)(
z−1 + 1

3

1 + 1
3z−1

)
.

The second system function, H 2(z), has two complex zeros outside the unit circle
and a real pole inside. We can express H 2(z) in the form of Eq. (5.91) by factoring

Section 5.6 Minimum-Phase Systems 313

3
2 ejπ/4 and 3

2 e−jπ/4 out of the numerator terms to obtain

H 2(z) = 9
4

(
z−1 + 2

3 e−jπ/4
) (

z−1 + 2
3 ejπ/4

)
1 − 1

3z−1
.

Factoring as in Eq. (5.92) yields

H 2(z) =
⎡⎣9

4

(
1 + 2

3 e−jπ/4z−1
) (

1 + 2
3 ejπ/4z−1

)
1 − 1

3z−1

⎤⎦

×
⎡⎣
(
z−1 + 2

3 e−jπ/4
) (

z−1 + 2
3 ejπ/4

)
(

1 + 2
3 ejπ/4z−1

) (
1 + 2

3 e−jπ/4z−1
)
⎤⎦ .

The first term in square brackets is a minimum-phase system, while the second term
is an all-pass system.

5.6.2 Frequency-Response Compensation of
Non-Minimum-Phase Systems

In many signal-processing contexts, a signal has been distorted by an LTI system with an
undesirable frequency response. It may then be of interest to process the distorted signal
with a compensating system, as indicated in Figure 5.22. This situation may arise, for
example, in transmitting signals over a communication channel. If perfect compensation
is achieved, then sc[n] = s[n], i.e., Hc(z) is the inverse of Hd(z). However, if we assume
that the distorting system is stable and causal and require the compensating system to
be stable and causal, then perfect compensation is possible only if Hd(z) is a minimum-
phase system, so that it has a stable, causal inverse.

Based on the previous discussions, assuming that Hd(z) is known or approximated
as a rational system function, we can form a minimum-phase system Hd min(z) by re-
flecting all the zeros of Hd(z) that are outside the unit circle to their conjugate reciprocal
locations inside the unit circle. Hd(z) and Hd min(z) have the same frequency-response
magnitude and are related through an all-pass system H ap(z), i.e.,

Hd(z) = Hd min(z)H ap(z). (5.94)

Choosing the compensating filter to be

Hc(z) = 1
Hd min(z)

, (5.95)

we find that the overall system function relating s[n] and sc[n] is

G(z) = Hd(z)Hc(z) = H ap(z); (5.96)

s [n] sd[n]

G(z)

sc[n]

Distorting
system
Hd(z)

Compensating
system
Hc(z)

Figure 5.22 Illustration of distortion
compensation by linear filtering.

314 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

i.e., G(z) corresponds to an all-pass system. Consequently, the frequency-response mag-
nitude is exactly compensated for, whereas the phase response is modified to � H ap(ejω).

The following example illustrates compensation of the frequency response mag-
nitude when the system to be compensated for is a nonminimum-phase FIR system.

Example 5.13 Compensation of an FIR System

Consider the distorting system function to be

Hd(z) = (1 − 0.9ej0.6πz−1)(1 − 0.9e−j0.6πz−1)

× (1 − 1.25ej0.8πz−1)(1 − 1.25e−j0.8πz−1).

(5.97)

The pole–zero plot is shown in Figure 5.23. Since Hd(z) has only zeros (all poles are
at z = 0), it follows that the system has a finite-duration impulse response. Therefore,
the system is stable; and since Hd(z) is a polynomial with only negative powers of z,
the system is causal. However, since two of the zeros are outside the unit circle, the
system is nonminimum phase. Figure 5.24 shows the log magnitude, phase, and group
delay for Hd(ejω).

The corresponding minimum-phase system is obtained by reflecting the zeros
that occur at z = 1.25e±j0.8π to their conjugate reciprocal locations inside the unit
circle. If we express Hd(z) as

Hd(z) = (1 − 0.9ej0.6πz−1)(1 − 0.9e−j0.6πz−1)(1.25)2

× (z−1 − 0.8e−j0.8π)(z−1 − 0.8ej0.8π),

(5.98)

then
H min(z) = (1.25)2(1 − 0.9ej0.6πz−1)(1 − 0.9e−j0.6πz−1)

× (1 − 0.8e−j0.8πz−1)(1 − 0.8ej0.8πz−1),

(5.99)

and the all-pass system that relates H min(z) and Hd(z) is

H ap(z) = (z−1 − 0.8e−j0.8π)(z−1 − 0.8ej0.8π)

(1 − 0.8ej0.8πz−1)(1 − 0.8e−j0.8πz−1)
. (5.100)

The log magnitude, phase, and group delay of H min(ejω) are shown in Figure 5.25.
Figures 5.24(a) and 5.25(a) are, of course, identical. The log magnitude, phase, and
group delay for H ap(ejω) are plotted in Figure 5.26.

Re

Im
Unit
circle

4th-order
pole

z-plane

Figure 5.23 Pole–zero plot of FIR system in Example 5.13.

Section 5.6 Minimum-Phase Systems 315

dB

Radian frequency (�)

0
2

� � 3� 2�
–30

–15

0

15

30

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
–15.0

–7.5

0

7.5

15.0

2

(c)

Figure 5.24 Frequency response for FIR system with pole–zero plot in Fig-
ure 5.23. (a) Log magnitude. (b) Phase (principal value). (c) Group delay.

316 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

dB

Radian frequency (�)

0
2

� � 3� 2�
–30

–15

0

15

30

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
–15.0

–7.5

0

7.5

15.0

2

(c)

Figure 5.25 Frequency response for minimum-phase system in Example 5.13.
(a) Log magnitude. (b) Phase. (c) Group delay.

Section 5.6 Minimum-Phase Systems 317

dB

Radian frequency (�)

0
2

� � 3� 2�
–30

–15

0

15

30

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
–15.0

–7.5

0

7.5

15.0

2

(c)

Figure 5.26 Frequency response of all-pass system of Example 5.13. (The sum of
corresponding curves in Figures 5.25 and 5.26 equals the corresponding curve in
Figure 5.24 with the sum of the phase curves taken modulo 2π.) (a) Log magnitude.
(b) Phase (principal value). (c) Group delay.

318 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Note that the inverse system for Hd(z) would have poles at z = 1.25e±j0.8π and
at z = 0.9e±j0.6π , and thus, the causal inverse would be unstable. The minimum-phase
inverse would be the reciprocal of H min(z), as given by Eq. (5.99), and if this inverse
were used in the cascade system of Figure 5.22, the overall effective system function
would be H ap(z), as given in Eq. (5.100).

5.6.3 Properties of Minimum-Phase Systems

We have been using the term “minimum phase” to refer to systems that are causal
and stable and that have a causal and stable inverse. This choice of name is motivated
by a property of the phase function that, while not obvious, follows from our chosen
definition. In this section, we develop a number of interesting and important properties
of minimum-phase systems relative to all other systems that have the same frequency-
response magnitude.

The Minimum Phase-Lag Property

The use of the terminology “minimum phase” as a descriptive name for a system having
all its poles and zeros inside the unit circle is suggested by Example 5.13. Recall that, as a
consequence of Eq. (5.90), the unwrapped phase, i.e., arg[H(ejω)], of any nonminimum-
phase system can be expressed as

arg[H(ejω)] = arg[Hmin(ejω)] + arg[H ap(ejω)]. (5.101)

Therefore, the continuous phase that would correspond to the principal-value phase of
Figure 5.24(b) is the sum of the unwrapped phase associated with the minimum-phase
function of Figure 5.25(b) and the unwrapped phase of the all-pass system associated
with the principal-value phase shown in Figure 5.26(b). As was shown in Section 5.5
and as indicated by the principal-value phase curves of Figures 5.19(b), 5.20(b), 5.21(b),
and 5.26(b), the unwrapped-phase curve of an all-pass system is negative for 0 ≤ ω ≤
π . Thus, the reflection of zeros of Hmin(z) from inside the unit circle to conjugate
reciprocal locations outside always decreases the (unwrapped) phase or increases the
negative of the phase, which is called the phase-lag function. Hence, the causal, stable
system that has |Hmin(ejω)| as its magnitude response and also has all its zeros (and,
of course, poles) inside the unit circle has the minimum phase-lag function (for 0 ≤
ω < π) of all the systems having that same magnitude response. Therefore, a more
precise terminology is minimum phase-lag system, but minimum phase is historically
the established terminology.

To make the interpretation of minimum phase-lag systems more precise, it is
necessary to impose the additional constraint that H(ejω) be positive at ω = 0, i.e.,

H(ej0) =
∞∑

n=−∞
h[n] > 0. (5.102)

Note that H(ej0) will be real if we restrict h[n] to be real. The condition of Eq. (5.102) is
necessary because a system with impulse response −h[n] has the same poles and zeros
for its system function as a system with impulse response h[n]. However, multiplying by
−1 would alter the phase by π radians. Thus, to remove this ambiguity, we impose the
condition of Eq. (5.102) to ensure that a system with all its poles and zeros inside the

Section 5.6 Minimum-Phase Systems 319

unit circle also has the minimum phase-lag property. However, this constraint is often
of little significance, and our definition at the beginning of Section 5.6, which does not
include it, is the generally accepted definition of the class of minimum-phase systems.

The Minimum Group-Delay Property

Example 5.13 illustrates another property of systems whose poles and zeros are all
inside the unit circle. First, note that the group delay for the systems that have the same
magnitude response is

grd[H(ejω)] = grd[Hmin(ejω)] + grd[H ap(ejω)]. (5.103)

The group delay for the minimum-phase system shown in Figure 5.25(c) is always less
than the group delay for the nonminimum-phase system shown in Figure 5.24(c). This is
because, as Figure 5.26(c) shows, the all-pass system that converts the minimum-phase
system into the nonminimum-phase system has a positive group delay. In Section 5.5, we
showed this to be a general property of all-pass systems; they always have positive group
delay for all ω. Thus, if we again consider all the systems that have a given magnitude
response |Hmin(ejω)|, the one that has all its poles and zeros inside the unit circle has the
minimum group delay. An equally appropriate name for such systems would therefore
be minimum group-delay systems, but this terminology is not generally used.

The Minimum Energy-Delay Property

In Example 5.13, there are a total of four causal FIR systems with real impulse responses
that have the same frequency-response magnitude as the system in Eq. (5.97). The as-
sociated pole–zero plots are shown in Figure 5.27, where Figure 5.27(d) corresponds
to Eq. (5.97) and Figure 5.27(a) to the minimum-phase system of Eq. (5.99). The im-
pulse responses for these four cases are plotted in Figure 5.28. If we compare the four
sequences in this figure, we observe that the minimum-phase sequence appears to have
larger samples at its left-hand end than do all the other sequences. Indeed, it is true for
this example and, in general, that

|h[0]| ≤ |hmin[0]| (5.104)

for any causal, stable sequence h[n] for which

|H(ejω)| = |Hmin(ejω)|. (5.105)

A proof of this property is suggested in Problem 5.71.
All the impulse responses whose frequency-response magnitude is equal to

|Hmin(ejω)| have the same total energy as hmin[n], since, by Parseval’s theorem,
∞∑

n=0

|h[n]|2 = 1
2π

∫ π

−π

|H(ejω)|2dω = 1
2π

∫ π

−π

|Hmin(ejω)|2dω

=
∞∑

n=0

|hmin[n]|2.
(5.106)

If we define the partial energy of the impulse response as

E [n] =
n∑

m=0

|h[m]|2, (5.107)

320 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Re

ImUnit
circle

4th-order
pole

z-plane

(a)

Re

ImUnit
circle

4th-order
pole

z-plane

(b)

Re

ImUnit
circle

4th-order
pole

z-plane

(c)

Re

ImUnit
circle

4th-order
pole

z-plane

(d)

Figure 5.27 Four systems, all having the same frequency-response magnitude.
Zeros are at all combinations of the complex conjugate zero pairs 0.9e±j0.6π and
0.8e±j0.8π and their reciprocals.

then it can be shown that (see Problem 5.72)
n∑

m=0

|h[m]|2 ≤
n∑

m=0

|hmin[m]|2 (5.108)

for all impulse responses h[n] belonging to the family of systems that have magni-
tude response given by Eq. (5.105). According to Eq. (5.108), the partial energy of
the minimum-phase system is most concentrated around n = 0; i.e., the energy of the
minimum-phase system is delayed the least of all systems having the same magnitude
response function. For this reason, minimum-phase (lag) systems are also called min-
imum energy-delay systems, or simply, minimum-delay systems. This delay property is
illustrated by Figure 5.29, which shows plots of the partial energy for the four sequences
in Figure 5.28. We note for this example—and it is true in general—that the minimum
energy delay occurs for the system that has all its zeros inside the unit circle (i.e., the
minimum-phase system) and the maximum energy delay occurs for the system that has
all its zeros outside the unit circle. Maximum energy-delay systems are also often called
maximum-phase systems.

65432

(a)

10

1.56

–1–2

ha[n]

n

2.89
3.39

2.19

0.81

65432

(b)

10

0.81

–1–2

hb[n]

n

2.19

3.39

2.89

1.56

65432

(c)

10

1.26

–1–2

hc[n]

n

2.51

3.50

2.58

1.00

65432

(d)

10

1.00

–1–2

hd[n]

n

2.58

3.50

2.51

1.26

Figure 5.28 Sequences corresponding to the pole–zero plots of Figure 5.27.

321

322 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

P
ar

ti
al

 e
ne

rg
y

1 2 3 4 50

10

20

30

n

Ea[n] (minimum phase)

Eb[n] (maximum phase)

Ec[n]

Ed[n]

Figure 5.29 Partial energies for the four sequences of Figure 5.28. (Note that
Ea [n] is for the minimum-phase sequence ha [n] and Eb [n] is for the maximum-
phase sequence hb [n].)

5.7 LINEAR SYSTEMS WITH GENERALIZED LINEAR
PHASE

In designing filters and other signal-processing systems that pass some portion of the
frequency band undistorted, it is desirable to have approximately constant frequency-
response magnitude and zero phase in that band. For causal systems, zero phase is
not attainable, consequently, some phase distortion must be allowed. As we saw in
Section 5.1, the effect of linear phase with integer slope is a simple time shift. A nonlinear
phase, on the other hand, can have a major effect on the shape of a signal, even when
the frequency-response magnitude is constant. Thus, in many situations it is particularly
desirable to design systems to have exactly or approximately linear phase. In this section,
we consider a formalization and generalization of the notions of linear phase and ideal
time delay by considering the class of systems that have constant group delay. We begin
by reconsidering the concept of delay in a discrete-time system.

5.7.1 Systems with Linear Phase

Consider an LTI system whose frequency response over one period is

H id(ejω) = e−jωα, |ω| < π, (5.109)

where α is a real number, not necessarily an integer. Such a system is an “ideal delay”
system, where α is the delay introduced by the system. Note that this system has constant
magnitude response, linear phase, and constant group delay; i.e.,

Section 5.7 Linear Systems with Generalized Linear Phase 323

x [n] y [n]xc(t) yc(t)
D/C C/D

T T

hc(t)
Hc(j�)

H(e j�)

Figure 5.30 Interpretation of
noninteger delay in discrete-time
systems.

|H id(ejω)| = 1, (5.110a)

� H id(ejω) = −ωα, (5.110b)

grd[H id(ejω)] = α. (5.110c)

The inverse Fourier transform of H id(ejω) is the impulse response

hid[n] = sin π(n − α)

π(n − α)
, −∞ < n < ∞. (5.111)

The output of this system for an input x[n] is

y[n] = x[n] ∗ sin π(n − α)

π(n − α)
=

∞∑
k=−∞

x[k] sin π(n − k − α)

π(n − k − α)
. (5.112)

If α = nd , where nd is an integer, then, as mentioned in Section 5.1,

hid[n] = δ[n − nd] (5.113)

and

y[n] = x[n] ∗ δ[n − nd] = x[n − nd]. (5.114)

That is, if α = nd is an integer, the system with linear phase and unity gain in Eq. (5.109)
simply shifts the input sequence by nd samples. If α is not an integer, the most straight-
forward interpretation is the one developed in Example 4.7 in Chapter 4.

Specifically, a representation of the system of Eq. (5.109) is that shown in Fig-
ure 5.30, with hc(t) = δ(t − αT) and Hc(j�) = e−j�αT , so that

H(ejω) = e−jωα, |ω| < π. (5.115)

In this representation, the choice of T is irrelevant and could simply be normalized
to unity. It is important to stress again that the representation is valid whether or not
x[n] was originally obtained by sampling a continuous-time signal. According to the
representation in Figure 5.30, y[n] is the sequence of samples of the time-shifted, band-
limited interpolation of the input sequence x[n]; i.e., y[n] = xc(nT − αT). The system
of Eq. (5.109) is said to have a time shift of α samples, even if α is not an integer. If the
group delay α is positive, the time shift is a time delay. If α is negative, the time shift is
a time advance.

This discussion also provides a useful interpretation of linear phase when it is as-
sociated with a nonconstant magnitude response. For example, consider a more general
frequency response with linear phase, i.e.,

H(ejω) = |H(ejω)|e−jωα, |ω| < π. (5.116)

324 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

x [n] y [n]w [n]
|H(e j�)| e– j��

Figure 5.31 Representation of a
linear-phase LTI system as a cascade of
a magnitude filter and a time shift.

Equation (5.116) suggests the interpretation of Figure 5.31. The signal x[n] is filtered
by the zero-phase frequency response |H(ejω)|, and the filtered output is then “time
shifted” by the (integer or noninteger) amount α. Suppose, for example, that H(ejω) is
the linear-phase ideal lowpass filter

H lp(ejω) =
{

e−jωα, |ω| < ωc,

0, ωc < |ω| ≤ π.
(5.117)

The corresponding impulse response is

hlp[n] = sin ωc(n − α)

π(n − α)
. (5.118)

Note that Eq. (5.111) is obtained if ωc = π .

Example 5.14 Ideal Lowpass with Linear Phase

The impulse response of the ideal lowpass filter illustrates some interesting properties
of linear-phase systems. Figure 5.32(a) shows hlp[n] for ωc = 0.4π and α = nd = 5.
Note that when α is an integer, the impulse response is symmetric about n = nd ; i.e.,

hlp[2nd − n] = sin ωc(2nd − n − nd)

π(2nd − n − nd)

= sin ωc(nd − n)

π(nd − n)
(5.119)

= hlp[n].
In this case, we could define a zero-phase system

Ĥ lp(ejω) = H lp(ejω)ejωnd = |H lp(ejω)|, (5.120)

wherein the impulse response is shifted to the left by nd samples, yielding an even
sequence

ĥlp[n] = sin ωcn

πn
= ĥlp[−n]. (5.121)

Figure 5.32(b) shows hlp[n] for ωc = 0.4π and α = 4.5. This is typical of the case when
the linear phase corresponds to an integer plus one-half. As in the case of the integer
delay, it is easily shown that if α is an integer plus one-half (or 2α is an integer), then

hlp[2α − n] = hlp[n]. (5.122)

In this case, the point of symmetry is α, which is not an integer. Therefore, since the
symmetry is not about a point of the sequence, it is not possible to shift the sequence to
obtain an even sequence that has zero phase. This is similar to the case of Example 4.8
with M odd.

Figure 5.32(c) represents a third case, in which there is no symmetry at all. In
this case, ωc = 0.4π and α = 4.3.

Section 5.7 Linear Systems with Generalized Linear Phase 325

A
m

pl
it

ud
e

Sample number (n)

–5 0 5 10 15
–0.2

0

0.2

0.4

0.6

(a)

A
m

pl
it

ud
e

Sample number (n)

–5 0 5 10 15
–0.2

0

0.2

0.4

0.6

(b)

A
m

pl
it

ud
e

Sample number (n)

–5 0 5 10 15
–0.2

0

0.2

0.4

0.6

(c)

Figure 5.32 Ideal lowpass filter impulse responses, with ωc = 0.4π. (a) Delay
= α = 5. (b) Delay = α = 4.5. (c) Delay = α = 4.3.

326 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

In general a linear-phase system has frequency response

H(ejω) = |H(ejω)|e−jωα. (5.123)

As illustrated in Example 5.14, if 2α is an integer (i.e., if α is an integer or an
integer plus one-half), the corresponding impulse response has even symmetry about
α; i.e.,

h[2α − n] = h[n]. (5.124)

If 2α is not an integer, then the impulse response will not have symmetry. This is illus-
trated in Figure 5.32(c), which shows an impulse response that is not symmetric, but
that has linear phase, or equivalently, constant group delay.

5.7.2 Generalized Linear Phase

In the discussion in Section 5.7.1, we considered a class of systems whose frequency
response is of the form of Eq. (5.116), i.e., a real-valued nonnegative function of ω

multiplied by a linear-phase term e−jωα . For a frequency response of this form, the phase
of H(ejω) is entirely associated with the linear-phase factor e−jωα , i.e., arg[H(ejω)] =
−ωα, and consequently, systems in this class are referred to as linear-phase systems. In
the moving average of Example 4.8, the frequency response in Eq. (4.66) is a real-valued
function of ω multiplied by a linear-phase term, but the system is not, strictly speaking,
a linear-phase system, since, at frequencies for which the factor

1
M + 1

sin[ω(M + 1)/2]
sin(ω/2)

is negative, this term contributes an additional phase of π radians to the total phase.
Many of the advantages of linear-phase systems apply to systems with frequency

response having the form of Eq. (4.66) as well, and consequently, it is useful to generalize
somewhat the definition and concept of linear phase. Specifically, a system is referred
to as a generalized linear-phase system if its frequency response can be expressed in the
form

H(ejω) = A (ejω)e−jαω+jβ, (5.125)

where α and β are constants and A (ejω) is a real (possibly bipolar) function of ω. For
the linear-phase system of Eq. (5.117) and the moving-average filter of Example 4.8,
α = −M/2 and β = 0. We see, however, that the bandlimited differentiator of Exam-
ple 4.4 has the form of Eq. (5.125) with α = 0, β = π/2, and A (ejω) = ω/T .

A system whose frequency response has the form of Eq. (5.125) is called a gen-
eralized linear-phase system because the phase of such a system consists of constant
terms added to the linear function −ωα; i.e., −ωα + β is the equation of a straight line.

Section 5.7 Linear Systems with Generalized Linear Phase 327

However, if we ignore any discontinuities that result from the addition of constant phase
over all or part of the band |ω| < π , then such a system can be characterized by constant
group delay. That is, the class of systems such that

τ(ω) = grd[H(ejω)] = − d

dω
{arg[H(ejω)]} = α (5.126)

have linear phase of the more general form

arg[H(ejω)] = β − ωα, 0 < ω < π, (5.127)

where β and α are both real constants.
Recall that we showed in Section 5.7.1 that the impulse responses of linear-phase

systems may have symmetry about α if 2α is an integer. To see the implication of this for
generalized linear-phase systems, it is useful to derive an equation that must be satisfied
by h[n], α, and β for constant group-delay systems. This equation is derived by noting
that, for such systems, the frequency response can be expressed as

H(ejω) = A (ejω)ej (β−αω)

= A (ejω) cos(β − ωα) + jA (ejω) sin(β − ωα),
(5.128)

or equivalently, as

H(ejω) =
∞∑

n=−∞
h[n]e−jωn

=
∞∑

n=−∞
h[n] cos ωn − j

∞∑
n=−∞

h[n] sin ωn,

(5.129)

where we have assumed that h[n] is real. The tangent of the phase angle of H(ejω) can
be expressed as

tan(β − ωα) = sin(β − ωα)

cos(β − ωα)
=

−
∞∑

n=−∞
h[n] sin ωn

∞∑
n=−∞

h[n] cos ωn

.

Cross multiplying and combining terms with a trigonometric identity leads to the
equation

∞∑
n=−∞

h[n] sin[ω(n − α) + β] = 0 for all ω. (5.130)

This equation is a necessary condition on h[n], α, and β for the system to have constant
group delay. It is not a sufficient condition, however, and, owing to its implicit nature,
it does not tell us how to find a linear-phase system.

A class of examples of generalized linear-phase systems are those for which

β = 0 or π, (5.131a)

2α = M = an integer, (5.131b)

h[2α − n] = h[n]. (5.131c)

328 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

With β = 0 or π , Eq. (5.130) becomes
∞∑

n=−∞
h[n] sin[ω(n − α)] = 0, (5.132)

from which it can be shown that if 2α is an integer, terms in Eq. (5.132) can be paired so
that each pair of terms is identically zero for all ω. These conditions in turn imply that
the corresponding frequency response has the form of Eq. (5.125) with β = 0 or π and
A (ejω) an even (and, of course, real) function of ω.

Another class of examples of generalized linear-phase systems are those for which

β = π/2 or 3π/2, (5.133a)

2α = M = an integer, (5.133b)

and

h[2α − n] = −h[n] (5.133c)

Equations (5.133) imply that the frequency response has the form of Eq. (5.125)
with β = π/2 and A (ejω) an odd function of ω. For these cases Eq. (5.130) becomes

∞∑
n=−∞

h[n] cos[ω(n − α)] = 0, (5.134)

and is satisfied for all ω.
Note that Eqs. (5.131) and (5.133) give two sets of sufficient conditions that guar-

antee generalized linear phase or constant group delay, but as we have already seen in
Figure 5.32(c), there are other systems that satisfy Eq. (5.125) without these symmetry
conditions.

5.7.3 Causal Generalized Linear-Phase Systems

If the system is causal, then Eq. (5.130) becomes
∞∑

n=0

h[n] sin[ω(n − α) + β] = 0 for all ω. (5.135)

Causality and the conditions in Eqs. (5.131) and (5.133) imply that

h[n] = 0, n < 0 and n > M;
i.e., causal FIR systems have generalized linear phase if they have impulse response
length (M + 1) and satisfy either Eq. (5.131c) or (5.133c). Specifically, it can be shown
that if

h[n] =
{

h[M − n], 0 ≤ n ≤ M,

0, otherwise,
(5.136a)

then

H(ejω) = Ae(e
jω)e−jωM/2, (5.136b)

Section 5.7 Linear Systems with Generalized Linear Phase 329

where Ae(e
jω) is a real, even, periodic function of ω. Similarly, if

h[n] =
{−h[M − n], 0 ≤ n ≤ M,

0, otherwise,
(5.137a)

then it follows that

H(ejω) = jAo(e
jω)e−jωM/2 = Ao(e

jω)e−jωM/2+jπ/2, (5.137b)

where Ao(e
jω) is a real, odd, periodic function of ω. Note that in both cases the length

of the impulse response is (M + 1) samples.
The conditions in Eqs. (5.136a) and (5.137a) are sufficient to guarantee a causal

system with generalized linear phase. However, they are not necessary conditions.
Clements and Pease (1989) have shown that causal infinite-duration impulse responses
can also have Fourier transforms with generalized linear phase. The corresponding sys-
tem functions, however, are not rational, and thus, the systems cannot be implemented
with difference equations.

Expressions for the frequency response of FIR linear-phase systems are useful in
filter design and in understanding some of the properties of such systems. In deriving
these expressions, it turns out that significantly different expressions result, depending
on the type of symmetry and whether M is an even or odd integer. For this reason, it is
generally useful to define four types of FIR generalized linear-phase systems.

Type I FIR Linear-Phase Systems

A type I system is defined as a system that has a symmetric impulse response

h[n] = h[M − n], 0 ≤ n ≤ M, (5.138)

with M an even integer. The delay M/2 is an integer. The frequency response is

H(ejω) =
M∑

n=0

h[n]e−jωn. (5.139)

By applying the symmetry condition, Eq. (5.138), the sum in Eq. (5.139) can be rewritten
in the form

H(ejω) = e−jωM/2

⎛⎝M/2∑
k=0

a[k] cos ωk

⎞⎠ , (5.140a)

where

a[0] = h[M/2], (5.140b)

a[k] = 2h[(M/2) − k], k = 1, 2, . . . , M/2. (5.140c)

Thus, from Eq. (5.140a), we see that H(ejω) has the form of Eq. (5.136b), and in partic-
ular, β in Eq. (5.125) is either 0 or π .

330 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Type II FIR Linear-Phase Systems

A type II system has a symmetric impulse response as in Eq. (5.138), with M an odd
integer. H(ejω) for this case can be expressed as

H(ejω) = e−jωM/2

⎧⎨⎩
(M+1)/2∑

k=1

b[k] cos
[
ω
(
k − 1

2

)]⎫⎬⎭ , (5.141a)

where

b[k] = 2h[(M + 1)/2 − k], k = 1, 2, . . . , (M + 1)/2. (5.141b)

Again, H(ejω) has the form of Eq. (5.136b) with a time delay of M/2, which in this case
is an integer plus one-half, and β in Eq. (5.125) is either 0 or π .

Type III FIR Linear-Phase Systems

If the system has an antisymmetric impulse response

h[n] = −h[M − n], 0 ≤ n ≤ M, (5.142)

with M an even integer, then H(ejω) has the form

H(ejω) = je−jωM/2

⎡⎣M/2∑
k=1

c[k] sin ωk

⎤⎦ , (5.143a)

where

c[k] = 2h[(M/2) − k], k = 1, 2, . . . , M/2. (5.143b)

In this case, H(ejω) has the form of Eq. (5.137b) with a delay of M/2, which is an integer,
and β in Eq. (5.125) is π/2 or 3π/2.

Type IV FIR Linear-Phase Systems

If the impulse response is antisymmetric as in Eq. (5.142) and M is odd, then

H(ejω) = je−jωM/2

⎡⎣(M+1)/2∑
k=1

d[k] sin
[
ω
(
k − 1

2

)]⎤⎦ , (5.144a)

where

d[k] = 2h[(M + 1)/2 − k], k = 1, 2, . . . , (M + 1)/2. (5.144b)

As in the case of type III systems, H(ejω) has the form of Eq. (5.137b) with delay M/2,
which is an integer plus one-half, and β in Eq. (5.125) is π/2 or 3π/2.

Examples of FIR Linear-Phase Systems

Figure 5.33 shows an example of each of the four types of FIR linear-phase impulse
responses. The associated frequency responses are given in Examples 5.15–5.18.

Section 5.7 Linear Systems with Generalized Linear Phase 331

(a)

0 M M = 4
2

n

Center of
symmetry

(b)

0 M M = 5
2

n

Center of
symmetry

(d)

0

M = 1

n

Center of
symmetry

(c)

0

1

1

1

1

–1

–1

M = 2

n

Center of
symmetry

Figure 5.33 Examples of FIR
linear-phase systems. (a) Type I, M
even, h[n] = h[M − n]. (b) Type II, M
odd, h[n] = h[M − n]. (c) Type III, M
even, h[n] = −h[M − n]. (d) Type IV, M
odd, h[n] = −h[M − n].

Example 5.15 Type I Linear-Phase System

If the impulse response is

h[n] =
{

1, 0 ≤ n ≤ 4,

0, otherwise,
(5.145)

as shown in Figure 5.33(a), the system satisfies the condition of Eq. (5.138). The fre-
quency response is

H(ejω) =
4∑

n=0

e−jωn = 1 − e−jω5

1 − e−jω

= e−jω2 sin(5ω/2)

sin(ω/2)
.

(5.146)

The magnitude, phase, and group delay of the system are shown in Figure 5.34. Since
M = 4 is even, the group delay is an integer, i.e., α = 2.

332 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

A
m

pl
it

ud
e

Radian frequency (�)
0

2
� � 3� 2�

0

1.25

2.50

3.75

5.00

2
(a)

R
ad

ia
ns

Radian frequency (�)
0

2
� � 3� 2�

–4

–2

0

2

4

2
(b)

Sa
m

pl
es

Radian frequency (�)
0

2
� � 3� 2�

0

1

2

3

4

2
(c)

Figure 5.34 Frequency response of type I system of Example 5.15. (a) Magnitude.
(b) Phase. (c) Group delay.

Example 5.16 Type II Linear-Phase System

If the length of the impulse response of the previous example is extended by one sam-
ple, we obtain the impulse response of Figure 5.33(b), which has frequency response

H(ejω) = e−jω5/2 sin(3ω)

sin(ω/2)
. (5.147)

Section 5.7 Linear Systems with Generalized Linear Phase 333

The frequency-response functions for this system are shown in Figure 5.35. Note that
the group delay in this case is constant with α = 5/2.

A
m

pl
it

ud
e

Radian frequency (�)
0

2
� � 3� 2�

0

1.5

3.0

4.5

6.0

2
(a)

R
ad

ia
ns

Radian frequency (�)
0

2
� � 3� 2�

–4

–2

0

2

4

2
(b)

Sa
m

pl
es

Radian frequency (�)
0

2
� � 3� 2�

0

1

2

3

4

2
(c)

Figure 5.35 Frequency response of type II system of Example 5.16. (a) Magni-
tude. (b) Phase. (c) Group delay.

Example 5.17 Type III Linear-Phase System

If the impulse response is
h[n] = δ[n] − δ[n − 2], (5.148)

334 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

as in Figure 5.33(c), then

H(ejω) = 1 − e−j2ω = j [2 sin(ω)]e−jω. (5.149)

The frequency-response plots for this example are given in Figure 5.36. Note
that the group delay in this case is constant with α = 1.

A
m

pl
it

ud
e

Radian frequency (�)
0

2
� � 3� 2�

0

0.8

1.6

2.4

3.2

2
(a)

R
ad

ia
ns

Radian frequency (�)
0

2
� � 3� 2�

–3.0

–1.5

0

1.5

3.0

2
(b)

Sa
m

pl
es

Radian frequency (�)
0

2
� � 3� 2�

0

0.5

1.0

1.5

2.0

2
(c)

Figure 5.36 Frequency response of type III system of Example 5.17. (a) Magni-
tude. (b) Phase. (c) Group delay.

Section 5.7 Linear Systems with Generalized Linear Phase 335

Example 5.18 Type IV Linear-Phase System

In this case (Figure 5.33(d)), the impulse response is

h[n] = δ[n] − δ[n − 1], (5.150)

for which the frequency response is

H(ejω) = 1 − e−jω

= j [2 sin(ω/2)]e−jω/2.
(5.151)

The frequency response for this system is shown in Figure 5.37. Note that the group
delay is equal to 1

2 for all ω.

Locations of Zeros for FIR Linear-Phase Systems

The preceding examples illustrate the properties of the impulse response and the fre-
quency response for all four types of FIR linear-phase systems. It is also instructive to
consider the locations of the zeros of the system function for FIR linear-phase systems.
The system function is

H(z) =
M∑

n=0

h[n]z−n. (5.152)

In the symmetric cases (types I and II), we can use Eq. (5.138) to express H(z) as

H(z) =
M∑

n=0

h[M − n]z−n =
0∑

k=M

h[k]z kz−M

= z−MH(z−1).

(5.153)

From Eq. (5.153), we conclude that if z0 is a zero of H(z), then

H(z0) = z−M
0 H(z−1

0) = 0. (5.154)

This implies that if z0 = rejθ is a zero of H(z), then z−1
0 = r−1e−jθ is also a zero of

H(z). When h[n] is real and z0 is a zero of H(z), z∗
0 = re−jθ will also be a zero of H(z),

and by the preceding argument, so will (z∗
0)

−1 = r−1ejθ . Therefore, when h[n] is real,
each complex zero not on the unit circle will be part of a set of four conjugate reciprocal
zeros of the form

(1 − rejθ z−1)(1 − re−jθ z−1)(1 − r−1ejθ z−1)(1 − r−1e−jθ z−1).

If a zero of H(z) is on the unit circle, i.e., z0 = ejθ , then z−1
0 = e−jθ = z∗

0, so zeros on
the unit circle come in pairs of the form

(1 − ejθ z−1)(1 − e−jθ z−1).

If a zero of H(z) is real and not on the unit circle, the reciprocal will also be a zero of
H(z), and H(z) will have factors of the form

(1 ± rz−1)(1 ± r−1z−1).

336 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

A
m

pl
it

ud
e

Radian frequency (�)
0

2
� � 3� 2�

0

0.8

1.6

2.4

3.2

2
(a)

R
ad

ia
ns

Radian frequency (�)
0

2
� � 3� 2�

–3.0

–1.5

0

1.5

3.0

2
(b)

Sa
m

pl
es

Radian frequency (�)
0

2
� � 3� 2�

0

0.5

1.0

1.5

2.0

2
(c)

Figure 5.37 Frequency response of
type IV system of Example 5.18.
(a) Magnitude. (b) Phase. (c) Group
delay.

Finally, a zero of H(z) at z = ±1 can appear by itself, since ±1 is its own reciprocal and
its own conjugate. Thus, we may also have factors of H(z) of the form

(1 ± z−1).

The case of a zero at z = −1 is particularly important. From Eq. (5.153),

H(−1) = (−1)MH(−1).

Section 5.7 Linear Systems with Generalized Linear Phase 337

Re

ImUnit
circle

(a)

z-plane

Re

ImUnit
circle

(b)

z-plane

Re

ImUnit
circle z-plane

Re

ImUnit
circle

(d)(c)

z-plane

Figure 5.38 Typical plots of zeros for linear-phase systems. (a) Type I. (b) Type
II. (c) Type III. (d) Type IV.

If M is even, we have a simple identity, but if M is odd, H(−1) = −H(−1), so H(−1)

must be zero. Thus, for symmetric impulse responses with M odd, the system function
must have a zero at z = −1. Figures 5.38(a) and 5.38(b) show typical locations of zeros
for type I (M even) and type II (M odd) systems, respectively.

If the impulse response is antisymmetric (types III and IV), then, following the
approach used to obtain Eq. (5.153), we can show that

H(z) = −z−MH(z−1). (5.155)

This equation can be used to show that the zeros of H(z) for the antisymmetric case are
constrained in the same way as the zeros for the symmetric case. In the antisymmetric
case, however, both z = 1 and z = −1 are of special interest. If z = 1, Eq. (5.155)
becomes

H(1) = −H(1). (5.156)

Thus, H(z) must have a zero at z = 1 for both M even and M odd. If z = −1, Eq. (5.155)
gives

H(−1) = (−1)−M+1H(−1). (5.157)

In this case, if (M − 1) is odd (i.e., if M is even), H(−1) = −H(−1), so z = −1 must be
a zero of H(z) if M is even. Figures 5.38(c) and 5.38(d) show typical zero locations for
type III and IV systems, respectively.

These constraints on the zeros are important in designing FIR linear-phase sys-
tems, since they impose limitations on the types of frequency responses that can be
achieved. For example, we note that, in approximating a highpass filter using a symmetric
impulse response, M should not be odd, since the frequency response is constrained to
be zero at ω = π(z = −1).

338 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.7.4 Relation of FIR Linear-Phase Systems to
Minimum-Phase Systems

The previous discussion shows that all FIR linear-phase systems with real impulse re-
sponses have zeros either on the unit circle or at conjugate reciprocal locations. Thus,
it is easily shown that the system function of any FIR linear-phase system can be fac-
tored into a minimum-phase term Hmin(z), a maximum-phase term Hmax(z), and a term
Huc(z) containing only zeros on the unit circle; i.e.,

H(z) = Hmin(z)Huc(z)Hmax(z), (5.158a)

where

Hmax(z) = Hmin(z−1)z−Mi (5.158b)

and Mi is the number of zeros of Hmin(z). In Eq. (5.158a), Hmin(z) has all Mi of its
zeros inside the unit circle, and Huc(z) has all Mo of its zeros on the unit circle. Hmax(z)

has all Mi of its zeros outside the unit circle, and, from Eq. (5.158b), its zeros are the
reciprocals of the Mi zeros of Hmin(z). The order of the system function H(z) is therefore
M = 2Mi + Mo.

Example 5.19 Decomposition of a Linear-Phase System

As a simple example of the use of Eqs. (5.158), consider the minimum-phase system
function of Eq. (5.99), for which the frequency response is plotted in Figure 5.25. The
system obtained by applying Eq. (5.158b) to H min(z) in Eq. (5.99) is

H max(z) = (0.9)2(1 − 1.1111ej0.6πz−1)(1 − 1.1111e−j0.6πz−1)

× (1 − 1.25e−j0.8πz−1)(1 − 1.25ej0.8πz−1).

H max(z) has the frequency response shown in Figure 5.39. Now, if these two systems
are cascaded, it follows from Eq. (5.158b) that the overall system

H(z) = H min(z)H max(z)

has linear phase. The frequency response of the composite system would be obtained
by adding the respective log magnitude, phase, and group-delay functions. Therefore,

20 log10 |H(ejω)| = 20 log10 |H min(ejω)| + 20 log10 |H max(ejω)|
= 40 log10 |H min(ejω)|.

(5.159)

Similarly,

� H(ejω) = � H min(ejω) + � H max(ejω). (5.160)

From Eq. (5.158b), it follows that

� H max(ejω) = −ωMi − � H min(ejω). (5.161)

and therefore

� H(ejω) = −ωMi,

Section 5.7 Linear Systems with Generalized Linear Phase 339

where Mi = 4 is the number of zeros of H min(z). In like manner, the group-delay
functions of H min(ejω) and H max(ejω) combine to give

grd[H(ejω)] = Mi = 4.

The frequency-response plots for the composite system are given in Figure 5.40. Note
that the curves are sums of the corresponding functions in Figures 5.25 and 5.39.

dB

Radian frequency (�)

0
2

� � 3� 2�
–30

–15

0

15

30

2

(a)

R
ad

ia
ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
–15.0

–7.5

0

7.5

15.0

2

(c)

Figure 5.39 Frequency response of maximum-phase system having the same
magnitude as the system in Figure 5.25. (a) Log magnitude. (b) Phase (principal
value). (c) Group delay.

340 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

dB

Radian frequency (�)

0
2

� � 3� 2�
–60

–30

0

30

60

2

(a)
R

ad
ia

ns

Radian frequency (�)

0
2

� � 3� 2�
–4

–2

0

2

4

2

(b)

Sa
m

pl
es

Radian frequency (�)

0
2

� � 3� 2�
0

2

4

6

8

2

(c)

Figure 5.40 Frequency response of cascade of maximum-phase and minimum-
phase systems, yielding a linear-phase system. (a) Log magnitude. (b) Phase (prin-
cipal value). (c) Group delay.

5.8 SUMMARY

In this chapter, we developed and explored the representation and analysis of LTI
systems using the Fourier and z-transforms. The importance of transform analysis for
LTI systems stems directly from the fact that complex exponentials are eigenfunctions

Chapter 5 Problems 341

of such systems and the associated eigenvalues correspond to the system function or
frequency response.

A particularly important class of LTI systems is that characterized by linear constant-
coefficient difference equations. Systems characterized by difference equations may
have an impulse response that is infinite in duration (IIR) or finite in duration (FIR).
Transform analysis is particularly useful for analyzing these systems, since the Fourier
transform or z-transform converts a difference equation to an algebraic equation. In par-
ticular, the system function is a ratio of polynomials, the coefficients of which correspond
directly to the coefficients in the difference equation. The roots of these polynomials
provide a useful system representation in terms of the pole–zero plot.

The frequency response of LTI systems is often characterized in terms of mag-
nitude and phase or group delay, which is the negative of the derivative of the phase.
Linear phase is often a desirable characteristic of a system frequency response, since it
is a relatively mild form of phase distortion, corresponding to a time shift. The impor-
tance of FIR systems lies in part in the fact that such systems can be easily designed
to have exactly linear phase (or generalized linear phase), whereas, for a given set of
frequency response magnitude specifications, IIR systems are more efficient. These and
other trade-offs will be discussed in detail in Chapter 7.

While, in general, for LTI systems, the frequency-response magnitude and phase
are independent, for minimum-phase systems the magnitude uniquely specifies the
phase and the phase uniquely specifies the magnitude to within a scale factor. Nonmini-
mum-phase systems can be represented as the cascade combination of a minimum-
phase system and an all-pass system. Relations between Fourier transform magnitude
and phase will be discussed in considerably more detail in Chapter 12.

Problems

Basic Problems with Answers
5.1. In the system shown in Figure P5.1-1, H(ejω) is an ideal lowpass filter. Determine whether

for some choice of input x[n] and cutoff frequency ωc, the output can be the pulse

y[n] =
{

1, 0 ≤ n ≤ 10,

0, otherwise,

shown in Figure P5.1-2.

x [n] y [n]

1

H(e j�)

H(e j�)

–� �–�c �c � Figure P5.1-1

1

100

...

y [n]

n Figure P5.1-2

342 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.2. Consider a stable LTI system with input x[n] and output y[n]. The input and output satisfy
the difference equation

y[n − 1] − 10
3 y[n] + y[n + 1] = x[n].

(a) Plot the poles and zeros of the system function in the z-plane.
(b) Determine the impulse response h[n].

5.3. Consider an LTI discrete-time system for which the input x[n] and output y[n] are related
by the 2nd-order difference equation

y[n − 1] + 1
3y[n − 2] = x[n].

From the following list, choose two possible impulse responses for the system:

(a)
(
− 1

3

)n+1
u[n + 1]

(b) 3n+1u[n + 1]
(c) 3(−3)n+2u[−n − 2]
(d) 1

3

(
− 1

3

)n
u[−n − 2]

(e)
(
− 1

3

)n+1
u[−n − 2]

(f)
(

1
3

)n+1
u[n + 1]

(g) (−3)n+1u[n]
(h) n1/3u[n].

5.4. When the input to an LTI system is

x[n] =
(

1
2

)n
u[n] + (2)nu[−n − 1],

the output is

y[n] = 6
(

1
2

)n
u[n] − 6

(
3
4

)n
u[n].

(a) Determine the system function H(z) of the system. Plot the poles and zeros of H(z),
and indicate the ROC.

(b) Determine the impulse response h[n] of the system for all values of n.
(c) Write the difference equation that characterizes the system.
(d) Is the system stable? Is it causal?

5.5. Consider a system described by a linear constant-coefficient difference equation with initial-
rest conditions. The step response of the system is given by

y[n] =
(

1
3

)n
u[n] +

(
1
4

)n
u[n] + u[n].

(a) Determine the difference equation.
(b) Determine the impulse response of the system.
(c) Determine whether or not the system is stable.

5.6. The following information is known about an LTI system:

(1) The system is causal.
(2) When the input is

x[n] = − 1
3

(
1
2

)n
u[n] − 4

3 (2)nu[−n − 1],

Chapter 5 Problems 343

the z-transform of the output is

Y (z) = 1 − z−2(
1 − 1

2 z−1
)

(1 − 2z−1)
.

(a) Determine the z-transform of x[n].
(b) What are the possible choices for the ROC of Y (z)?
(c) What are the possible choices for the impulse response of the system?

5.7. When the input to an LTI system is

x[n] = 5u[n],
the output is

y[n] =
[
2
(

1
2

)n + 3
(
− 3

4

)n]
u[n].

(a) Determine the system function H(z) of the system. Plot the poles and zeros of H(z),
and indicate the ROC.

(b) Determine the impulse response of the system for all values of n.
(c) Write the difference equation that characterizes the system.

5.8. A causal LTI system is described by the difference equation

y[n] = 3
2 y[n − 1] + y[n − 2] + x[n − 1].

(a) Determine the system function H(z) = Y (z)/X(z) for this system. Plot the poles and
zeros of H(z), and indicate the ROC.

(b) Determine the impulse response of the system.
(c) You should have found the system to be unstable. Determine a stable (noncausal)

impulse response that satisfies the difference equation.

5.9. Consider an LTI system with input x[n] and output y[n] for which

y[n − 1] − 5
2 y[n] + y[n + 1] = x[n].

The system may or may not be stable or causal. By considering the pole–zero pattern
associated with this difference equation, determine three possible choices for the impulse
response of the system. Show that each choice satisfies the difference equation. Indicate
which choice corresponds to a stable system and which choice corresponds to a causal
system.

5.10. If the system function H(z) of an LTI system has a pole–zero diagram as shown in Fig-
ure P5.10 and the system is causal, can the inverse system Hi(z), where H(z)H i(z) = 1, be
both causal and stable? Clearly justify your answer.

Re

ImUnit
circle z-plane

1

Figure P5.10

344 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.11. The system function of an LTI system has the pole–zero plot shown in Figure P5.11 Specify
whether each of the following statements is true, is false, or cannot be determined from the
information given.

(a) The system is stable.
(b) The system is causal.
(c) If the system is causal, then it must be stable.
(d) If the system is stable, then it must have a two-sided impulse response.

Re

Im

Unit circle

z-plane

1

Figure P5.11

5.12. A discrete-time causal LTI system has the system function

H(z) = (1 + 0.2z−1)(1 − 9z−2)

(1 + 0.81z−2)
.

(a) Is the system stable?
(b) Determine expressions for a minimum-phase system H 1(z) and an all-pass system

H ap(z) such that

H(z) = H 1(z)H ap(z).

5.13. Figure P5.13 shows the pole–zero plots for four different LTI systems. Based on these plots,
state whether or not each system is an all-pass system.

Re

Im H1(z) H2(z)

H3(z) H4(z)

3
4

4
3

1 1

1 Re

Im

Re

Im

Re

Im

Figure P5.13

Chapter 5 Problems 345

5.14. Determine the group delay for 0 < ω < π for each of the following sequences:

(a)

x1[n] =
⎧⎨⎩

n − 1, 1 ≤ n ≤ 5,

9 − n, 5 < n ≤ 9,

0, otherwise.

(b)

x2[n] =
(

1
2

)|n−1|
+
(

1
2

)|n|
.

5.15. Consider the class of discrete-time filters whose frequency response has the form

H(ejω) = |H(ejω)|e−jαω,

where |H(ejω)| is a real and nonnegative function of ω and α is a real constant. As discussed
in Section 5.7.1, this class of filters is referred to as linear-phase filters.

Consider also the class of discrete-time filters whose frequency response has the form

H(ejω) = A (ejω)e−jαω+jβ ,

where A (ejω) is a real function of ω, α is a real constant, and β is a real constant. As
discussed in Section 5.7.2, filters in this class are referred to as generalized linear-phase
filters.

For each of the filters in Figure P5.15, determine whether it is a generalized linear-
phase filter. If it is, then find A (ejω), α, and β. In addition, for each filter you determine
to be a generalized linear-phase filter, indicate whether it also meets the more stringent
criterion for being a linear-phase filter.

0

(a)

h [n]

n 0

(b)

h [n]

n

0

1 1 1

111

222

1

33

–1

(d)

h [n]

n 0

(e)

h [n]

n

0

(c)

h [n]

n

Figure P5.15

5.16. Figure P5.16 plots the continuous-phase arg[H(ejω)] for the frequency response of a specific
LTI system, where

arg[H(ejω)] = −αω

for |ω| < π and α is a positive integer.

346 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

arg[H(e j�)]

��

–��

–� � �

Figure P5.16

Is the impulse response h[n] of this system a causal sequence? If the system is definitely
causal, or if it is definitely not causal, give a proof. If the causality of the system cannot
be determined from Figure P5.16, give examples of a noncausal sequence and a causal
sequence that both have the foregoing phase response arg[H(ejω)].

5.17. For each of the following system functions, state whether or not it is a minimum-phase
system. Justify your answers:

H 1(z) =
(1 − 2z−1)

(
1 + 1

2 z−1
)

(
1 − 1

3z−1
) (

1 + 1
3z−1
) ,

H 2 (z) =
(

1 + 1
4 z−1
) (

1 − 1
4 z−1
)

(
1 − 2

3 z−1
) (

1 + 2
3 z−1
) ,

H 3 (z) = 1 − 1
3z−1(

1 − j

2 z−1
)(

1 + j

2 z−1
) ,

H 4 (z) =
z−1
(

1 − 1
3z−1
)

(
1 − j

2 z−1
)(

1 + j

2 z−1
) .

5.18. For each of the following system functions Hk(z), specify a minimum-phase system function
H min(z) such that the frequency-response magnitudes of the two systems are equal, i.e.,
|Hk(e

jω)| = |H min(ejω)|.
(a)

H 1(z) = 1 − 2z−1

1 + 1
3z−1

(b)

H 2(z) =
(1 + 3z−1)

(
1 − 1

2 z−1
)

z−1
(

1 + 1
3z−1
)

(c)

H 3(z) =
(1 − 3z−1)

(
1 − 1

4 z−1
)

(
1 − 3

4 z−1
) (

1 − 4
3 z−1
) .

Chapter 5 Problems 347

5.19. Figure P5.19 shows the impulse responses for several different LTI systems. Determine the
group delay associated with each system.

–2 –1
–1 –1

0 1

1 1

2

2

3

3 3

4

5 6 7 8

h4[n]

–1 0 1

1

2 3 4 5 6 7 8

h6[n]

–2

–1

–1 –1
0 1

1 1

2

2 2

3

4

h2[n]

–1
–1

0 1

1

2

3

4 5

h3[n]

0

1

1

–1

–2

2

2

3

4

5 6

h5[n]

–1 0 1

1 1

2 3 4 5

h1[n]

Figure P5.19

5.20. Figure P5.20 shows just the zero locations for several different system functions. For each
plot, state whether the system function could be a generalized linear-phase system imple-
mented by a linear constant-coefficient difference equation with real coefficients.

H2(z)

H3(z)

H1(z)

Re

Im

Re

Im

Re

Im

Figure P5.20

348 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Basic Problems

5.21. Let hlp[n] denote the impulse response of an ideal lowpass filter with unity passband gain
and cutoff frequency ωc = π/4. Figure P5.21 shows five systems, each of which is equivalent
to an ideal LTI frequency-selective filter. For each system shown, sketch the equivalent fre-
quency response, indicating explicitly the band-edge frequencies in terms of ωc. In each case,
specify whether the system is a lowpass, highpass, bandpass, bandstop, or multiband filter.

x [n]

x [n]

y [n]

y [n]

x [n] y [n]

x [n] y [n]

x [n] y [n]

+
+

–

2 2

��

hlp[n]

hlp[n]

hlp[n]

hlp[2n]

hlp[n/2],
0,

(a)

(b)

(c)

(d)

(e)

(–1)n (–1)n

n even
n odd

x [n] =

Figure P5.21

5.22. Many properties of a discrete-time sequence h[n] or an LTI system with impulse response
h[n] can be discerned from a pole–zero plot of H(z). In this problem, we are concerned only
with causal systems. Clearly describe the z-plane characteristic that corresponds to each of
the following properties:

(a) Real-valued impulse response
(b) Finite impulse response
(c) h[n] = h[2α − n] where 2α is an integer
(d) Minimum phase
(e) All-pass.

Chapter 5 Problems 349

5.23. For all parts of this problem, H(ejω) is the frequency response of a DT filter and can be
expressed in polar coordinates as

H(ejω) = A(ω)ejθ(ω)

where A(ω) is even and real-valued and θ(ω) is a continuous, odd function of ω for −π <

ω < π , i.e., θ(ω) is what we have referred to as the unwrapped phase. Recall:

• The group delay τ(ω) associated with the filter is defined as

τ(ω) = −dθ(ω)

dω
for|ω| < π.

• An LTI filter is called minimum phase if it is stable and causal and has a stable and
causal inverse.

For each of the following statements, state whether it is TRUE or FALSE. If you state
that it is TRUE, give a clear, brief justification. If you state that it is FALSE, give a simple
counterexample with a clear, brief explanation of why it is a counterexample.

(a) “If the filter is causal, its group delay must be nonnegative at all frequencies in the
range |ω| < π .”

(b) “If the group delay of the filter is a positive constant integer for |ω| < π the filter must
be a simple integer delay.”

(c) “If the filter is minimum phase and all the poles and zeros are on the real axis then∫ π
0 τ(ω)dω = 0.”

5.24. A stable system with system function H(z) has the pole–zero diagram shown in Figure
P5.24. It can be represented as the cascade of a stable minimum-phase system Hmin(z) and
a stable all-pass system Hap(z).

Re

Im

1
2

3 4

Figure P5.24 Pole–zero diagram for H(z).

Determine a choice for Hmin(z) and Hap(z) (up to a scale factor) and draw their correspond-
ing pole–zero plots. Indicate whether your decomposition is unique up to a scale factor.

5.25. (a) An ideal lowpass filter with impulse response h[n] is designed with zero phase, a cutoff
frequency of ωc = π/4, a passband gain of 1, and a stopband gain of 0. (H(ejω) is
shown in Figure P5.21.) Sketch the discrete-time Fourier transform of (−1)nh[n].

350 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

(b) A complex-valued filter with impulse response g[n] has the pole–zero diagram shown
in Figure P5.25. Sketch the pole–zero diagram for (−1)ng[n]. If there is not sufficient
information provided, explain why.

Re

Im

1

Figure P5.25

5.26. Consider a discrete-time LTI system for which the frequency response H(ejω) is described
by:

H(ejω) = −j, 0 < ω < π

H(ejω) = j, −π < ω < 0

(a) Is the impulse response of the system h[n] real-valued? (i.e., is h[n] = h∗[n] for all n)
(b) Calculate the following:

∞∑
n=−∞

|h[n]|2

(c) Determine the response of the system to the input x[n] = s[n] cos(ωcn), where
0 < ωc < π/2 and S(ejω) = 0 for ωc/3 ≤ |ω| ≤ π .

5.27. We process the signal x[n] = cos(0.3πn) with a unity-gain all-pass LTI system, with fre-
quency response w = H(ejω) and a group delay of 4 samples at frequency ω = 0.3π , to get
the output y[n]. We also know that � H(ej0.3π) = θ and � H(e−j0.3π) = −θ . Choose the
most accurate statement:

(a) y[n] = cos(0.3πn + θ)

(b) y[n] = cos(0.3π(n − 4) + θ)

(c) y[n] = cos(0.3π(n − 4 − θ))

(d) y[n] = cos(0.3π(n − 4))

(e) y[n] = cos(0.3π(n − 4 + θ)).

Chapter 5 Problems 351

5.28. A causal LTI system has the system function

H(z) = (1 − ejπ/3z−1)(1 − e−jπ/3z−1)(1 + 1.1765z−1)

(1 − 0.9ejπ/3z−1)(1 − 0.9e−jπ/3z−1)(1 + 0.85z−1)
.

(a) Write the difference equation that is satisfied by the input x[n] and output y[n] of this
system.

(b) Plot the pole–zero diagram and indicate the ROC for the system function.
(c) Make a carefully labeled sketch of |H(ejω)| . Use the pole–zero locations to explain

why the frequency response looks as it does.
(d) State whether the following are true or false about the system:

(i) The system is stable.
(ii) The impulse response approaches a nonzero constant for large n.

(iii) Because the system function has a pole at angle π/3, the magnitude of the fre-
quency response has a peak at approximately ω = π/3.

(iv) The system is a minimum-phase system.
(v) The system has a causal and stable inverse.

5.29. Consider the cascade of an LTI system with its inverse system shown in Figure P5.29.

y[n]w[n]x[n] LTI
Inverse System

hi(n)

LTI
System

h[n]
Figure P5.29

The impulse response of the first system is h[n] = δ[n] + 2δ[n − 1].
(a) Determine the impulse response hi [n] of a stable inverse system for h[n]. Is the inverse

system causal?
(b) Now consider the more general case where h[n] = δ[n] + αδ[n − 1]. Under what

conditions on α will there exist an inverse system that is both stable and causal?

5.30. In each of the following parts, state whether the statement is always TRUE or FALSE.
Justify each of your answers.

(a) “An LTI discrete-time system consisting of the cascade connection of two minimum-
phase systems is also minimum-phase.”

(b) “An LTI discrete-time system consisting of the parallel connection of two minimum-
phase systems is also minimum-phase.”

5.31. Consider the system function

H(z) = rz−1

1 − (2r cos ω0)z−1 + r2z−2
, |z| > r.

Assume first that ω0 �= 0.

(a) Draw a labeled pole–zero diagram and determine h[n].
(b) Repeat part (a) when ω0 = 0. This is known as a critically damped system.

352 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Advanced Problems

5.32. Suppose that a causal LTI system has an impulse response of length 6 as shown in Fig-
ure P5.32, where c is a real-valued constant (positive or negative).

0.5

0.75

−1

c

n

0.2

–0.3

1

2

3 4

5

6 70–2 –1

Figure P5.32

Which of the following statements is true:

(a) This system must be minimum phase.
(b) This system cannot be minimum phase.
(c) This system may or may not be minimum phase, depending on the value of c.

Justify your answer.

5.33. H(z) is the system function for a stable LTI system and is given by:

H(z) = (1 − 2z−1)(1 − 0.75z−1)

z−1(1 − 0.5z−1)
.

(a) H(z) can be represented as a cascade of a minimum-phase system Hmin1(z) and a
unity-gain all-pass system Hap(z), i.e.,

H(z) = Hmin1(z)Hap(z).

Determine a choice for Hmin1(z) and Hap(z) and specify whether or not they are unique
up to a scale factor.

(b) H(z) can be expressed as a cascade of a minimum-phase system Hmin2(z) and a gen-
eralized linear-phase FIR system Hlp(z):

H(z) = Hmin2(z)Hlp(z).

Determine a choice for Hmin2(z) and Hlp(z) and specify whether or not these are
unique up to a scale factor.

5.34. A discrete-time LTI system with input x[n] and output y[n] has the frequency response mag-
nitude and group delay functions shown in Figure P5.34-1. The signal x[n], also shown in
Figure P5.34-1, is the sum of three narrowband pulses. In particular, Figure P5.34-1 contains
the following plots:

• x[n]
• |X(ejω)|, the Fourier transform magnitude of a particular input x[n]
• Frequency response magnitude plot for the system
• Group delay plot for the system

Chapter 5 Problems 353

0 100 200 300 400 500 600 700 800 900
−5

0

5
Input signal x[n]

x[
n]

n (samples)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100
Fourier Transform of Input x[n]

|X
(e

j�
)|

Normalized frequency (�)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
Frequency response magnitude of filter A

M
ag

ni
tu

de

Normalized frequency (�)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80
Group delay of filter A

gr
d

(s
am

pl
es

)

Normalized frequency (�)

Figure P5.34-1 The input signal and the filter frequency response

In Figure P5.34-2 you are given four possible output signals, yi [n] i = 1, 2, . . . , 4. Deter-
mine which one of the possible output signals is the output of the system when the input is
x[n]. Provide a justification for your choice.

354 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

0 100 200 300 400 500 600 700 800 900
−5

0

5

P
os

si
bl

e
ou

tp
ut

 y
1[

n]

0 100 200 300 400 500 600 700 800 900
−5

0

5

P
os

si
bl

e
ou

tp
ut

 y
2[

n]

0 100 200 300 400 500 600 700 800 900
−5

0

5

P
os

si
bl

e
ou

tp
ut

 y
3[

n]

0 100 200 300 400 500 600 700 800 900
−5

0

5

P
os

si
bl

e
ou

tp
ut

 y
4[

n]

n (samples)

Figure P5.34-2 Possible output signals

5.35. Suppose that a discrete-time filter has group delay τ(ω). Does the condition τ(ω) > 0 for
−π < ω ≤ π imply that the filter is necessarily causal? Clearly explain your reasoning.

Chapter 5 Problems 355

5.36. Consider the stable LTI system with system function

H(z) = 1 + 4z−2

1 − 1
4 z−1 − 3

8z−2
.

The system function H(z) can be factored such that

H(z) = Hmin(z)Hap(z),

where Hmin(z) is a minimum-phase system, and Hap(z) is an all-pass system, i.e.,

|Hap(ejω)| = 1.

Sketch the pole–zero diagrams for Hmin(z) and Hap(z). Be sure to label the positions of all
the poles and zeros. Also, indicate the ROC for Hmin(z) and Hap(z).

5.37. An LTI system has generalized linear phase and system function H(z) = a + bz−1 + cz−2.
The impulse response has unit energy, a ≥ 0, and H(ejπ) = H(ej0) = 0.

(a) Determine the impulse response h[n].
(b) Plot |H(ejω)|.

5.38. H(z) is the system function for a stable LTI system and is given by:

H(z) = (1 − 9z−2)(1 + 1
3z−1)

1 − 1
3z−1

.

(a) H(z) can be represented as a cascade of a minimum-phase system Hmin(z) and a unity-
gain all-pass system Hap(z). Determine a choice for Hmin(z) and Hap(z) and specify
whether or not they are unique up to a scale factor.

(b) Is the minimum-phase system, Hmin(z), an FIR system? Explain.
(c) Is the minimum-phase system, Hmin(z), a generalized linear-phase system? If not, can

H(z) be represented as a cascade of a generalized linear-phase system Hlin(z) and an
all-pass system Hap2(z)? If your answer is yes, determine Hlin(z) and Hap2(z). If your
answer is no, explain why such representation does not exist.

5.39. H(z) is the transfer function of a stable LTI system and is given by:

H(z) = z − 2
z(z − 1/3)

.

(a) Is the system causal? Clearly justify your answer.
(b) H(z) can also be expressed as H(z) = Hmin(z)Hlin(z) where Hmin(z) is a minimum-

phase system and Hlin(z) is a generalized linear-phase system. Determine a choice for
Hmin(z) and Hlin(z).

5.40. System S1 has a real impulse response h1[n] and a real-valued frequency response H1(ejω).

(a) Does the impulse response h1[n] have any symmetry? Explain.
(b) System S2 is a linear-phase system with the same magnitude response as system S1.

What is the relationship between h2[n], the impulse response of system S2, and h1[n]?
(c) Can a causal IIR filter have a linear phase? Explain. If your answer is yes, provide an

example.

356 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.41. Consider a discrete-time LTI filter whose impulse response h[n] is nonzero only over five
consecutive time samples; the filter’s frequency response is H(ejω). Let signals x[n] and
y[n] denote the filter’s input and output, respectively.

Moreover, you are given the following information about the filter:

(i)
∫ π

−π
H(ejω) dω = 4π.

(ii) There exists a signal a[n] that has a real and even DTFT A(ejω) given by

A(ejω) = H(ejω) ej2ω.

(iii) A(ej0) = 8 , and A(ejπ) = 12 .

Completely specify the impulse response h[n], i.e., specify the impulse response at each
time instant where it takes a nonzero value. Plot h[n], carefully and accurately labeling its
salient features.

5.42. A bounded-input bounded-output stable discrete-time LTI system has impulse response
h[n] corresponding to a rational system function H(z) with the pole–zero diagram shown
in Figure P5.42.

−3
Re

Im

21/2

1

Figure P5.42

In addition, we know that
∞∑

n=−∞
(−1)nh[n] = −1 .

(a) Determine H(z) and its ROC.
(b) Consider a new system having an impulse response g[n] = h[n + n0], where n0 is an

integer. Given that G(z)|z=0 = 0, and lim
z→∞ G(z) < ∞, determine the values of n0

and g[0].
(c) A new system has an impulse response, f [n] = h[n] ∗ h[−n].

Determine F(z) and its ROC.
(d) Is there a right-sided signal e[n] such that e[n]∗h[n] = u[n], where u[n] is the unit-step

sequence? If so, is e[n] causal?

Chapter 5 Problems 357

5.43. Consider an LTI system with system function:

H(z) = z−2(1 − 2z−1)

2(1 − 1
2 z−1)

, |z| >
1
2

.

(a) Is H(z) an all-pass system? Explain.
(b) The system is to be implemented as the cascade of three systems Hmin(z), Hmax(z),

and Hd(z), denoting minimum-phase, maximum-phase, and integer time shift, respec-
tively. Determine the impulse responses hmin[n], hmax[n], and hd [n], corresponding
to each of the three systems.

5.44. The impulse responses of four linear-phase FIR filters h1[n], h2[n], h3[n], and h4[n] are given
below. Moreover, four magnitude response plots, A, B, C, and D, that potentially corre-
spond to these impulse responses are shown in Figure P5.44. For each impulse response
hi [n], i = 1, . . . , 4, specify which of the four magnitude response plots, if any, corresponds
to it. If none of the magnitude response plots matches a given hi [n], then specify “none”
as the answer for that hi [n].

h1[n] = 0.5δ[n] + 0.7δ[n − 1] + 0.5δ[n − 2]
h2[n] = 1.5δ[n] + δ[n − 1] + δ[n − 2] + 1.5δ[n − 3]
h3[n] = −0.5δ[n] − δ[n − 1] + δ[n − 3] + 0.5δ[n − 4]
h4[n] = −δ[n] + 0.5δ[n − 1] − 0.5δ[n − 2] + δ[n − 3].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Frequency (�/�)
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Frequency (�/�)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Frequency (�/�)
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Frequency (�/�)

(a) (b)

(c) (d)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.5

1

1.5

2

2.5

3

|H
(e

j�
)|

|H
(e

j�
)|

|H
(e

j�
)|

|H
(e

j�
)|

Figure P5.44

358 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.45. The pole–zero plots in Figure P5.45 describe six different causal LTI systems.

−2 −1 1 20
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt

−1 1 20
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt

−1 1 20
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt

−2 −1 1 20
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt

−2 −1 1 20
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt

−2 −1 1 20
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt
(E) (F)

(C) (D)

(A) (B)

Figure P5.45

Answer the following questions about the systems having the above pole–zero plots. In
each case, an acceptable answer could be none or all.

(a) Which systems are IIR systems?
(b) Which systems are FIR systems?
(c) Which systems are stable systems?
(d) Which systems are minimum-phase systems?
(e) Which systems are generalized linear-phase systems?
(f) Which systems have |H(ejω)|=constant for all ω?
(g) Which systems have corresponding stable and causal inverse systems?
(h) Which system has the shortest (least number of nonzero samples) impulse response?
(i) Which systems have lowpass frequency responses?
(j) Which systems have minimum group delay?

5.46. Assume that the two linear systems in the cascade shown in Figure P5.46 are linear-
phase FIR filters. Suppose that H1(z) has order M1 (impulse response length M1 + 1)
and H2(z) has order M2. Suppose that the frequency responses are of the form H1(ejω) =
A1(ejω)e−jωM1/2 and H2(ejω) = jA2(ejω)e−jωM2/2, where M1 is an even integer and M2
is an odd integer.

Chapter 5 Problems 359

(a) Determine the overall frequency response H(ejω).
(b) Determine the length of the impulse response of the overall system.
(c) Determine the group delay of the overall system.
(d) Is the overall system a Type I, Type II, Type III, or Type-IV generalized linear-phase

system?

y[n]x[n] h2[n]

H2(e j�)

h1[n]

H1(e j�)

Figure P5.46

5.47. A linear-phase FIR system has a real impulse response h[n] whose z-transform is known
to have the form

H(z) = (1 − az−1)(1 − ejπ/2z−1)(1 − bz−1)(1 − 0.5z−1)(1 − cz−1)

where a, b, and c are zeros of H(z) that you are to find. It is also known that H(ejω) = 0 for
ω = 0. This information and knowledge of the properties of linear-phase systems are suf-
ficient to completely determine the system function (and therefore the impulse response)
and to answer the following questions:

(a) Determine the length of the impulse response (i.e., the number of nonzero samples).
(b) Is this a Type I, Type II, Type III, or Type IV system?
(c) Determine the group delay of the system in samples.
(d) Determine the unknown zeros a, b, and c. (The labels are arbitrary, but there are three

more zeros to find.)
(e) Determine the values of the impulse response and sketch it as a stem plot.

5.48. The system function H(z) of a causal LTI system has the pole–zero configuration shown in
Figure P5.48. It is also known that H(z) = 6 when z = 1.

Re

Im

Double zero

1

z-plane

2
1
3

–

Figure P5.48

(a) Determine H(z).
(b) Determine the impulse response h[n] of the system.
(c) Determine the response of the system to the following input signals:

(i) x[n] = u[n] − 1
2 u[n − 1]

(ii) The sequence x[n] obtained from sampling the continuous-time signal

x(t) = 50 + 10 cos 20πt + 30 cos 40πt

at a sampling frequency �s = 2π(40) rad/s.

360 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.49. The system function of an LTI system is given by

H(z) = 21(
1 − 1

2 z−1
)

(1 − 2z−1)(1 − 4z−1)
.

It is known that the system is not stable and that the impulse response is two sided.

(a) Determine the impulse response h[n] of the system.
(b) The impulse response found in part (a) can be expressed as the sum of a causal impulse

response h1[n] and an anticausal impulse response h2[n]. Determine the corresponding
system functions H 1(z) and H 2(z).

5.50. The Fourier transform of a stable LTI system is purely real and is shown in Figure P5.50.
Determine whether this system has a stable inverse system.

–� � �

H(e j�)

Figure P5.50

5.51. A causal LTI system has the system function

H(z) = (1 − 1.5z−1 − z−2)(1 + 0.9z−1)

(1 − z−1)(1 + 0.7jz−1)(1 − 0.7jz−1)
.

(a) Write the difference equation that is satisfied by the input and the output of the system.
(b) Plot the pole–zero diagram and indicate the ROC for the system function.
(c) Sketch |H(ejω)|.
(d) State whether the following are true or false about the system:

(i) The system is stable.
(ii) The impulse response approaches a constant for large n.

(iii) The magnitude of the frequency response has a peak at approximately ω = ± π/4.
(iv) The system has a stable and causal inverse.

5.52. Consider a causal sequence x[n] with the z-transform

X(z) =
(

1 − 1
2 z−1
) (

1 − 1
4 z−1
) (

1 − 1
5z
)

(
1 − 1

6z
) .

For what values of α is αnx[n] a real, minimum-phase sequence?

Chapter 5 Problems 361

5.53. Consider the LTI system whose system function is

H(z) = (1 − 0.9ej0.6πz−1)(1 − 0.9e−j0.6πz−1)(1 − 1.25ej0.8πz−1)(1 − 1.25e−j0.8πz−1).

(a) Determine all causal system functions that result in the same frequency-response mag-
nitude as H(z) and for which the impulse responses are real valued and of the same
length as the impulse response associated with H(z). (There are four different such
system functions.) Identify which system function is minimum phase and which, to
within a time shift, is maximum phase.

(b) Determine the impulse responses for the system functions in part (a).
(c) For each of the sequences in part (b), compute and plot the quantity

E [n] =
n∑

m=0

(h[m])2

for 0 ≤ n ≤ 5. Indicate explicitly which plot corresponds to the minimum-phase system.

5.54. Shown in Figure P5.54 are eight different finite-duration sequences. Each sequence is four
points long. The magnitude of the Fourier transform is the same for all sequences. Which
of the sequences has all the zeros of its z-transform inside the unit circle?

n n n

n n n

n n

20.33

(a) (b) (c)

(d) (e)

(g) (h)

(f)

2

1
–6.67

–15.33

3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3
2.67 5.33

17.67

–3.33

–18.67

–1.33

9.67 13.33

–20.67

13.33 9.67

–20.67
–1.33

5.33

–18.67

17.67

–1.33

21.33

1.67

–11.33 –10.67

21.33

1.67

–10.67 –11.33

2.67

20.33

–15.33

–6.67

Figure P5.54

5.55. Each of the pole–zero plots in Figure P5.55, together with the specification of the ROC,
describes an LTI system with system function H(z). In each case, determine whether any
of the following statements are true. Justify your answer with a brief statement or a coun-
terexample.

(a) The system is a zero-phase or a generalized linear-phase system.
(b) The system has a stable inverse Hi(z).

362 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

Re

Im
Unit
circle

(a)

z-plane

1 1
2

1
2

ROC: |z| <

Re

Im
Unit
circle

(b)

z-plane

1 3
2

3
2

ROC: |z| >

Re

Im

Unit
circle

(c)

z-plane

1 1 2

2

4

1
4

Re

Im

Unit
circle

(d)

z-plane

3 1
4

2

1
4

Figure P5.55

5.56. Assuming ideal D/C amd C/D converters, the overall system of Figure P5.56 is a discrete-
time LTI system with frequency response H(ejω) and impulse response h[n].

x[n] y [n]
D/C C/D

Delay
�T

xc(t)

T T

yc(t) = xc(t – �T)

Figure P5.56

(a) H(ejω) can be expressed in the form

H(ejω) = A (ejω)ejφ(ω),

with A (ejω) real. Determine and sketch A (ejω) and φ(ω) for |ω| < π .
(b) Sketch h[n] for the following:

(i) α = 3
(ii) α = 3 1

2
(iii) α = 3 1

4 .

Chapter 5 Problems 363

(c) Consider a discrete-time LTI system for which

H(ejω) = A (ejω)ejαω, |ω| < π,

with A (ejω) real. What can be said about the symmetry of h[n] for the following?

(i) α = integer
(ii) α = M/2, where M is an odd integer

(iii) General α.

5.57. Consider the class of FIR filters that have h[n] real, h[n] = 0 for n < 0 and n > M , and one
of the following symmetry properties:

Symmetric: h[n] = h[M − n]
Antisymmetric: h[n] = −h[M − n]

All filters in this class have generalized linear phase, i.e., have frequency response of the form

H(ejω) = A (ejω)e−jαω+jβ ,

where A (ejω) is a real function of ω, α is a real constant, and β is a real constant.
For the following table, show that A (ejω) has the indicated form, and find the values

of α and β.

Type Symmetry (M + 1) Form of A (ejω) α β

I Symmetric Odd
M/2∑
n=0

a[n] cos ωn

II Symmetric Even
(M+1)/2∑

n=1

b[n] cos ω(n − 1/2)

III Antisymmetric Odd
M/2∑
n=1

c[n] sin ωn

IV Antisymmetric Even
(M+1)/2∑

n=1

d[n] sin ω(n − 1/2)

Here are several helpful suggestions.

• For type I filters, first show that H(ejω) can be written in the form

H(ejω) =
(M−2)/2∑

n=0

h[n]e−jωn +
(M−2)/2∑

n=0

h[M − n]e−jω[M−n] + h[M/2]e−jω(M/2).

• The analysis for type III filters is very similar to that for type I, with the exception
of a sign change and removal of one of the preceding terms.

• For type II filters, first write H(ejω) in the form

H(ejω) =
(M−1)/2∑

n=0

h[n]e−jωn +
(M−1)/2∑

n=0

h[M − n]e−jω[M−n],

and then pull out a common factor of e−jω(M/2) from both sums.
• The analysis for type IV filters is very similar to that for type II filters.

364 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.58. Let hlp[n] denote the impulse response of an FIR generalized linear-phase lowpass fil-
ter. The impulse response hhp[n] of an FIR generalized linear-phase highpass filter can be
obtained by the transformation

hhp[n] = (−1)nhlp[n].
If we decide to design a highpass filter using this transformation and we wish the resulting
highpass filter to be symmetric, which of the four types of generalized linear-phase FIR
filters can we use for the design of the lowpass filter? Your answer should consider all the
possible types.

5.59. (a) A specific minimum-phase system has system function H min(z) such that

H min(z)H ap(z) = H lin(z),

where H ap(z) is an all-pass system function and H lin(z) is a causal generalized linear-
phase system. What does this information tell you about the poles and zeros ofH min(z)?

(b) A generalized linear-phase FIR system has an impulse response with real values and
h[n] = 0 for n < 0 and for n ≥ 8, and h[n] = −h[7 − n]. The system function of this
system has a zero at z = 0.8ejπ/4 and another zero at z = −2. What is H(z)?

5.60. This problem concerns a discrete-time filter with a real-valued impulse response h[n]. De-
termine whether the following statement is true or false:

Statement: If the group delay of the filter is a constant for 0 < ω < π, then the
impulse response must have the property that either

h[n] = h[M − n]
or

h[n] = −h[M − n],
where M is an integer.

If the statement is true, show why it is true. If it is false, provide a counterexample.

5.61. The system function HII(z) represents a type II FIR generalized linear-phase system with
impulse response hII[n]. This system is cascaded with an LTI system whose system function
is (1−z−1) to produce a third system with system function H(z) and impulse response h[n].
Prove that the overall system is a generalized linear-phase system, and determine what type
of linear-phase system it is.

5.62. Let S 1 be a causal and stable LTI system with impulse response h1[n] and frequency re-
sponse H 1(ejω). The input x[n] and output y[n] for S 1 are related by the difference equation

y[n] − y[n − 1] + 1
4y[n − 2] = x[n].

(a) If an LTI system S 2 has a frequency response given by H 2(ejω) = H 1(−ejω), would
you characterize S 2 as being a lowpass filter, a bandpass filter, or a highpass filter?
Justify your answer.

(b) Let S 3 be a causal LTI system whose frequency response H 3(ejω) has the property that

H 3(ejω)H 1(ejω) = 1.

Is S 3 a minimum-phase filter? Could S 3 be classified as one of the four types of FIR
filters with generalized linear phase? Justify your answers.

(c) Let S 4 be a stable and noncausal LTI system whose frequency response is H 4(ejω)

and whose input x[n] and output y[n] are related by the difference equation:

y[n] + α1y[n − 1] + α2y[n − 2] = β 0 x[n],
where α1, α2, and β0 are all real and nonzero constants. Specify a value for α1, a value
for α2, and a value for β0 such that |H 4(ejω)| = |H 1(ejω)|.

Chapter 5 Problems 365

(d) Let S 5 be an FIR filter whose impulse response is h5[n] and whose frequency response,
H5(ejω), has the property that H5(ejω) = |A (ejω)|2 for some DTFT A (ejω) (i.e., S 5
is a zero-phase filter). Determine h5[n] such that h5[n] ∗ h1[n] is the impulse response
of a noncausal FIR filter.

Extension Problems

5.63. In the system shown in Figure P5.63-1, assume that the input can be expressed in the form

x[n] = s[n] cos(ω0n).

Assume also that s[n] is lowpass and relatively narrowband; i.e., S(ejω) = 0 for |ω| > 	,
with 	 very small and 	 � ω0, so that X(ejω) is narrowband around ω = ±ω0.

x [n] y [n]
H(e j�)

Figure P5.63-1

(a) If |H(ejω)| = 1 and � H(ejω) is as illustrated in Figure P5.63-2, show that y[n] =
s[n]cos(ω0n − φ0).

�H(e j�)

–�

–	0

	0

� �

Figure P5.63-2

(b) If |H(ejω)| = 1 and � H(ejω) is as illustrated in Figure P5.63-3, show that y[n] can be
expressed in the form

y[n] = s[n − nd] cos(ω0n − φ0 − ω0nd).

Show also that y[n] can be equivalently expressed as

y[n] = s[n − nd] cos(ω0n − φ1),

where −φ1 is the phase of H(ejω) at ω = ω0.

�H(e j�)

–�

–	0

–	1

	0

�0

�

Slope = –nd

Slope = –nd

Figure P5.63-3

366 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

(c) The group delay associated with H(ejω) is defined as

τgr(ω) = − d

dω
arg[H(ejω)],

and the phase delay is defined as τph(ω) = −(1/ω) � H(ejω). Assume that |H(ejω)| is
unity over the bandwidth of x[n]. Based on your results in parts (a) and (b) and on the
assumption that x[n] is narrowband, show that if τgr(ω0) and τph(ω0) are both integers,
then

y[n] = s[n − τgr(ω0)] cos{ω0[n − τph(ω0)]}.

This equation shows that, for a narrowband signal x[n], � H(ejω) effectively applies a
delay of τgr(ω0) to the envelope s[n] of x[n] and a delay of τph(ω0) to the carrier cos ω0n.

(d) Referring to the discussion in Section 4.5 associated with noninteger delays of a se-
quence, how would you interpret the effect of group delay and phase delay if τgr(ω0)

or τph(ω0) (or both) is not an integer?

5.64. The signal y[n] is the output of an LTI system with input x[n], which is zero-mean white
noise. The system is described by the difference equation

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k], b0 = 1.

(a) What is the z-transform �yy(z) of the autocorrelation function φyy [n]?
Sometimes it is of interest to process y[n] with a linear filter such that the power spec-

trum of the linear filter’s output will be flat when the input to the linear filter is y[n]. This pro-
cedure is known as “whitening” y[n], and the linear filter that accomplishes the task is said
to be the “whitening filter” for the signal y[n]. Suppose that we know the autocorrelation
function φyy [n] and its z-transform �yy(z), but not the values of the coefficients ak and bk .

(b) Describe a procedure for finding a system function Hw(z) of the whitening filter.
(c) Is the whitening filter unique?

5.65. In many practical situations, we are faced with the problem of recovering a signal that has
been “blurred” by a convolution process. We can model this blurring process as a linear
filtering operation, as depicted in Figure P5.65-1, where the blurring impulse response is as
shown in Figure P5.65-2. This problem will consider ways to recover x[n] from y[n].

x [n] y [n]
h [n]

Desired signal Blurred signal Figure P5.65–1

M – 10

...

n

1
h [n] = 1,

0,
0 n M – 1
otherwise

Figure P5.65–2

Chapter 5 Problems 367

(a) One approach to recovering x[n] from y[n] is to use an inverse filter; i.e., y[n] is filtered
by a system whose frequency response is

Hi(e
jω) = 1

H(ejω)
,

where H(ejω) is the Fourier transform of h[n]. For the impulse response h[n] shown
in Figure P5.65-2, discuss the practical problems involved in implementing the inverse
filtering approach. Be complete, but also be brief and to the point.

(b) Because of the difficulties involved in inverse filtering, the following approach is sug-
gested for recovering x[n] from y[n]: The blurred signal y[n] is processed by the system
shown in Figure P5.65-3, which produces an output w[n] from which we can extract
an improved replica of x[n]. The impulse responses h1[n] and h2[n] are shown in Fig-
ure P5.65-4. Explain in detail the working of this system. In particular, state precisely
the conditions under which we can recover x[n] exactly from w[n]. Hint: Consider the
impulse response of the overall system from x[n] to w[n].

y [n] w [n]
h1[n] h2[n]

Figure P5.65-3

0 M 2M

1

1

0

–1

3M (q – 1)M qM n

n

1

...

h2[n] = �[n] – �[n – 1]

h1[n] = �[n – kM]
q

k = 0
�

Figure P5.65-4

(c) Let us now attempt to generalize this approach to arbitrary finite-length blurring im-
pulse responses h[n]; i.e., assume only that h[n] = 0 for n < 0 or n ≥ M. Further,
assume that h1[n] is the same as in Figure P5.65-4. How must H 2(z) and H(z) be re-
lated for the system to work as in part (b)? What condition must H(z) satisfy in order
that it be possible to implement H 2(z) as a causal system?

368 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

5.66. In this problem, we demonstrate that, for a rational z-transform, a factor of the form (z−z0)
and a factor of the form z/(z − 1/z∗

0) contribute the same phase.

(a) Let H(z) = z − 1/a, where a is real and 0 < a < 1. Sketch the poles and zeros of the
system, including an indication of those at z = ∞. Determine � H(ejω), the phase of
the system.

(b) Let G(z) be specified such that it has poles at the conjugate-reciprocal locations of ze-
ros of H(z) and zeros at the conjugate-reciprocal locations of poles of H(z), including
those at zero and ∞. Sketch the pole–zero diagram of G(z). Determine � G(ejω), the
phase of the system, and show that it is identical to � H(ejω).

5.67. Prove the validity of the following two statements:

(a) The convolution of two minimum-phase sequences is also a minimum-phase sequence.
(b) The sum of two minimum-phase sequences is not necessarily a minimum-phase se-

quence. Specifically, give an example of both a minimum-phase and a nonminimum-
phase sequence that can be formed as the sum of two minimum-phase sequences.

5.68. A sequence is defined by the relationship

r[n] =
∞∑

m=−∞
h[m]h[n + m] = h[n] ∗ h[−n],

where h[n] is a minimum-phase sequence and

r[n] = 4
3

(
1
2

)n
u[n] + 4

3 2nu[−n − 1].

(a) Determine R(z) and sketch the pole–zero diagram.
(b) Determine the minimum-phase sequence h[n] to within a scale factor of ±1. Also,

determine the z-transform H(z) of h[n].
5.69. A maximum-phase sequence is a stable sequence whose z-transform has all its poles and

zeros outside the unit circle.

(a) Show that maximum-phase sequences are necessarily anti-causal, i.e., that they are
zero for n > 0.

FIR maximum-phase sequences can be made causal by including a finite amount
of delay. A finite-duration causal maximum-phase sequence having a Fourier transform
of a given magnitude can be obtained by reflecting all the zeros of the z-transform of a
minimum-phase sequence to conjugate-reciprocal positions outside the unit circle. That is,
we can express the z-transform of a maximum-phase causal finite-duration sequence as

H max(z) = H min(z)H ap(z).

Obviously, this process ensures that |H max(ejω)| = |H min(ejω)|. Now, the z-transform of
a finite-duration minimum-phase sequence can be expressed as

H min(z) = hmin[0]
M∏

k=1

(1 − ckz
−1), |ck | < 1.

(b) Obtain an expression for the all-pass system function required to reflect all the zeros
of H min(z) to positions outside the unit circle.

(c) Show that H max(z) can be expressed as

H max(z) = z−MH min(z−1).

(d) Using the result of part (c), express the maximum-phase sequence hmax[n] in terms of
hmin[n].

Chapter 5 Problems 369

5.70. It is not possible to obtain a causal and stable inverse system (a perfect compensator) for
a nonminimum-phase system. In this problem, we study an approach to compensating for
only the magnitude of the frequency response of a nonminimum-phase system.

Suppose that a stable nonminimum-phase LTI discrete-time system with a rational
system function H(z) is cascaded with a compensating system Hc(z) as shown in Fig-
ure P5.70.

x [n] y [n]w [n]

G(e j�)

H(z) Hc(z)

Figure P5.70

(a) How should Hc(z) be chosen so that it is stable and causal and so that the magnitude
of the overall effective frequency response is unity? (Recall that H(z) can always be
represented as H(z) = H ap(z)H min(z).)

(b) What are the corresponding system functions Hc(z) and G(z)?
(c) Assume that

H(z) = (1 − 0.8ej0.3πz−1)(1 − 0.8e−j0.3πz−1)(1 − 1.2ej0.7πz−1)(1 − 1.2e−j0.7πz−1).

Determine H min(z), H ap(z), Hc(z), and G(z) for this case, and construct the pole–zero
plots for each system function.

5.71. Let hmin[n] denote a minimum-phase sequence with z-transform H min(z). If h[n] is a causal
nonminimum-phase sequence whose Fourier transform magnitude is equal to |H min(ejω)|,
show that

|h[0]| < |hmin[0]|.
(Use the initial-value theorem together with Eq. (5.93).)

5.72. One of the interesting and important properties of minimum-phase sequences is the minimum-
energy delay property; i.e., of all the causal sequences having the same Fourier transform
magnitude function |H(ejω)|, the quantity

E [n] =
n∑

m = 0

|h[m]|2

is maximum for all n ≥ 0 when h[n] is the minimum-phase sequence. This result is proved
as follows: Let hmin[n] be a minimum-phase sequence with z-transform H min(z). Further-
more, let zk be a zero of H min(z) so that we can express H min(z) as

H min(z) = Q (z)(1 − zkz
−1), |zk | < 1,

where Q (z) is again minimum phase. Now consider another sequence h[n] with z-transform
H(z) such that

|H(ejω)| = |H min(ejω)|
and such that H(z) has a zero at z = 1/z∗

k
instead of at zk .

(a) Express H(z) in terms of Q (z).
(b) Express h[n] and hmin[n] in terms of the minimum-phase sequence q[n] that has z-

transform Q (z).

370 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

(c) To compare the distribution of energy of the two sequences, show that

ε =
n∑

m = 0

|hmin[m]|2 −
n∑

m = 0

|h[m]|2 = (1 − |zk |2)|q[n]|2.

(d) Using the result of part (c), argue that
n∑

m = 0

|h[m]|2 ≤
n∑

m = 0

|hmin[m]|2 for all n.

5.73. A causal all-pass system H ap(z) has input x[n] and output y[n].
(a) If x[n] is a real minimum-phase sequence (which also implies that x[n] = 0 for n < 0),

using Eq. (5.108), show that
n∑

k=0

|x[k]|2 ≥
n∑

k=0

|y[k]|2. (P5.73-1)

(b) Show that Eq. (P5.73-1) holds even if x[n] is not minimum phase, but is zero for n < 0.

5.74. In the design of either continuous-time or discrete-time filters, we often approximate a spec-
ified magnitude characteristic without particular regard to the phase. For example, standard
design techniques for lowpass and bandpass filters are derived from a consideration of the
magnitude characteristics only.

In many filtering problems, we would prefer that the phase characteristics be zero
or linear. For causal filters, it is impossible to have zero phase. However, for many filtering
applications, it is not necessary that the impulse response of the filter be zero for n < 0 if
the processing is not to be carried out in real time.

One technique commonly used in discrete-time filtering when the data to be filtered
are of finite duration and are stored, for example, in computer memory is to process the
data forward and then backward through the same filter.

Let h[n] be the impulse response of a causal filter with an arbitrary phase character-
istic. Assume that h[n] is real, and denote its Fourier transform by H(ejω). Let x[n] be the
data that we want to filter.

(a) Method A: The filtering operation is performed as shown in Figure P5.74-1.

x [n] g [n]
h [n]

g [–n] r [n]
h [n]

s [n] = r [–n] Figure P5.74-1

1. Determine the overall impulse response h1[n] that relates x[n] to s[n], and
show that it has a zero-phase characteristic.

2. Determine |H 1(ejω)|, and express it in terms of |H(ejω)| and � H(ejω).

(b) Method B: As depicted in Figure P5.74-2, process x[n] through the filter h[n] to get g[n].
Also, process x[n] backward through h[n] to get r[n]. The output y[n] is then taken as
the sum of g[n] and r[−n]. This composite set of operations can be represented by a
filter with input x[n], output y[n], and impulse response h2[n].

Chapter 5 Problems 371

x [n] g [n]
h [n]

x [–n] r [n]
h [n]

y [n] = g [n] + r [–n] Figure P5.74-2

1. Show that the composite filter h2[n] has a zero-phase characteristic.
2. Determine |H 2(ejω)|, and express it in terms of |H(ejω)| and � H(ejω).

(c) Suppose that we are given a sequence of finite duration on which we would like to
perform a bandpass zero-phase filtering operation. Furthermore, assume that we are
given the bandpass filter h[n], with frequency response as specified in Figure P5.74-3,
which has the magnitude characteristic that we desire, but has linear phase. To achieve
zero phase, we could use either method A or B. Determine and sketch |H 1(ejω)|
and |H 2(ejω)|. From these results, which method would you use to achieve the desired
bandpass filtering operation? Explain why. More generally, if h[n] has the desired mag-
nitude, but a nonlinear phase characteristic, which method is preferable to achieve a
zero-phase characteristic?

|H(e j�)|

�H(e j�)

–�

3� �

�

�

�

4
�

4

1

Figure P5.74-3

5.75. Determine whether the following statement is true or false. If it is true, concisely state your
reasoning. If it is false, give a counterexample.
Statement: If the system function H(z) has poles anywhere other than at the origin or
infinity, then the system cannot be a zero-phase or a generalized linear-phase system.

5.76. Figure P5.76 shows the zeros of the system function H(z) for a real causal linear-phase FIR
filter. All of the indicated zeros represent factors of the form (1−az−1). The corresponding
poles at z = 0 for these factors are not shown in the figure. The filter has approximately
unity gain in its passband.

(a) One of the zeros has magnitude 0.5 and angle 153 degrees. Determine the exact location
of as many other zeros as you can from this information.

(b) The system functionH(z) is used in the system for discrete-time processing of continuous-
time signals shown in Figure 4.10, with the sampling period T = 0.5 msec. Assume that
the continuous-time input Xc(j�) is bandlimited and that the sampling rate is high
enough to avoid aliasing. What is the time delay (in msec) through the entire system,
assuming that both C/D and D/C conversion require negligible amounts of time?

372 Chapter 5 Transform Analysis of Linear Time-Invariant Systems

(c) For the system in part (b), sketch the overall effective continuous-time frequency re-
sponse 20 log10 |H eff(j�)| for 0 ≤ � ≤ π/T as accurately as possible using the given
information. From the information in Figure P5.76 estimate the frequencies at which
H eff(j�) = 0, and mark them on your plot.

Im
ag

in
ar

y
P

ar
t

Real Part

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Figure P5.76

5.77. A signal x[n] is processed through an LTI system H(z) and then downsampled by a factor
of 2 to yield y[n] as indicated in Figure P5.77. Also, as shown in the same figure, x[n] is first
downsampled and then processed through an LTI system G(z) to obtain r[n].
(a) Specify a choice for H(z) (other than a constant) and G(z) so that r[n] = y[n] for an

arbitrary x[n].
(b) Specify a choice for H(z) so that there is no choice for G(z) that will result in r[n] = y[n]

for an arbitrary x[n].

2
y [n] = w [2n]

s [n] = w [2n]

x [n] w [n]
H(z)

2
r [n]x [n]

G(z)
Figure P5.77

(c) Determine as general a set of conditions as you can on H(z) such that G(z) can be
chosen so that r[n] = y[n] for an arbitrary x[n]. The conditions should not depend on
x[n]. If you first develop the conditions in terms of h[n], restate them in terms of H(z).

(d) For the conditions determined in part (c), what is g[n] in terms of h[n] so that
r[n] = y[n].

Chapter 5 Problems 373

5.78. Consider a discrete-time LTI system with a real-valued impulse response h[n]. We want to
find h[n], or equivalently, the system function H(z) from the autocorrelation chh[
] of the
impulse response. The definition of the autocorrelation is

chh[
] =
∞∑

k=−∞
h[k]h[k +
].

(a) If the system h[n] is causal and stable, can you uniquely recover h[n] from chh[
]?
Justify your answer.

(b) Assume that h[n] is causal and stable and that, in addition, you know that the system
function has the form

H(z) = 1

1 −
N∑

k=1

akz
−k

for some finite ak . Can you uniquely recover h[n] from chh[
]? Clearly justify your
answer.

5.79. Let h[n] and H(z) denote the impulse response and system function of a stable all-pass LTI
system. Let hi [n] denote the impulse response of the (stable) LTI inverse system. Assume
that h[n] is real. Show that hi [n] = h[−n].

5.80. Consider a real-valued sequence x[n] for which X(ejω) = 0 for π
4 ≤ |ω| ≤ π . One sequence

value of x[n] may have been corrupted, and we would like to recover it approximately or
exactly. With g[n] denoting the corrupted signal,

g[n] = x[n] for n �= n0,

and g[n0] is real but not related to x[n0]. In each of the following two cases, specify a
practical algorithm for recovering x[n] from g[n] exactly or approximately.

(a) The exact value of n0 is not known, but we know that n0 is an odd number.
(b) Nothing about n0 is known.

5.81. Show that if h[n] is an (M + 1)-point FIR filter such that h[n] = h[M − n] and H(z0) = 0,

then H(1/z0) = 0. This shows that even symmetric linear-phase FIR filters have zeros that
are reciprocal images. (If h[n] is real, the zeros also will be real or will occur in complex
conjugates.)

6
Structures for

Discrete-Time

Systems

6.0 INTRODUCTION

As we saw in Chapter 5, an LTI system with a rational system function has the property
that the input and output sequences satisfy a linear constant-coefficient difference equa-
tion. Since the system function is the z-transform of the impulse response, and since the
difference equation satisfied by the input and output can be determined by inspection
of the system function, it follows that the difference equation, the impulse response, and
the system function are equivalent characterizations of the input–output relation of an
LTI discrete-time system. When such systems are implemented with discrete-time ana-
log or digital hardware, the difference equation or the system function representation
must be converted to an algorithm or structure that can be realized in the desired tech-
nology. As we will see in this chapter, systems described by linear constant-coefficient
difference equations can be represented by structures consisting of an interconnection
of the basic operations of addition, multiplication by a constant, and delay, the exact
implementation of which is dictated by the technology to be used.

As an illustration of the computation associated with a difference equation, con-
sider the system described by the system function

H(z) = b0 + b1z
−1

1 − az−1
, |z| > |a|. (6.1)

The impulse response of this system is
h[n] = b0a

nu[n] + b1a
n−1u[n − 1], (6.2)

and the 1st-order difference equation that is satisfied by the input and output
sequences is

y[n] − ay[n − 1] = b0x[n] + b1x[n − 1]. (6.3)
374

Section 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations 375

Equation (6.2) gives a formula for the impulse response for this system. However,
since the system impulse response has infinite duration, even if we only wanted to
compute the output over a finite interval, it would not be efficient to do so by discrete
convolution since the amount of computation required to compute y[n] would grow
with n. However, rewriting Eq. (6.3) in the form

y[n] = ay[n − 1] + b0x[n] + b1x[n − 1] (6.4)

provides the basis for an algorithm for recursive computation of the output at any
time n in terms of the previous output y[n − 1], the current input sample x[n], and
the previous input sample x[n − 1]. As discussed in Section 2.5, if we further assume
initial-rest conditions (i.e., if x[n] = 0 for n < 0, then y[n] = 0 for n < 0), and if
we use Eq. (6.4) as a recurrence formula for computing the output from past values
of the output and present and past values of the input, the system will be linear and
time invariant. A similar procedure can be applied to the more general case of an
N th-order difference equation. However, the algorithm suggested by Eq. (6.4), and
its generalization for higher-order difference equations is not the only computational
algorithm for implementing a particular system, and often, it is not the best choice. As
we will see, an unlimited variety of computational structures result in the same relation
between the input sequence x[n] and the output sequence y[n].

In the remainder of this chapter, we consider the important issues in the implemen-
tation of LTI discrete-time systems. We first present the block diagram and signal flow
graph descriptions of computational structures for linear constant-coefficient difference
equations representing LTI causal systems.1 Using a combination of algebraic manipu-
lations and manipulations of block diagram representations, we derive a number of basic
equivalent structures for implementing a causal LTI system including lattice structures.
Although two structures may be equivalent with regard to their input–output character-
istics for infinite-precision representations of coefficients and variables, they may have
vastly different behavior when the numerical precision is limited. This is the major rea-
son that it is of interest to study different implementation structures. The effects of finite-
precision representation of the system coefficients and the effects of truncation or round-
ing of intermediate computations are considered in the latter sections of the chapter.

6.1 BLOCK DIAGRAM REPRESENTATION OF LINEAR
CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

The implementation of an LTI discrete-time system by iteratively evaluating a recur-
rence formula obtained from a difference equation requires that delayed values of the
output, input, and intermediate sequences be available. The delay of sequence values
implies the need for storage of past sequence values. Also, we must provide means for
multiplication of the delayed sequence values by the coefficients, as well as means for
adding the resulting products. Therefore, the basic elements required for the implemen-
tation of an LTI discrete-time system are adders, multipliers, and memory for storing

1Such flow graphs are also called “networks” in analogy to electrical circuit diagrams. We shall use the
terms flow graph, structure, and network interchangeably with respect to graphic representations of difference
equations.

376 Chapter 6 Structures for Discrete-Time Systems

x1[n] x1[n] + x2[n]

x2[n]

a

x [n]

x [n] x [n – 1]

ax [n]

+

(c)

(b)

(a)

z–1 Figure 6.1 Block diagram symbols.
(a) Addition of two sequences.
(b) Multiplication of a sequence by a
constant. (c) Unit delay.

delayed sequence values and coefficients. The interconnection of these basic elements
is conveniently depicted by block diagrams composed of the basic pictorial symbols
shown in Figure 6.1. Figure 6.1(a) represents the addition of two sequences. In general
block diagram notation, an adder may have any number of inputs. However, in almost
all practical implementations, adders have only two inputs. In all the diagrams of this
chapter, we indicate this explicitly by limiting the number of inputs as in Figure 6.1(a).
Figure 6.1(b) depicts multiplication of a sequence by a constant, and Figure 6.1(c) de-
picts delaying a sequence by one sample. In digital implementations, the delay operation
can be implemented by providing a storage register for each unit delay that is required.
For this reason, we sometimes refer to the operator of Figure 6.1(c) as a delay register.
In analog discrete-time implementations such as switched-capacitor filters, the delays
are implemented by charge storage devices. The unit delay system is represented in Fig-
ure 6.1(c) by its system function, z−1. Delays of more than one sample can be denoted
as in Figure 6.1(c), with a system function of z−M , where M is the number of samples
of delay; however, the actual implementation of M samples of delay would generally
be done by cascading M unit delays. In an integrated-circuit implementation, these unit
delays might form a shift register that is clocked at the sampling rate of the input signal.
In a software implementation, M cascaded unit delays would be implemented as M

consecutive memory registers.

Example 6.1 Block Diagram Representation of a Difference
Equation

As an example of the representation of a difference equation in terms of the elements
in Figure 6.1, consider the 2nd-order difference equation

y[n] = a1y[n − 1] + a2y[n − 2] + b0x[n]. (6.5)
The corresponding system function is

H(z) = b0

1 − a1z−1 − a2z−2
. (6.6)

The block diagram representation of the system realization based on Eq. (6.5) is shown
in Figure 6.2. Such diagrams give a pictorial representation of a computational al-
gorithm for implementing the system. When the system is implemented on either a

Section 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations 377

general-purpose computer or a digital signal processing (DSP) chip, network structures
such as the one shown in Figure 6.2 serve as the basis for a program that implements the
system. If the system is implemented with discrete components or as a complete system
with very large-scale integration (VLSI) technology, the block diagram is the basis for
determining a hardware architecture for the system. In both cases, diagrams such as
Figure 6.2 show explicitly that we must provide storage for the delayed variables (in
this case, y[n − 1] and y[n − 2]) and also the coefficients of the difference equation (in
this case, a1, a2, and b0). Furthermore, we see from Figure 6.2 that an output sequence
value y[n] is computed by first forming the products a1y[n − 1] and a2y[n − 2], then
adding them, and, finally, adding the result to b0x[n]. Thus, Figure 6.2 conveniently
depicts the complexity of the associated computational algorithm, the steps of the
algorithm, and the amount of hardware required to realize the system.

x [n] y [n]

b0

a1

a2

y [n – 1]

y [n – 2]

+

+

z–1

z–1

Figure 6.2 Example of a block diagram representation of a difference equation.

Example 6.1 can be generalized to higher-order difference equations of the form2

y[n] −
N∑

k=1

aky[n − k] =
M∑

k=0

bkx[n − k], (6.7)

with the corresponding system function

H(z) =

M∑
k=0

bkz
−k

1 −
N∑

k=1

akz
−k

. (6.8)

Rewriting Eq. (6.7) as a recurrence formula for y[n] in terms of a linear combination of
past values of the output sequence and current and past values of the input sequence

2The form used in previous chapters for a general N th-order difference equation was

N∑
k=0

aky[n − k] =
M∑

k=0

bkx[n − k].

In the remainder of the book, it will be more convenient to use the form in Eq. (6.7), where the coefficient
of y[n] is normalized to unity and the coefficients associated with the delayed output appear with a positive
sign after they have been moved to the right-hand side of the equation. (See Eq. (6.9).)

378 Chapter 6 Structures for Discrete-Time Systems

leads to the relation

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k]. (6.9)

The block diagram of Figure 6.3 is an explicit pictorial representation of Eq. (6.9).
More precisely, it represents the pair of difference equations

v[n] =
M∑

k=0

bkx[n − k], (6.10a)

y[n] =
N∑

k=1

aky[n − k] + v[n]. (6.10b)

The assumption of a two-input adder implies that the additions are done in a specified
order. That is, Figure 6.3 shows that the products aNy[n − N] and aN−1y[n − N + 1]
must be computed, then added, and the resulting sum added to aN−2y[n − N + 2], and
so on. After y[n] has been computed, the delay variables must be updated by moving
y[n − N + 1] into the register holding y[n − N], and so on, with the newly computed
y[n] becoming y[n − 1] for the next iteration.

A block diagram can be rearranged or modified in a variety of ways without chang-
ing the overall system function. Each appropriate rearrangement represents a different
computational algorithm for implementing the same system. For example, the block
diagram of Figure 6.3 can be viewed as a cascade of two systems, the first represent-
ing the computation of v[n] from x[n] and the second representing the computation of
y[n] from v[n]. Since each of the two systems is an LTI system (assuming initial-rest
conditions for the delay registers), the order in which the two systems are cascaded can
be reversed, as shown in Figure 6.4, without affecting the overall system function. In
Figure 6.4, for convenience, we have assumed that M = N . Clearly, there is no loss of
generality, since if M �= N , some of the coefficients ak or bk in the figure would be zero,
and the diagram could be simplified accordingly.

b0

b1

bM – 1

bM

y [n – 1]

y [n – 2]

y [n – N]

x [n – 1]

x [n – 2]

x [n – M]

...

x [n] y [n]

v [n]
+

+

+

...

a1

aN – 1

aN

z–1

z–1

...

+

+

+

...

z–1

z–1

z–1

z–1

Figure 6.3 Block diagram
representation for a general N th-order
difference equation.

Section 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations 379

In terms of the system function H(z) in Eq. (6.8), Figure 6.3 can be viewed as an
implementation of H(z) through the decomposition

H(z) = H 2(z)H 1(z) =

⎛⎜⎜⎜⎜⎜⎝
1

1 −
N∑

k=1

akz
−k

⎞⎟⎟⎟⎟⎟⎠
(

M∑
k=0

bkz
−k

)
(6.11)

or, equivalently, through the pair of equations

V (z) = H 1(z)X (z) =
(

M∑
k=0

bkz
−k

)
X (z), (6.12a)

Y (z) = H 2(z)V (z) =

⎛⎜⎜⎜⎜⎜⎝
1

1 −
N∑

k=1

akz
−k

⎞⎟⎟⎟⎟⎟⎠V (z). (6.12b)

Figure 6.4, on the other hand, represents H(z) as

H(z) = H 1(z)H 2(z) =
(

M∑
k=0

bkz
−k

)⎛⎜⎜⎜⎜⎜⎝
1

1 −
N∑

k=1

akz
−k

⎞⎟⎟⎟⎟⎟⎠ (6.13)

or, equivalently, through the equations

W(z) = H 2(z)X (z) =

⎛⎜⎜⎜⎜⎜⎝
1

1 −
N∑

k=1

akz
−k

⎞⎟⎟⎟⎟⎟⎠X (z), (6.14a)

Y (z) = H 1(z)W(z) =
(

M∑
k=0

bkz
−k

)
W(z). (6.14b)

380 Chapter 6 Structures for Discrete-Time Systems

...

...

y [n]
+

+

+

b0

b1

bN – 1

bN

z–1

z–1

z–1
...

...

x [n]

w [n]

w [n – 1]

w [n – N + 1]

w [n – N]

+

+

+

a1

aN – 1

aN

z–1

z–1

z–1

Figure 6.4 Rearrangement of block
diagram of Figure 6.3. We assume for
convenience that N = M . If N �= M ,
some of the coefficients will be zero.

In the time domain, Figure 6.4 and, equivalently, Eqs. (6.14a) and (6.14b) can be repre-
sented by the pair of difference equations

w[n] =
N∑

k=1

akw[n − k] + x[n], (6.15a)

y[n] =
M∑

k=0

bkw[n − k]. (6.15b)

The block diagrams of Figures 6.3 and 6.4 have several important differences. In
Figure 6.3, the zeros of H(z), represented by H 1(z), are implemented first, followed by
the poles, represented by H 2(z). In Figure 6.4, the poles are implemented first, followed
by the zeros. Theoretically, the order of implementation does not affect the overall sys-
tem function. However, as we will see, when a difference equation is implemented with
finite-precision arithmetic, there can be a significant difference between two systems
that are equivalent with the assumption of infinite precision arithmetic in the real num-
ber system. Another important point concerns the number of delay elements in the two
systems. As drawn, the systems in Figures 6.3 and 6.4 each have a total of (N + M)

delay elements. However, the block diagram of Figure 6.4 can be redrawn by noting
that exactly the same signal, w[n], is stored in the two chains of delay elements in the
figure. Consequently, the two can be collapsed into one chain, as indicated in Figure 6.5.

The total number of delay elements in Figure 6.5 is less than or equal to the number
required in either Figure 6.3 or Figure 6.4, and in fact it is the minimum number required
to implement a system with system function given by Eq. (6.8). Specifically, the minimum
number of delay elements required is, in general, max(N, M). An implementation with
the minimum number of delay elements is commonly referred to as a canonic form

Section 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations 381

...

...

...

x [n] y [n]

w [n]
+

+

+

+

+ +

b0

b1a1

aN – 1

aN

bN – 1

bN

z–1

z–1

z–1

Figure 6.5 Combination of delays in
Figure 6.4.

implementation. The noncanonic block diagram in Figure 6.3 is referred to as the direct
form I implementation of the general Nth-order system because it is a direct realization
of the difference equation satisfied by the input x[n] and the output y[n], which in
turn can be written directly from the system function by inspection. Figure 6.5 is often
referred to as the direct form II or canonic direct form implementation. Knowing that
Figure 6.5 is an appropriate realization structure for H(z) given by Eq. (6.8), we can go
directly back and forth in a straightforward manner between the system function and
the block diagram (or the equivalent difference equation).

Example 6.2 Direct Form I and Direct Form II
Implementation of an LTI System

Consider the LTI system with system function

H(z) = 1 + 2z−1

1 − 1.5z−1 + 0.9z−2
. (6.16)

Comparing this system function with Eq. (6.8), we find b0 = 1, b1 = 2, a1 = +1.5,
and a2 = −0.9, so it follows from Figure 6.3 that we can implement the system in a
direct form I block diagram as shown in Figure 6.6. Referring to Figure 6.5, we can also
implement the system function in direct form II, as shown in Figure 6.7. In both cases,
note that the coefficients in the feedback branches in the block diagram have opposite
signs from the corresponding coefficients of z−1 and z−2 in Eq. (6.16). Although this
change of sign is sometimes confusing, it is essential to remember that the feedback
coefficients {ak} always have the opposite sign in the difference equation from their
sign in the system function. Note also that the direct form II requires only two delay
elements to implement H(z), one less than the direct form I implementation.

382 Chapter 6 Structures for Discrete-Time Systems

x [n] y [n]
+

2 1.5

–0.9

+

z–1

+

z–1z–1

Figure 6.6 Direct form I implementation of Eq. (6.16).

x [n] y [n]
+

1.5 2

–0.9

+

z–1

+

z–1

Figure 6.7 Direct form II implementation of Eq. (6.16).

In the preceding discussion, we developed two equivalent block diagrams for im-
plementing an LTI system with system function given by Eq. (6.8). These block diagrams,
which represent different computational algorithms for implementing the system, were
obtained by manipulations based on the linearity of the system and the algebraic prop-
erties of the system function. Indeed, since the basic difference equations that represent
an LTI system are linear, equivalent sets of difference equations can be obtained sim-
ply by linear transformations of the variables of the difference equations. Thus, there
are an unlimited number of equivalent realizations of any given system. In Section 6.3,
using an approach similar to that employed in this section, we will develop a number of
other important and useful equivalent structures for implementing a system with system
function as in Eq. (6.8). Before discussing these other forms, however, it is convenient
to introduce signal flow graphs as an alternative to block diagrams for representing
difference equations.

6.2 SIGNAL FLOW GRAPH REPRESENTATION OF LINEAR
CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

A signal flow graph representation of a difference equation is essentially the same as
a block diagram representation, except for a few notational differences. Formally, a

Section 6.2 Signal Flow Graph Representation 383

wj[n]
wk[n]

Node j

Node k
Figure 6.8 Example of nodes and
branches in a signal flow graph.

signal flow graph is a network of directed branches that connect at nodes. Associated
with each node is a variable or node value. The value associated with node k might
be denoted wk , or, since node variables for digital filters are generally sequences, we
often indicate this explicitly with the notation wk[n]. Branch (j, k) denotes a branch
originating at node j and terminating at node k, with the direction from j to k being
indicated by an arrowhead on the branch. This is shown in Figure 6.8. Each branch
has an input signal and an output signal. The input signal from node j to branch (j, k)

is the node value wj [n]. In a linear signal flow graph, which is the only class we will
consider, the output of a branch is a linear transformation of the input to the branch.
The simplest example is a constant gain, i.e., when the output of the branch is simply a
constant multiple of the input to the branch. The linear operation represented by the
branch is typically indicated next to the arrowhead showing the direction of the branch.
For the case of a constant multiplier, the constant is simply shown next to the arrowhead.
When an explicit indication of the branch operation is omitted, this indicates a branch
transmittance of unity, or the identity transformation. By definition, the value at each
node in a graph is the sum of the outputs of all the branches entering the node.

To complete the definition of signal flow graph notation, we define two special
types of nodes. Source nodes are nodes that have no entering branches. Source nodes
are used to represent the injection of external inputs or signal sources into a graph.
Sink nodes are nodes that have only entering branches. Sink nodes are used to extract
outputs from a graph. Source nodes, sink nodes, and simple branch gains are illustrated
in the signal flow graph of Figure 6.9. The linear equations represented by the figure
are as follows:

w1[n] = x[n] + aw2[n] + bw2[n],
w2[n] = cw1[n], (6.17)

y[n] = dx[n] + ew2[n].

w1[n] w2[n]

a

d

b

c

e

y [n]x [n]

Source
node

Sink
node Figure 6.9 Example of a signal flow

graph showing source and sink nodes.

384 Chapter 6 Structures for Discrete-Time Systems

w [n]

w [n]

4

2

(a)

(b)

1 3

a

a

b1

b1

b0

b0

x [n]

x [n] y [n]

y [n]

Source
node 0

Sink
node 5

Delay
branch

+ +

z–1

Figure 6.10 (a) Block diagram
representation of a 1st-order digital filter.
(b) Structure of the signal flow graph
corresponding to the block diagram in
(a).

Addition, multiplication by a constant, and delay are the basic operations required
to implement a linear constant-coefficient difference equation. Since these are all linear
operations, it is possible to use signal flow graph notation to depict algorithms for
implementing LTI discrete-time systems. As an example of how the flow graph concepts
just discussed can be applied to the representation of a difference equation, consider
the block diagram in Figure 6.10(a), which is the direct form II realization of the system
whose system function is given by Eq. (6.1). A signal flow graph corresponding to this
system is shown in Figure 6.10(b). In the signal flow graph representation of difference
equations, the node variables are sequences. In Figure 6.10(b), node 0 is a source node
whose value is determined by the input sequence x[n], and node 5 is a sink node whose
value is denoted y[n]. Notice that the source and sink nodes are connected to the
rest of the graph by unity-gain branches to clearly denote the input and output of the
system. Obviously, nodes 3 and 5 have identical values. The extra branch with unity
gain is simply used to highlight the fact that node 3 is the output of the system. In
Figure 6.10(b), all branches except one (the delay branch (2, 4)) can be represented
by a simple branch gain; i.e., the output signal is a constant multiple of the branch
input. A delay cannot be represented in the time domain by a branch gain. However,
the z-transform representation of a unit delay is multiplication by the factor z−1. If we
represented the difference equations by their corresponding z-transform equations, all
the branches would be characterized by their system functions. In this case, each branch
gain would be a function of z; e.g., a unit delay branch would have a gain of z−1. By
convention, we represent the variables in a signal flow graph as sequences rather than
as z-transforms of sequences. However, to simplify the notation, we normally indicate
a delay branch by showing its branch gain as z−1, but it is understood that the output
of such a branch is the branch input delayed by one sequence value. That is, the use of
z−1 in a signal flow graph is in the sense of an operator that produces a delay of one
sample. The graph of Figure 6.10(b) is shown in Figure 6.11 with this convention. The

Section 6.2 Signal Flow Graph Representation 385

w1[n] w3[n]w2[n]

w4[n]

a b1

b0

z–1

x [n] y [n]

Figure 6.11 Signal flow graph of
Figure 6.10(b) with the delay branch
indicated by z−1.

equations represented by Figure 6.11 are as follows:

w1[n] = aw4[n] + x[n], (6.18a)

w2[n] = w1[n], (6.18b)

w3[n] = b0w2[n] + b1w4[n], (6.18c)

w4[n] = w2[n − 1], (6.18d)

y[n] = w3[n]. (6.18e)

A comparison of Figure 6.10(a) and Figure 6.11 shows that there is a direct corre-
spondence between branches in the block diagram and branches in the flow graph. In
fact, the important difference between the two is that nodes in the flow graph represent
both branching points and adders, whereas in the block diagram a special symbol is used
for adders. A branching point in the block diagram is represented in the flow graph by a
node that has only one incoming branch and one or more outgoing branches. An adder
in the block diagram is represented in the signal flow graph by a node that has two (or
more) incoming branches. In general, we will draw flow graphs with at most two inputs
to each node, since most hardware implementations of addition have only two inputs.
Signal flow graphs are therefore totally equivalent to block diagrams as pictorial repre-
sentations of difference equations, but they are simpler to draw. Like block diagrams,
they can be manipulated graphically to gain insight into the properties of a given system.
A large body of signal flow graph theory exists that can be directly applied to discrete-
time systems when they are represented in this form. (See Mason and Zimmermann,
1960; Chow and Cassignol, 1962; and Phillips and Nagle, 1995.) Although we will use
flow graphs primarily for their pictorial value, we will use certain theorems relating to
signal flow graphs in examining alternative structures for implementing linear systems.

Equations (6.18a)–(6.18e) define a multistep algorithm for computing the output
of the LTI system from the input sequence x[n]. This example illustrates the kind of
data precedence relations that generally arise in the implementation of IIR systems.
Equations (6.18a)–(6.18e) cannot be computed in arbitrary order. Equations (6.18a)
and (6.18c) require multiplications and additions, but Eqs. (6.18b) and (6.18e) sim-
ply rename variables. Equation (6.18d) represents the “updating” of the memory of
the system. It would be implemented simply by replacing the contents of the mem-
ory register representing w4[n] by the value of w2[n], but this would have to be done
consistently either before or after the evaluation of all the other equations. Initial-rest
conditions would be imposed in this case by defining w2[−1] = 0 or w4[0] = 0. Clearly,
Eqs. (6.18a)–(6.18e) must be computed in the order given, except that the last two could
be interchanged or Eq. (6.18d) could be consistently evaluated first.

386 Chapter 6 Structures for Discrete-Time Systems

The flow graph represents a set of difference equations, with one equation being
written at each node of the network. In the case of the flow graph of Figure 6.11, we can
eliminate some of the variables rather easily to obtain the pair of equations

w2[n] = aw2[n − 1] + x[n], (6.19a)

y[n] = b0w2[n] + b1w2[n − 1], (6.19b)

which are in the form of Eqs. (6.15a) and (6.15b); i.e., in direct form II. Often, the
manipulation of the difference equations of a flow graph is difficult when dealing with
the time-domain variables, owing to feedback of delayed variables. In such cases, it is
always possible to work with the z-transform representation, wherein all branches are
simple gains since delay is represented in the z-transform by multiplication by z−1. Prob-
lems 6.1–6.28 illustrate the utility of z-transform analysis of flow graphs for obtaining
equivalent sets of difference equations.

Example 6.3 Determination of the System Function from a
Flow Graph

To illustrate the use of the z-transform in determining the system function from a
flow graph, consider Figure 6.12. The flow graph in this figure is not in direct form.
Therefore, the system function cannot be written down by inspection of the graph.
However, the set of difference equations represented by the graph can be written
down by writing an equation for the value of each node variable in terms of the other
node variables. The five equations are

w1[n] = w4[n] − x[n], (6.20a)

w2[n] = αw1[n], (6.20b)

w3[n] = w2[n] + x[n], (6.20c)

w4[n] = w3[n − 1], (6.20d)

y[n] = w2[n] + w4[n]. (6.20e)

These are the equations that would be used to implement the system in the form
described by the flow graph. Equations (6.20a)–(6.20e) can be represented by the
z-transform equations

W1(z) = W4(z) − X (z), (6.21a)

W2(z) = αW1(z), (6.21b)

W3(z) = W2(z) + X (z), (6.21c)

W4(z) = z−1W3(z), (6.21d)

Y (z) = W2(z) + W4(z). (6.21e)

Section 6.2 Signal Flow Graph Representation 387

z–1

y [n]

w2[n]w1[n]

w4[n]w3[n]

x [n]

–1 �

Figure 6.12 Flow graph not in standard direct form.

We can eliminate W1(z) and W3(z) from this set of equations by substituting
Eq. (6.21a) into Eq. (6.21b) and Eq. (6.21c) into Eq. (6.21d), obtaining

W2(z) = α(W4(z) − X (z)), (6.22a)

W4(z) = z−1(W2(z) + X (z)), (6.22b)

Y (z) = W2(z) + W4(z). (6.22c)

Equations (6.22a) and (6.22b) can be solved for W2(z) and W4(z), yielding

W2(z) = α(z−1 − 1)

1 − αz−1
X (z), (6.23a)

W4(z) = z−1(1 − α)

1 − αz−1
X (z), (6.23b)

and substituting Eqs. (6.23a) and (6.23b) into Eq. (6.22c) leads to

Y (z) =
(

α(z−1 − 1) + z−1(1 − α)

1 − αz−1

)
X (z) =

(
z−1 − α

1 − αz−1

)
X (z). (6.24)

Therefore, the system function of the flow graph of Figure 6.12 is

H(z) = z−1 − α

1 − αz−1
, (6.25)

from which it follows that the impulse response of the system is

h[n] = αn−1u[n − 1] − αn+1u[n]
and the direct form I flow graph is as shown in Figure 6.13.

z–1z–1
x [n]

�

y [n]

–�

Figure 6.13 Direct form I equivalent of Figure 6.12.

Example 6.3 shows how the z-transform converts the time-domain expressions,
which involve feedback and thus are difficult to solve, into linear equations that can be
solved by algebraic techniques. The example also illustrates that different flow graph

388 Chapter 6 Structures for Discrete-Time Systems

representations define computational algorithms that require different amounts of com-
putational resources. By comparing Figures 6.12 and 6.13, we see that the original imple-
mentation requires only one multiplication and one delay (memory) element, whereas
the direct form I implementation would require two multiplications and two delay ele-
ments. The direct form II implementation would require one less delay, but it still would
require two multiplications.

6.3 BASIC STRUCTURES FOR IIR SYSTEMS

In Section 6.1, we introduced two alternative structures for implementing an LTI system
with system function as in Eq. (6.8). In this section we present the signal flow graph
representations of those systems, and we also develop several other commonly used
equivalent flow graph network structures. Our discussion will make it clear that, for any
given rational system function, a wide variety of equivalent sets of difference equations
or network structures exists. One consideration in the choice among these different
structures is computational complexity. For example, in some digital implementations,
structures with the fewest constant multipliers and the fewest delay branches are often
most desirable. This is because multiplication is generally a time-consuming and costly
operation in digital hardware and because each delay element corresponds to a memory
register. Consequently, a reduction in the number of constant multipliers means an
increase in speed, and a reduction in the number of delay elements means a reduction
in memory requirements.

Other, more subtle, trade-offs arise in VLSI implementations, in which the area
of a chip is often an important measure of efficiency. Modularity and simplicity of data
transfer on the chip are also frequently very desirable in such implementations. In
multiprocessor implementations, the most important considerations are often related
to partitioning of the algorithm and communication requirements between processors.
Other major considerations are the effects of a finite register length and finite-precision
arithmetic. These effects depend on the way in which the computations are organized,
i.e., on the structure of the signal flow graph. Sometimes it is desirable to use a structure
that does not have the minimum number of multipliers and delay elements if that
structure is less sensitive to finite register length effects.

In this section, we develop several of the most commonly used forms for imple-
menting an LTI IIR system and obtain their flow graph representations.

6.3.1 Direct Forms

In Section 6.1, we obtained block diagram representations of the direct form I (Fig-
ure 6.3) and direct form II, or canonic direct form (Figure 6.5), structures for an LTI
system whose input and output satisfy a difference equation of the form

y[n] −
N∑

k=1

aky[n − k] =
M∑

k=0

bkx[n − k], (6.26)

Section 6.3 Basic Structures for IIR Systems 389

x [n]

v[n]

x [n – 1]

x [n – 2]

x [n – N + 1]

x [n – N] y [n – N]

z–1

b0

b1

b2

bN – 1

bN

a1

a2

aN – 1

aN

z–1

z–1

y [n]

y [n – 1]

y [n – 2]

y [n – N + 1]

z–1

z–1

z–1

Figure 6.14 Signal flow graph of direct form I structure for an N th-order system.

with the corresponding rational system function

H(z) =

M∑
k=0

bkz
−k

1 −
N∑

k=1

akz
−k

. (6.27)

In Figure 6.14, the direct form I structure of Figure 6.3 is shown using signal flow graph
conventions, and Figure 6.15 shows the signal flow graph representation of the direct
form II structure of Figure 6.5. Again, we have assumed for convenience that N = M .
Note that we have drawn the flow graph so that each node has no more than two inputs.
A node in a signal flow graph may have any number of inputs, but, as indicated earlier,
this two-input convention results in a graph that is more closely related to programs and
architectures for implementing the computation of the difference equations represented
by the graph.

z–1

z–1

z–1

x [n]

w [n] b0

b1

b2

bN – 1

bN

a1

a2

aN – 1

aN

y[n]

Figure 6.15 Signal flow graph of direct
form II structure for an N th-order
system.

390 Chapter 6 Structures for Discrete-Time Systems

Example 6.4 Illustration of Direct Form I and Direct Form II
Structures

Consider the system function

H(z) = 1 + 2z−1 + z−2

1 − 0.75z−1 + 0.125z−2
. (6.28)

Since the coefficients in the direct form structures correspond directly to the coeffi-
cients of the numerator and denominator polynomials (taking into account the minus
sign in the denominator of Eq. (6.27)), we can draw these structures by inspection with
reference to Figures 6.14 and 6.15. The direct form I and direct form II structures for
this example are shown in Figures 6.16 and 6.17, respectively.

z–1

z–1

z–1

z–1

x [n]

2 0.75

–0.125

y [n]

Figure 6.16 Direct form I structure for Example 6.4.

20.75

–0.125

z–1

z–1

x [n] y [n]

Figure 6.17 Direct form II structure for Example 6.4.

6.3.2 Cascade Form

The direct form structures were obtained directly from the system function H(z), written
as a ratio of polynomials in the variable z−1 as in Eq. (6.27). If we factor the numerator
and denominator polynomials, we can express H(z) in the form

H(z) = A

M 1∏
k=1

(1 − fkz
−1)

M 2∏
k=1

(1 − gkz
−1)(1 − g∗

k z−1)

N1∏
k=1

(1 − ckz
−1)

N2∏
k=1

(1 − dkz
−1)(1 − d∗

k z−1)

, (6.29)

where M = M 1 + 2M 2 and N = N1 + 2N2. In this expression, the 1st-order factors
represent real zeros at fk and real poles at ck , and the 2nd-order factors represent
complex conjugate pairs of zeros at gk and g∗

k and complex conjugate pairs of poles

Section 6.3 Basic Structures for IIR Systems 391

z–1

a11 b11

a21 b21

a12 b12

a22 b22

a13 b13

b01 b02 b03

a23 b23

z–1

z–1

z–1

z–1

z–1

x [n]

w1[n] y1[n]

y [n]

w2[n] y2[n] w3[n] y3[n]

Figure 6.18 Cascade structure for a 6th-order system with a direct form II real-
ization of each 2nd-order subsystem.

at dk and d∗
k . This represents the most general distribution of poles and zeros when

all the coefficients in Eq. (6.27) are real. Equation (6.29) suggests a class of structures
consisting of a cascade of 1st- and 2nd-order systems. There is considerable freedom in
the choice of composition of the subsystems and in the order in which the subsystems are
cascaded. In practice, however, it is often desirable to implement the cascade realization
using a minimum of storage and computation. A modular structure that is advantageous
for many types of implementations is obtained by combining pairs of real factors and
complex conjugate pairs into 2nd-order factors so that Eq. (6.29) can be expressed as

H(z) =
Ns∏
k=1

b0k + b1kz
−1 + b2kz

−2

1 − a1kz
−1 − a2kz

−2
, (6.30)

where Ns = �(N + 1)/2� is the largest integer contained in (N + 1)/2. In writing H(z)

in this form, we have assumed that M ≤ N and that the real poles and zeros have been
combined in pairs. If there are an odd number of real zeros, one of the coefficients b2k

will be zero. Likewise, if there are an odd number of real poles, one of the coefficients a2k

will be zero. The individual 2nd-order sections can be implemented using either of the
direct form structures; however, the previous discussion shows that we can implement
a cascade structure with a minimum number of multiplications and a minimum number
of delay elements if we use the direct form II structure for each 2nd-order section. A
cascade structure for a 6th-order system using three direct form II 2nd-order sections
is shown in Figure 6.18. The difference equations represented by a general cascade of
direct form II 2nd-order sections are of the form

y0[n] = x[n], (6.31a)

wk[n] = a1kwk[n − 1] + a2kwk[n − 2] + yk−1[n], k = 1, 2, . . . , Ns, (6.31b)

yk[n] = b0kwk[n] + b1kwk[n − 1] + b2kwk[n − 2], k = 1, 2, . . . , Ns, (6.31c)

y[n] = yNs [n]. (6.31d)

It is easy to see that a variety of theoretically equivalent systems can be obtained
by simply pairing the poles and zeros in different ways and by ordering the 2nd-order
sections in different ways. Indeed, if there are Ns 2nd-order sections, there are Ns ! (Ns

factorial) pairings of the poles with zeros and Ns ! orderings of the resulting 2nd-order
sections, or a total of (Ns !)2 different pairings and orderings. Although these all have the
same overall system function and corresponding input–output relation when infinite-

392 Chapter 6 Structures for Discrete-Time Systems

precision arithmetic is used, their behavior with finite-precision arithmetic can be quite
different, as we will see in Sections 6.8–6.10.

Example 6.5 Illustration of Cascade Structures

Let us again consider the system function of Eq. (6.28). Since this is a 2nd-order system,
a cascade structure with direct form II 2nd-order sections reduces to the structure of
Figure 6.17. Alternatively, to illustrate the cascade structure, we can use 1st-order
systems by expressing H(z) as a product of 1st-order factors, as in

H(z) = 1 + 2z−1 + z−2

1 − 0.75z−1 + 0.125z−2
= (1 + z−1)(1 + z−1)

(1 − 0.5z−1)(1 − 0.25z−1)
. (6.32)

Since all of the poles and zeros are real, a cascade structure with 1st-order sections
has real coefficients. If the poles and/or zeros were complex, only a 2nd-order section
would have real coefficients. Figure 6.19 shows two equivalent cascade structures, each
of which has the system function in Eq. (6.32). The difference equations represented
by the flow graphs in the figure can be written down easily. Problem 6.22 is concerned
with finding other, equivalent system configurations.

z–1z–1z–1z–1
x [n] y [n]

y [n]
z–1 z–1

x [n]

0.5

(a)

(b)

0.25

0.250.5

Figure 6.19 Cascade structures for Example 6.5. (a) Direct form I subsections.
(b) Direct form II subsections.

A final comment should be made about our definition of the system function
for the cascade form. As defined in Eq. (6.30), each 2nd-order section has five constant
multipliers. For comparison, let us assume that M = N in H(z) as given by Eq. (6.27), and
furthermore, assume that N is an even integer, so that Ns = N/2. Then, the direct form
I and II structures have 2N + 1 constant multipliers, while the cascade form structure
suggested by Eq. (6.30) has 5N/2 constant multipliers. For the 6th-order system in
Figure 6.18, we require a total of 15 multipliers, while the equivalent direct forms would
require a total of 13 multipliers. Another definition of the cascade form is

H(z) = b0

Ns∏
k=1

1 + b̃1kz
−1 + b̃2kz

−2

1 − a1kz
−1 − a2kz

−2
, (6.33)

Section 6.3 Basic Structures for IIR Systems 393

where b0 is the leading coefficient in the numerator polynomial of Eq. (6.27) and b̃ik =
bik/b0k for i = 1, 2 and k = 1, 2, . . . , Ns . This form for H(z) suggests a cascade of
four-multiplier 2nd-order sections, with a single overall gain constant b0. This cascade
form has the same number of constant multipliers as the direct form structures. As
discussed in Section 6.9, the five-multiplier 2nd-order sections are commonly used when
implemented with fixed-point arithmetic, because they make it possible to distribute
the overall gain of the system and thereby control the size of signals at various critical
points in the system. When floating-point arithmetic is used and dynamic range is not
a problem, the four-multiplier 2nd-order sections can be used to decrease the amount
of computation. Further simplification results for zeros on the unit circle. In this case,
b̃2k = 1, and we require only three multipliers per 2nd-order section.

6.3.3 Parallel Form

As an alternative to factoring the numerator and denominator polynomials of H(z),
we can express a rational system function as given by Eq. (6.27) or (6.29) as a partial
fraction expansion in the form

H(z) =
Np∑
k=0

Ckz
−k +

N1∑
k=1

Ak

1 − ckz−1
+

N2∑
k=1

Bk(1 − ekz
−1)

(1 − dkz−1)(1 − d∗
k z−1)

, (6.34)

where N = N1 + 2N2. If M ≥ N , then Np = M − N ; otherwise, the first summation in
Eq. (6.34) is not included. If the coefficients ak and bk are real in Eq. (6.27), then the
quantities Ak , Bk , Ck , ck , and ek are all real. In this form, the system function can be
interpreted as representing a parallel combination of 1st- and 2nd-order IIR systems,
with possibly Np simple scaled delay paths. Alternatively, we may group the real poles
in pairs, so that H(z) can be expressed as

H(z) =
Np∑
k=0

Ckz
−k +

Ns∑
k=1

e0k + e1kz
−1

1 − a1kz
−1 − a2kz

−2
, (6.35)

where, as in the cascade form, Ns = �(N + 1)/2� is the largest integer contained in
(N +1)/2, and if Np = M −N is negative, the first sum is not present. A typical example
for N = M = 6 is shown in Figure 6.20. The general difference equations for the parallel
form with 2nd-order direct form II sections are

wk[n] = a1kwk[n − 1] + a2kwk[n − 2] + x[n], k = 1, 2, . . . , Ns, (6.36a)

yk[n] = e0kwk[n] + e1kwk[n − 1], k = 1, 2, . . . , Ns, (6.36b)

y[n] =
Np∑
k=0

Ckx[n − k] +
Ns∑
k=1

yk[n]. (6.36c)

If M < N , then the first summation in Eq. (6.36c) is not included.

394 Chapter 6 Structures for Discrete-Time Systems

a11 e11

e01

C0

a21

a12 e12

e13

e03

e02

a22

a13

a23

z–1

z–1

z–1

z–1

z–1

z–1

x [n]

w1[n] y1[n]

y [n]

w2[n] y2[n]

w3[n] y3[n]

Figure 6.20 Parallel form structure for 6th-order system (M = N = 6) with the
real and complex poles grouped in pairs.

Example 6.6 Illustration of Parallel Form Structures

Consider again the system function used in Examples 6.4 and 6.5. For the parallel form,
we must express H(z) in the form of either Eq. (6.34) or Eq. (6.35). If we use 2nd-order
sections,

H(z) = 1 + 2z−1 + z−2

1 − 0.75z−1 + 0.125z−2
= 8 + −7 + 8z−1

1 − 0.75z−1 + 0.125z−2
. (6.37)

The parallel form realization for this example with a 2nd-order section is shown in
Figure 6.21.

Since all the poles are real, we can obtain an alternative parallel form realization
by expanding H(z) as

H(z) = 8 + 18

1 − 0.5z−1
− 25

1 − 0.25z−1
. (6.38)

The resulting parallel form with 1st-order sections is shown in Figure 6.22. As in the
general case, the difference equations represented by both Figures 6.21 and 6.22 can
be written down by inspection.

Section 6.3 Basic Structures for IIR Systems 395

–0.125

x [n]

0.75

z–1

z–1

y [n]

8

–7

8

Figure 6.21 Parallel form structure for Example 6.6 using a 2nd-order
system.

0.25

x [n]

0.5

z–1

z–1

y [n]

–25

8

18

Figure 6.22 Parallel form structure for Example 6.6 using 1st-order systems.

6.3.4 Feedback in IIR Systems

All the flow graphs of this section have feedback loops; i.e., they have closed paths that
begin at a node and return to that node by traversing branches only in the direction of
their arrowheads. Such a structure in the flow graph implies that a node variable in a loop
depends directly or indirectly on itself. A simple example is shown in Figure 6.23(a),
which represents the difference equation

y[n] = ay[n − 1] + x[n]. (6.39)

396 Chapter 6 Structures for Discrete-Time Systems

x [n]

z–1
a

a

y [n]

(c)

(a)

x [n]

z–1
a

–a2

z–1

(b)

y [n]

x [n] y [n]

Figure 6.23 (a) System with feedback
loop. (b) FIR system with feedback loop.
(c) Noncomputable system.

Such loops are necessary (but not sufficient) to generate infinitely long impulse
responses. This can be seen if we consider a network with no feedback loops. In such a
case, any path from the input to the output can pass through each delay element only
once. Therefore, the longest delay between the input and output would occur for a path
that passes through all of the delay elements in the network. Thus, for a network with
no loops, the impulse response is no longer than the total number of delay elements
in the network. From this, we conclude that if a network has no loops, then the system
function has only zeros (except for poles at z = 0), and the number of zeros can be no
more than the number of delay elements in the network.

Returning to the simple example of Figure 6.23(a), we see that when the input
is the impulse sequence δ[n], the single-input sample continually recirculates in the
feedback loop with either increasing (if |a| > 1) or decreasing (if |a| < 1) amplitude
owing to multiplication by the constant a, so that the impulse response is h[n] = anu[n].
This illustrates how feedback can create an infinitely long impulse response.

If a system function has poles, a corresponding block diagram or signal flow graph
will have feedback loops. On the other hand, neither poles in the system function nor
loops in the network are sufficient for the impulse response to be infinitely long. Fig-
ure 6.23(b) shows a network with a feedback loop, but with an impulse response of
finite length. This is because the pole of the system function cancels with a zero; i.e., for
Figure 6.23(b),

H(z) = 1 − a2z−2

1 − az−1
= (1 − az−1)(1 + az−1)

1 − az−1
= 1 + az−1. (6.40)

The impulse response of this system is h[n] = δ[n] + aδ[n − 1]. The system is a simple
example of a general class of FIR systems called frequency-sampling systems. This class
of systems is considered in more detail in Problems 6.39 and 6.51.

Section 6.4 Transposed Forms 397

Loops in a network pose special problems in implementing the computations im-
plied by the network. As we have discussed, it must be possible to compute the node
variables in a network in sequence such that all necessary values are available when
needed. In some cases, there is no way to order the computations so that the node
variables of a flow graph can be computed in sequence. Such a network is called non-
computable (see Crochiere and Oppenheim, 1975). A simple noncomputable network
is shown in Figure 6.23(c). The difference equation for this network is

y[n] = ay[n] + x[n]. (6.41)

In this form, we cannot compute y[n] because the right-hand side of the equation in-
volves the quantity we wish to compute. The fact that a flow graph is noncomputable
does not mean the equations represented by the flow graph cannot be solved; indeed,
the solution to Eq. (6.41) is y[n] = x[n]/(1−a). It simply means that the flow graph does
not represent a set of difference equations that can be solved successively for the node
variables. The key to the computability of a flow graph is that all loops must contain at
least one unit delay element. Thus, in manipulating flow graphs representing implemen-
tations of LTI systems, we must be careful not to create delay-free loops. Problem 6.37
deals with a system having a delay-free loop. Problem 7.51 shows how a delay-free loop
can be introduced.

6.4 TRANSPOSED FORMS

The theory of linear signal flow graphs provides a variety of procedures for transforming
such graphs into different forms while leaving the overall system function between
input and output unchanged. One of these procedures, called flow graph reversal or
transposition, leads to a set of transposed system structures that provide some useful
alternatives to the structures discussed in the previous section.

Transposition of a flow graph is accomplished by reversing the directions of all
branches in the network while keeping the branch transmittances as they were and
reversing the roles of the input and output so that source nodes become sink nodes and
vice versa. For single-input, single-output systems, the resulting flow graph has the same
system function as the original graph if the input and output nodes are interchanged.
Although we will not formally prove this result here,3 we will demonstrate that it is
valid with two examples.

Example 6.7 Transposed Form for a 1st-Order System with
No Zeros

The 1st-order system corresponding to the flow graph in Figure 6.24(a) has system
function

H(z) = 1

1 − az−1
. (6.42)

3The theorem follows directly from Mason’s gain formula of signal flow graph theory. (See Mason and
Zimmermann, 1960; Chow and Cassignol, 1962; or Phillips and Nagle, 1995.)

398 Chapter 6 Structures for Discrete-Time Systems

To obtain the transposed form for this system, we reverse the directions of all the
branch arrows, taking the output where the input was and injecting the input where
the output was. The result is shown in Figure 6.24(b). It is usually convenient to draw
the transposed network with the input on the left and the output on the right, as shown
in Figure 6.24(c). Comparing Figures 6.24(a) and 6.24(c) we note that the only differ-
ence is that in Figure 6.24(a), we multiply the delayed output sequence y[n − 1] by the
coefficient a, whereas in Figure 6.24(c) we multiply the output y[n] by the coefficient
a and then delay the resulting product. Since the two operations can be interchanged,
we can conclude by inspection that the original system in Figure 6.24(a) and the cor-
responding transposed system in Figure 6.24(c) have the same system function.

z–1

a

x [n] y [n]

(a)

z–1

a

x [n]y [n]

(b)

z–1

a

x [n] y [n]

(c)

Figure 6.24 (a) Flow graph of simple 1st-order system. (b) Transposed form of
(a). (c) Structure of (b) redrawn with input on left.

In Example 6.7, it is straightforward to see that the original system and its transpose
have the same system function. However, for more complicated graphs, the result is
often not so obvious. This is illustrated by the next example.

Example 6.8 Transposed Form for a Basic 2nd-Order Section

Consider the basic 2nd-order section depicted in Figure 6.25. The corresponding dif-
ference equations for this system are

w[n] = a1w[n − 1] + a2w[n − 2] + x[n], (6.43a)

y[n] = b0w[n] + b1w[n − 1] + b2w[n − 2]. (6.43b)

Section 6.4 Transposed Forms 399

The transposed flow graph is shown in Figure 6.26; its corresponding difference
equations are

v0[n] = b0x[n] + v1[n − 1], (6.44a)

y[n] = v0[n], (6.44b)

v1[n] = a1y[n] + b1x[n] + v2[n − 1], (6.44c)

v2[n] = a2y[n] + b2x[n]. (6.44d)

Equations (6.43a)–(6.43b) and Eqs. (6.44a)–(6.44d) are different ways to orga-
nize the computation of the output samples y[n] from the input samples x[n], and it
is not immediately clear that the two sets of difference equations are equivalent. One
way to show this equivalence is to use the z-transform representations of both sets
of equations, solve for the ratio Y (z)/X (z) = H(z) in both cases, and compare the
results. Another way is to substitute Eq. (6.44d) into Eq. (6.44c), substitute the result
into Eq. (6.44a), and finally, substitute that result into Eq. (6.44b). The final result is

y[n] = a1y[n − 1] + a2y[n − 2] + b0x[n] + b1x[n − 1] + b2x[n − 2]. (6.45)

Since the network of Figure 6.25 is a direct form II structure, it is easily seen that the
input and output of the system in Figure 6.25 also satisfies the difference Eq. (6.45).
Therefore, for initial-rest conditions, the systems in Figures 6.25 and 6.26 are
equivalent.

b1

b2

a1

a2

b0

z–1

z–1

x [n]

w [n]

y [n]

Figure 6.25 Direct form II structure for Example 6.8.

b1

b2

a1

a2

b0

z–1

z–1

x [n]

v0[n]

v2[n]

v1[n]

y [n]

Figure 6.26 Transposed direct form II structure for Example 6.8.

The transposition theorem can be applied to any of the structures that we have
discussed so far. For example, the result of applying the theorem to the direct form I
structure of Figure 6.14 is shown in Figure 6.27, and similarly, the structure obtained by

400 Chapter 6 Structures for Discrete-Time Systems

x [n]
z–1

b0

b1

b2

bN – 1

bN

a1

a2

aN – 1

aN

z–1

z–1

y [n]
z–1

z–1

z–1

Figure 6.27 General flow graph resulting from applying the transposition theorem
to the direct form I structure of Figure 6.14.

transposing the direct form II structure of Figure 6.15 is shown in Figure 6.28. If a signal
flow graph configuration is transposed, the number of delay branches and the number
of coefficients remain the same. Thus, the transposed direct form II structure is also a
canonic structure. Transposed structures derived from direct forms are also “direct” in
the sense that they can be constructed by inspection of the numerator and denominator
of the system function.

An important point becomes evident through a comparison of Figures 6.15 and
6.28. Whereas the direct form II structure implements the poles first and then the
zeros, the transposed direct form II structure implements the zeros first and then the
poles. These differences can become important in the presence of quantization in finite-
precision digital implementations or in the presence of noise in discrete-time analog
implementations.

x [n]

b0

b1

b2

bN – 1

bN

a1

a2

aN – 1

aN

y [n]
z–1

z–1

z–1

Figure 6.28 General flow graph resulting from applying the transposition theorem
to the direct form II structure of Figure 6.15.

Section 6.5 Basic Network Structures for FIR Systems 401

When the transposition theorem is applied to cascade or parallel structures, the
individual 2nd-order systems are replaced by transposed structures. For example, ap-
plying the transposition theorem to Figure 6.18 results in a cascade of three transposed
direct form II sections (each like the one in Example 6.8) with the same coefficients as
in Figure 6.18, but with the order of the cascade reversed. A similar statement can be
made about the transposition of Figure 6.20.

The transposition theorem further emphasizes that an infinite variety of imple-
mentation structures exists for any given rational system function. The transposition
theorem provides a simple procedure for generating new structures. The problems of
implementing systems with finite-precision arithmetic have motivated the development
of many more classes of equivalent structures than we can discuss here. Thus, we con-
centrate only on the most commonly used structures.

6.5 BASIC NETWORK STRUCTURES FOR FIR SYSTEMS

The direct, cascade, and parallel form structures discussed in Sections 6.3 and 6.4 are
the most common basic structures for IIR systems. These structures were developed
under the assumption that the system function had both poles and zeros. Although the
direct and cascade forms for IIR systems include FIR systems as a special case, there
are additional specific forms for FIR systems.

6.5.1 Direct Form

For causal FIR systems, the system function has only zeros (except for poles at z = 0),
and since the coefficients ak are all zero, the difference equation of Eq. (6.9) reduces to

y[n] =
M∑

k=0

bkx[n − k]. (6.46)

This can be recognized as the discrete convolution of x[n] with the impulse response

h[n] =
{

bn n = 0, 1, . . . , M,

0 otherwise.
(6.47)

In this case, the direct form I and direct form II structures in Figures 6.14 and 6.15 both
reduce to the direct form FIR structure as redrawn in Figure 6.29. Because of the chain
of delay elements across the top of the diagram, this structure is also referred to as a
tapped delay line structure or a transversal filter structure. As seen from Figure 6.29, the
signal at each tap along this chain is weighted by the appropriate coefficient (impulse-
response value), and the resulting products are summed to form the output y[n].

The transposed direct form for the FIR case is obtained by applying the transpo-
sition theorem to Figure 6.29 or, equivalently, by setting the coefficients ak to zero in
Figure 6.27 or Figure 6.28. The result is shown in Figure 6.30.

402 Chapter 6 Structures for Discrete-Time Systems

x [n]

h [0] h [1] h [2] h [M – 1] h [M]

y [n]

z–1 z–1 z–1

Figure 6.29 Direct form realization of an FIR system.

h [0]h [1]h [2]h [M – 1] h [M – 2]h [M]

y [n]

z–1 z–1 z–1

x [n]

z–1

Figure 6.30 Transposition of the network of Figure 6.29.

6.5.2 Cascade Form

The cascade form for FIR systems is obtained by factoring the polynomial system func-
tion. That is, we represent H(z) as

H(z) =
M∑

n=0

h[n]z−n =
Ms∏
k=1

(b0k + b1kz
−1 + b2kz

−2), (6.48)

where Ms = �(M + 1)/2� is the largest integer contained in (M + 1)/2. If M is odd, one
of the coefficients b2k will be zero, since H(z) in that case would have an odd number
of real zeros. The flow graph representing Eq. (6.48) is shown in Figure 6.31, which is
identical in form to Figure 6.18 with the coefficients a1k and a2k all zero. Each of the
2nd-order sections in Figure 6.31 uses the direct form shown in Figure 6.29. Another
alternative is to use transposed direct form 2nd-order sections or, equivalently, to apply
the transposition theorem to Figure 6.31.

y [n]

z–1

b01

b11

b21

b02

b12

b22

b0Ms

b1Ms

b2Ms

z–1

z–1

z–1

z–1

z–1

x [n]

Figure 6.31 Cascade form realization of an FIR system.

Section 6.5 Basic Network Structures for FIR Systems 403

6.5.3 Structures for Linear-Phase FIR Systems

In Chapter 5, we showed that causal FIR systems have generalized linear phase if the
impulse response satisfies the symmetry condition

h[M − n] = h[n] n = 0, 1, . . . , M (6.49a)

or

h[M − n] = −h[n] n = 0, 1, . . . , M. (6.49b)

With either of these conditions, the number of coefficient multipliers can be es-
sentially halved. To see this, consider the following manipulations of the discrete con-
volution equation, assuming that M is an even integer corresponding to type I or type
III systems:

y[n] =
M∑

k=0

h[k]x[n − k]

=
M/2−1∑

k=0

h[k]x[n − k] + h[M/2]x[n − M/2] +
M∑

k=M/2+1

h[k]x[n − k]

=
M/2−1∑

k=0

h[k]x[n − k] + h[M/2]x[n − M/2] +
M/2−1∑

k=0

h[M − k]x[n − M + k].

For type I systems, we use Eq. (6.49a) to obtain

y[n] =
M/2−1∑

k=0

h[k](x[n − k] + x[n − M + k]) + h[M/2]x[n − M/2]. (6.50)

For type III systems, we use Eq. (6.49b) to obtain

y[n] =
M/2−1∑

k=0

h[k](x[n − k] − x[n − M + k]). (6.51)

For the case of M an odd integer, the corresponding equations are, for type II systems,

y[n] =
(M−1)/2∑

k=0

h[k](x[n − k] + x[n − M + k]) (6.52)

and, for type IV systems,

y[n] =
(M−1)/2∑

k=0

h[k](x[n − k] − x[n − M + k]). (6.53)

Equations (6.50)–(6.53) imply structures with either M/2 + 1, M/2, or (M + 1)/2
coefficient multipliers, rather than the M coefficient multipliers of the general direct
form structure of Figure 6.29. Figure 6.32 shows the structure implied by Eq. (6.50), and
Figure 6.33 shows the structure implied by Eq. (6.52).

In our discussion of linear-phase systems in Section 5.7.3, we showed that the
symmetry conditions of Eqs. (6.49a) and (6.49b) cause the zeros of H(z) to occur in
mirror-image pairs. That is, if z0 is a zero of H(z), then 1/z0 is also a zero of H(z).
Furthermore, if h[n] is real, then the zeros of H(z) occur in complex-conjugate pairs.

404 Chapter 6 Structures for Discrete-Time Systems

z–1 z–1 z–1

z–1 z–1 z–1

x [n]

y [n]

h [0] h [1] h [2] h [M /2 – 1] h[M /2]

Figure 6.32 Direct form structure for an FIR linear-phase system when M is an
even integer.

z–1 z–1 z–1

z–1 z–1 z–1

z–1

x [n]

y [n]

h [0] h [1] h [2] h [(M – 3)/2] h [(M – 1)/2]

Figure 6.33 Direct form structure for an FIR linear-phase system when M is an
odd integer.

As a consequence, real zeros not on the unit circle occur in reciprocal pairs. Complex
zeros not on the unit circle occur in groups of four, corresponding to the complex
conjugates and reciprocals. If a zero is on the unit circle, its reciprocal is also its conjugate.
Consequently, complex zeros on the unit circle are conveniently grouped into pairs.
Zeros at z = ±1 are their own reciprocal and complex conjugate. The four cases are
summarized in Figure 6.34, where the zeros at z1, z∗

1, 1/z1, and 1/z∗
1 are considered

as a group of four. The zeros at z2 and 1/z2 are considered as a group of two, as are
the zeros at z3 and z∗

3. The zero at z4 is considered singly. If H(z) has the zeros shown
in Figure 6.34, it can be factored into a product of 1st-, 2nd-, and 4th-order factors.
Each of these factors is a polynomial whose coefficients have the same symmetry as
the coefficients of H(z); i.e., each factor is a linear-phase polynomial in z−1. Therefore,
the system can be implemented as a cascade of 1st-, 2nd-, and 4th-order systems. For
example, the system function corresponding to the zeros of Figure 6.34 can be expressed
as

H(z) = h[0](1 + z−1)(1 + az−1 + z−2)(1 + bz−1 + z−2)

× (1 + cz−1 + dz−2 + cz−3 + z−4),
(6.54)

where

a = (z2 + 1/z2), b = 2Re{z3}, c = −2Re{z1 + 1/z1}, d = 2 + |z1 + 1/z1|2.

Section 6.6 Lattice Filters 405

Re

Im

z-plane

1

*z3

*z1
z2

1
z1

z2

z1

z3

z4

1
*z1

Figure 6.34 Symmetry of zeros for a
linear-phase FIR filter.

This representation suggests a cascade structure consisting of linear-phase elements. It
can be seen that the order of the system function polynomial is M = 9 and the number
of different coefficient multipliers is five. This is the same number ((M + 1)/2 = 5) of
constant multipliers required for implementing the system in the linear-phase direct
form of Figure 6.32. Thus, with no additional multiplications, we obtain a modular
structure in terms of a cascade of short linear-phase FIR systems.

6.6 LATTICE FILTERS

In Sections 6.3.2 and 6.5.2, we discussed cascade forms for both IIR and FIR systems
obtained by factoring their system functions into 1st- and 2nd-order sections. Another
interesting and useful cascade structure is based on a cascade (output to input) con-
nection of the basic structure shown in Figure 6.35(a). In the case of Figure 6.35(a) the
basic building block system has two inputs and two outputs, and is called a two-port
flow graph. Figure 6.35(b) shows the equivalent flow graph representation. Figure 6.36
shows a cascade of M of these basic elements with a “termination” at each end of the
cascade so that the overall system is a single-input single-output system with input x[n]
feeding both inputs of two-port building block (1) and output y[n] defined to be a(M)[n],
the upper output of the last two-port building block M . (The lower output of the M th

stage is generally ignored.) Although such a structure could take many different forms

z–1

a(i−1)[n]

b(i−1)[n]

a(i)[n]

b(i)[n]

–ki

–ki

a(i−1)[n]

b(i−1)[n]

a(i)[n]

b(i)[n]

(a) (b)

Two-Port
Flow

Graph
(i)

Figure 6.35 One section of the lattice structure for FIR lattice filters. (a) Block
diagram representation of a two-port building block (b) Equivalent flow graph.

406 Chapter 6 Structures for Discrete-Time Systems

a(M)[n]

b(M)[n]

a(M−1)[n]

b(M−1)[n]

a(1)[n]

b(1)[n]

a(0)[n]

b(0)[n]

Two-Port
Flow

Graph
(1)

Two-Port
Flow

Graph
(2)

a(2)[n]

b(2)[n]

Two-Port
Flow

Graph
(M)

x [n]

= y[n]

Figure 6.36 Cascade connection of M basic building block sections.

depending on the definition of the basic building block, we will limit our attention to
the particular choice in Figure 6.35(b), which leads to a widely used class of FIR and
IIR filter structures known as lattice filters.

6.6.1 FIR Lattice Filters

If the basic butterfly-shaped two-port building block in Figure 6.35(b) is used in the
cascade of Figure 6.36, we obtain a flow graph like the one shown in Figure 6.37, whose
lattice shape motivates the name lattice filter. The coefficients k1, k2, . . . , kM, are referred
to generally as the k-parameters of the lattice structure. In Chapter 11, we will see that
the k-parameters have a special meaning in the context of all-pole modeling of signals,
and the lattice filter of Figure 6.37 is an implementation structure for a linear prediction
of signal samples. In the current chapter, our focus is only on the use of lattice filters to
implement FIR and all-pole IIR transfer functions.

The node variables a(i)[n] and b(i)[n] in Figure 6.37 are intermediate sequences
that depend upon the input x[n] through the set of difference equations

a(0)[n] = b(0)[n] = x[n] (6.55a)

a(i)[n] = a(i−1)[n] − kib
(i−1)[n − 1] i = 1, 2, . . . , M (6.55b)

b(i)[n] = b(i−1)[n − 1] − kia
(i−1)[n] i = 1, 2, . . . , M (6.55c)

y[n] = a(M)[n]. (6.55d)

As we can see, the k-parameters are coefficients in this set of M coupled difference
equations represented by Figure 6.37 and Eqs. (6.55a)–(6.55d). It should be clear that

z–1

–k1

–k1

a(0)[n]

b(0)[n]

z–1

–k2

–k2

a(1)[n]

b(1)[n]

z–1

–kM

–kM

a(2)[n]

b(2)[n]

a(M)[n]

b(M)[n]

x [n] y[n]

Figure 6.37 Lattice flow graph for an FIR system based on a cascade of M two-
port building blocks of Figure 6.35(b).

Section 6.6 Lattice Filters 407

these equations must be computed in the order shown (i = 0, 1, . . . , M) since the output
of stage (i − 1) is needed as input to stage (i), etc.

The lattice structure in Figure 6.37 is clearly an LTI system, since it is a linear signal
flow graph with only delays and constant branch coefficients. Furthermore, note that
there are no feedback loops, which implies that the system has a finite-duration impulse
response. In fact, a straightforward argument is sufficient to show that the impulse
response from the input to any internal node has finite length. Specifically, consider the
impulse response from x[n] to the node variable a(i)[n], i.e., from the input to the ith

upper node. It is clear that if x[n] = δ[n], then a(i)[0] = 1 for every i, since the impulse
propagates with no delay through the top branch of all the stages. All other paths to any
node variable a(i)[n] or b(i)[n] pass through at least one delay, with the greatest delay
being along the bottom path and then up to node variable a(i)[n] through the coefficient
−ki . This will be the last impulse that arrives at a(i)[n], so the impulse response will have
length i + 1 samples. All other paths to an internal node zigzag between the top and
bottom of the graph, thereby passing through at least one, but not all, of the delays
occurring before the outputs of section (i).

Note that in our introduction to lattice filters, a(i)[n] and b(i)[n] were used in
Figure 6.37 and Eqs. (6.55a)–(6.55d) to denote the node variables of building block (i)

for any input x[n]. However, for the remainder of our discussion, it is convenient to
assume specifically that x[n] = δ[n] so that a(i)[n] and b(i)[n] are the resulting impulse
responses at the associated nodes, and that the corresponding z-transforms A(i)(z) and
B(i)(z) are the transfer functions between the input and the ith nodes. Consequently,
the transfer function between the input and the upper ith node is

A(i)(z) =
i∑

n=0

a(i)[n]z−n = 1 −
i∑

m=1

α(i)
m z−m, (6.56)

where in the second form, the coefficients α
(i)
m for m ≤ i are composed of sums of

products of the coefficients kj for j ≤ m. As we have shown, the coefficient for the
longest delay from the input to the upper node i is α

(i)
i = ki . In this notation, the

impulse response from x[n] to node variable a(i)[n] is

a(i)[n] =
⎧⎨⎩

1 n = 0
−α

(i)
n 1 ≤ n ≤ i

0 otherwise
(6.57)

Similarly, the transfer function from the input to the lower node i is denoted
B(i)(z). Therefore, from Figure 6.35(b) or Eqs. (6.55b) and (6.55c), we see that

A(i)(z) = A(i−1)(z) − kiz
−1B(i−1)(z) (6.58a)

B(i)(z) = −kiA
(i−1)(z) + z−1B(i−1)(z). (6.58b)

Also, we note that at the input end (i = 0)

A0(z) = B0(z) = 1. (6.59)

Using Eqs. (6.58a) and (6.58b) and starting with Eq. (6.59), we can calculate A(i)(z)

and B(i)(z) recursively up to any value of i. If we continue, the pattern that emerges in
the relationship between B(i)(z) and A(i)(z) is

B(i)(z) = z−iA(i)(1/z) (6.60a)

408 Chapter 6 Structures for Discrete-Time Systems

or by replacing z by 1/z in Eq. (6.60a) we have the equivalent relation

A(i)(z) = z−iB(i)(1/z). (6.60b)

We can verify these equivalent relationships formally by induction, i.e., by verifying
that if they are true for some value i − 1 then they will be true for i. Specifically, it is
straightforward to see from Eq. (6.59) that Eqs. (6.60a) and (6.60b) are true for i = 0.
Now note that for i = 1,

A(1)(z) = A(0)(z) − k1z
−1B(0)(z) = 1 − k1z

−1

B(1)(z) = −k1A
(0)(z) + z−1B(0)(z) = −k1 + z−1

= z−1(1 − k1z)

= z−1A(1)(1/z)

and for i = 2,

A(2)(z) = A(1)(z) − k2z
−1B(1)(z) = 1 − k1z

−1 − k2z
−2(1 − k1z)

= 1 − k1(1 − k2)z
−1 − k2z

−2

B(2)(z) = −k2A
(1)(z) + z−1B(1)(z) = −k2(1 − k1z

−1) + z−2(1 − k1z)

= z−2(1 − k1(1 − k2)z − k2z
2)

= z−2A(2)(1/z).

We can prove the general result by assuming that Eq. (6.60a) and Eq. (6.60b) are true
for i − 1, and then substitute into Eq. (6.58b) to obtain

B(i)(z) = −kiz
−(i−1)B(i−1)(1/z) + z−1z−(i−1)A(i−1)(1/z)

= z−i
[
A(i−1)(1/z) − kizB

(i−1)(1/z)
]
.

From Eq. (6.58a) it follows that the term in brackets is A(i)(1/z), so that in general,

B(i)(z) = z−iA(i)(1/z),

as in Eq. (6.60a). Thus, we have shown that Eqs. (6.60a) and (6.60b) hold for any i ≥ 0.
As indicated earlier, the transfer functions A(i)(z) and B(i)(z) can be computed

recursively using Eq. (6.58a) and (6.58b). These transfer functions are ith-order polyno-
mials, and it is particularly useful to obtain a direct relationship among the coefficients
of the polynomials. Toward this end, the right side of Eq. (6.57) defines the coefficients
of A(i)(z) to be −α

(i)
m , for m = 1, 2, . . . , i with the leading coefficient equal to one; i.e.,

as in Eq. (6.56),

A(i)(z) = 1 −
i∑

m=1

α(i)
m z−m, (6.61)

and similarly,

A(i−1)(z) = 1 −
i−1∑
m=1

α(i−1)
m z−m. (6.62)

Section 6.6 Lattice Filters 409

To obtain a direct recursive relationship for the coefficients α
(i)
m in terms of α

(i−1)
m and

ki , we combine Eqs. (6.60a) and (6.62) from which it follows that

B(i−1)(z) = z−(i−1)A(i−1)(1/z) = z−(i−1)

⎡⎣1 −
i−1∑
m=1

α(i−1)
m z+m

⎤⎦ . (6.63)

Substituting Eqs. (6.62) and (6.63) into Eq. (6.58a), A(i)(z) can also be expressed as

A(i)(z) =
⎛⎝1 −

i−1∑
m=1

α(i−1)
m z−m

⎞⎠− kiz
−1

⎛⎝z−(i−1)

⎡⎣1 −
i−1∑
m=1

α(i−1)
m z+m

⎤⎦⎞⎠ . (6.64)

Re-indexing the second summation by reversing the ordering of the terms (i.e., replacing
m by i − m and re-summing) and combining terms in Eq. (6.64) leads to

A(i)(z) = 1 −
i−1∑
m=1

[
α(i−1)

m − kiα
(i−1)
i−m

]
z−m − kiz

−i , (6.65)

where we see that, as indicated earlier, the coefficient of z−i is−ki . Comparing Eqs. (6.65)
and (6.61) shows that

α(i)
m =
[
α(i−1)

m − kiα
(i−1)
i−m

]
m = 1, ..., i − 1 (6.66a)

α
(i)
i = ki . (6.66b)

Equations (6.66) are the desired direct recursion between the coefficients of A(i)(z) and
the coefficients of A(i−1)(z). These equations, together with Eq. (6.60a) also determine
the transfer function B(i)(z).

The recursion of Eqs. (6.66) can also be expressed compactly in matrix form. We
denote by αi−1 the vector of transfer function coefficients for A(i−1)(z) and by α̌i−1
these coefficients in reverse order, i.e.,

αi−1 =
[
α

(i−1)

1 α
(i−1)

2 · · · α
(i−1)

i−1

]T
and

α̌i−1 =
[
α

(i−1)

i−1 α
(i−1)

i−2 · · · α
(i−1)

1

]T
.

Then Eqs. (6.66) can be expressed as the matrix equation

αi =
⎡⎣ αi−1

.
0

⎤⎦− ki

⎡⎣ α̌i−1
.
− 1

⎤⎦ . (6.67)

The recursion in Eqs. (6.66) or Eqs. (6.67) is the basis for an algorithm for analyzing
an FIR lattice structure to obtain its transfer function. We begin with the flow graph
specified as in Figure 6.37 by the set of k-parameters {k1, k2, . . . , kM}. Then we can use
Eqs. (6.66) recursively to compute the transfer functions of successively higher-order
FIR filters until we come to end of the cascade giving us

A(z) = 1 −
M∑

m=1

αmz−m = Y (z)

X(z)
, (6.68a)

410 Chapter 6 Structures for Discrete-Time Systems

k-Parameters-to-Coefficients Algorithm

Given k1, k2, . . . , kM
for i = 1, 2, . . . , M

�
(i)
i = ki Eq. (6.66b)

if i > 1 then for j = 1, 2, . . . , i − 1
�

(i)
j = �

(i −1)
j − ki �

(i −1)
i− j Eq. (6.66a)

end
end
�j = �

(M)
j j = 1, 2, . . . , M Eq. (6.68b)

Figure 6.38 Algorithm for converting
from k -parameters to FIR filter
coefficients.

where

αm = α(M)
m m = 1, 2, . . . , M. (6.68b)

The steps of this algorithm are represented in Figure 6.38.
It is also of interest to obtain the k-parameters in the FIR lattice structure that

realize a given desired transfer function from input x[n] to the output y[n] = a(M)[n]; i.e.,
we wish to go from A(z) specified as a polynomial by Eqs. (6.68a) and (6.68b) to the set
of k-parameters for the lattice structure in Figure 6.37. This can be done by reversing the
recursion of Eqs. (6.66) or (6.67) to obtain successively the transfer function A(i−1)(z) in
terms of A(i)(z) for i = M, M −1, . . . , 2. The k-parameters are obtained as a by-product
of this recursion.

Specifically, we assume that the coefficients α
(M)
m = αm for m = 1, ..., M are spec-

ified and we want to obtain the k-parameters k1, ..., kM to realize this transfer function
in lattice form. We start with the last stage of the FIR lattice, i.e., with i = M . From
Eq. (6.66b),

kM = α
(M)
M = αM (6.69)

with A(M)(z) defined in terms of the specified coefficients as

A(M)(z) = 1 −
M∑

m=1

α(M)
m z−m = 1 −

M∑
m=1

αmz−m . (6.70)

Inverting Eqs. (6.66) or equivalently Eq. (6.67), with i = M and kM = α
(M)
M then

determines αM−1, the vector of transform coefficients at the next to last stage i = M −1.
This process is repeated until we reach A(1)(z).

To obtain a general recursion formula for α
(i−1)
m in terms of α

(i)
m from Eq. (6.66a)

note that α
(i−1)
i−m must be eliminated. To do this, replace m by i − m in Eq. (6.66a) and

multiply both sides of the resulting equation by ki thereby obtaining

kiα
(i)
i−m = kiα

(i−1)
i−m − k2

i α
(i−1)
m .

Adding this equation to Eq. (6.66a) results in

α(i)
m + kiα

(i)
i−m = α(i−1)

m − k2
i α

(i−1)
m

from which it follows that

α(i−1)
m = α

(i)
m + kiα

(i)
i−m

1 − k2
i

m = 1, 2, . . . , i − 1. (6.71a)

Section 6.6 Lattice Filters 411

With α
(i−1)
m calculated for m = 1, 2, . . . , i − 1 we note from Eq. (6.66b) that

ki−1 = α
(i−1)

i−1 . (6.71b)

Thus, starting with α
(M)
m = αm, m = 1, 2, ...M we can use Eqs. (6.71a) and (6.71b)

to compute α
(M−1)
m , for m = 1, 2, . . . , M − 1 and kM−1, and then repeat this process

recursively to obtain all of the transfer functions A(i)(z) and, as a by-product, all of the k-
parameters needed for the lattice structure. The algorithm is represented in Figure 6.39.

Coefficients-to-k-Parameters Algorithm

Given �
(M)
j = �j j = 1, 2, . . . , M

kM = �
(M)
M Eq. (6.69)

for i = M, M − 1, . . . , 2
for j = 1, 2, . . . , i − 1

�
(i− 1)
j =

�
(i)
j + ki �

(i)
i− j

1 − k2
i

Eq. (6.71a)

end
ki− 1 = �

(i− 1)
i− 1 Eq. (6.71b)

end

Figure 6.39 Algorithm for converting from FIR filter coefficients to k -parameters.

Example 6.9 k-Parameters for a 3rd-Order FIR System

Consider the FIR system shown in Figure 6.40a whose system function is

A(z) = 1 − 0.9z−1 + 0.64z−2 − 0.576z−3.

Consequently, M = 3 and the coefficients α
(3)
k

in Eq. (6.70), are

α
(3)
1 = 0.9 α

(3)
2 = 0.64 α

(3)
3 = 0.576.

We begin by observing that k3 = α
(3)
3 = 0.576.

Next we want to calculate the coefficients for transfer function A(2)(z) using
Eq. (6.71a). Specifically, applying Eq. (6.71a), we obtain (rounded to three decimal
places):

α
(2)
1 = α

(3)
1 + k3α

(3)
2

1 − k2
3

= 0.795

α
(2)
2 = α

(3)
2 + k3α

(3)
1

1 − k2
3

= −0.182

From Eq. (6.71b) we then identify k2 = α
(2)
2 = −0.182

To obtain A(1)(z) we again apply Eq. (6.71a) obtaining

α
(1)
1 = α

(2)
1 + k2α

(2)
1

1 − k2
2

= 0.673.

412 Chapter 6 Structures for Discrete-Time Systems

We then identify k1 = α
(1)
1 = 0.673. The resulting lattice structure is shown in Fig-

ure 6.40b.

z–1 z–1

–0.673

–0.673

+0.182

+0.182

–0.576

–0.576

z–1

x [n] y[n]

y [n]

z–1

x [n]

z–1 z–1

–0.9 0.64 –0.576

(a)

(b)

Figure 6.40 Flow graphs for example. (a) Direct form. (b) Lattice form (coeffi-
cients rounded).

6.6.2 All-Pole Lattice Structure

A lattice structure for implementing the all-pole system function H(z) = 1/A(z) can
be developed from the FIR lattice of the previous section by recognizing that H(z)

is the inverse filter for the FIR system function A(z). To derive the all-pole lattice
structure, assume that we are given y[n] = a(M)[n], and we wish to compute the input
a(0)[n] = x[n]. This can be done by working from right to left to invert the computations
in Figure 6.37. More specifically, if we solve Eq. (6.58a) for A(i−1)(z) in terms of A(i)(z)

and B(i−1)(z) and leave Eq. (6.58b) as it is, we obtain the pair of equations

A(i−1)(z) = A(i)(z) + kiz
−1B(i−1)(z) (6.72a)

B(i)(z) = −kiA
(i−1)(z) + z−1B(i−1)(z), (6.72b)

which have the flow graph representation shown in Figure 6.41. Note that in this case,
the signal flow is from i to i − 1 along the top of the diagram and from i − 1 to i along
the bottom. Successive connection of M stages of Figure 6.41 with the appropriate ki

in each section takes the input a(M)[n] to the output a(0)[n] as shown in the flow graph
of Figure 6.42. Finally, the condition x[n] = a(0)[n] = b(0)[n] at the terminals of the last
stage in Figure 6.42 causes a feedback connection that provides the sequences b(i)[n]
that propagate in the reverse direction. Such feedback is, of course, necessary for an
IIR system.

Section 6.6 Lattice Filters 413

z–1

a(i)[n]

b(i)[n]

a(i−1)[n]

b(i−1)[n]

ki

–ki

Figure 6.41 One stage of computation
for an all-pole lattice system.

The set of difference equations represented by Figure 6.42 is4

a(M)[n] = y[n] (6.73a)

a(i−1)[n] = a(i)[n] + kib
(i−1)[n − 1] i = M, M − 1, . . . , 1 (6.73b)

b(i)[n] = b(i−1)[n − 1] − kia
(i−1)[n] i = M, M − 1, . . . , 1 (6.73c)

x[n] = a(0)[n] = b(0)[n]. (6.73d)

Because of the feedback inherent in Figure 6.42 and these corresponding equations,
initial conditions must be specified for all of the node variables associated with delays.
Typically, we would specify b(i)[−1] = 0 for initial rest conditions. Then, if Eq. (6.73b)
is evaluated first, a(i−1)[n] will be available at times n ≥ 0 for evaluation of Eq. (6.73c)
with the values of b(i−1)[n − 1] having been provided by the previous iteration.

Now we can state that all the analysis of Section 6.6.1 applies to the all-pole lattice
system of Figure 6.42. If we wish to obtain a lattice implementation of an all-pole system
with system function H(z) = 1/A(z), we can simply use the algorithms in Figures 6.39
and 6.38 to obtain k-parameters from denominator polynomial coefficients or vice-versa.

z–1

a(M−1)[n] a(M−2)[n] a(0)[n] x [n]y[n] = a(M)[n]

b(M−1)[n] b(0)[n]b(1)[n]b(M)[n]

z–1 z–1

kM

–kM

kM−1

–kM−1

k1

–k1

Figure 6.42 All-pole lattice system.

4Note that by basing our derivation of the all-pole lattice on the FIR lattice in Figure 6.37, we have
ended up with the input denoted y[n] and the output x[n] in opposition to our normal convention. This
labeling is, of course, arbitrary once the derivation has been completed.

414 Chapter 6 Structures for Discrete-Time Systems

Example 6.10 Lattice Implementation of an IIR System

As an example of an IIR system, consider the system function

H(z) = 1

1 − 0.9z−1 + 0.64z−2 − 0.576z−3
(6.74a)

= 1

(1 − 0.8jz−1)(1 + 0.8jz−1)(1 − 0.9z−1)
(6.74b)

which is the inverse system for the system in Example 6.9. Figure 6.43(a) shows the
direct form realization of this system, whereas Figure 6.43(b) shows the equivalent
IIR lattice system using the k-parameters computed as in Example 6.9. Note that the
lattice structure has the same number of delays (memory registers) as the direct form
structure. However, the number of multipliers is twice the number of the direct form.
This is obviously true for any order M .

0.576

z–1

–0.64

z–1

z–1

y[n]x[n]

z–1 z–1

0.576

–0.576

–0.182

0.182

(b)

(a)

0.673

–0.673

0.9

z–1

x [n] y [n]

Figure 6.43 Signal flow graph of IIR filter; (a) direct form, (b) lattice form.

Since the lattice structure of Figure 6.42 is an IIR system, we must be concerned
about its stability. We will see in Chapter 13 that a necessary and sufficient condi-
tion for all the zeros of a polynomial A(z) to be inside the unit circle is |ki | < 1,
i = 1, 2, . . . , M . (See Markel and Gray, 1976.) Example 6.10 confirms this fact since, as
shown in Eq. (6.74b) the poles of H(z) (zeros of A(z)) are located inside the unit circle
of the z-plane and all the k-parameters have magnitude less than one. For IIR systems,
the guarantee of stability inherent in the condition |ki | < 1 is particularly important.
Even though the lattice structure requires twice the number of multiplications per out-
put sample as the direct form, it is insensitive to quantization of the k-parameters. This
property accounts for the popularity of lattice filters in speech synthesis applications.
(See Quatieri, 2002 and Rabiner and Schafer, 1978.)

Section 6.7 Overview of Finite-Precision Numerical Effects 415

6.6.3 Generalization of Lattice Systems

We have shown that FIR systems and all-pole IIR systems have a lattice structure
representation. When the system function has both poles and zeros, it is still possible to
find a lattice structure based upon a modification of the all-pole structure of Figure 6.42.
The derivation will not be provided here (See Gray and Markel, 1973, 1976.), but it is
outlined in Problem 11.27.

6.7 OVERVIEW OF FINITE-PRECISION NUMERICAL
EFFECTS

We have seen that a particular LTI discrete-time system can be implemented by a
variety of computational structures. One motivation for considering alternatives to the
simple direct form structures is that different structures that are equivalent for infinite-
precision arithmetic may behave differently when implemented with finite numerical
precision. In this section, we give a brief introduction to the major numerical problems
that arise in implementing discrete-time systems. A more detailed analysis of these finite
word-length effects is given in Sections 6.8–6.10.

6.7.1 Number Representations

In theoretical analyses of discrete-time systems, we generally assume that signal values
and system coefficients are represented in the real-number system. However, with ana-
log discrete-time systems, the limited precision of the components of a circuit makes
it difficult to realize coefficients exactly. Similarly, when implementing digital signal-
processing systems, we must represent signals and coefficients in some digital number
system that must always have finite precision.

The problem of finite numerical precision has already been discussed in Sec-
tion 4.8.2 in the context of A/D conversion. We showed there that the output samples
from an A/D converter are quantized and thus can be represented by fixed-point binary
numbers. For compactness and simplicity in implementing arithmetic, one of the bits
of the binary number is assumed to indicate the algebraic sign of the number. Formats
such as sign and magnitude, one’s complement, and two’s complement are possible, but
two’s complement is most common.5 A real number can be represented with infinite
precision in two’s-complement form as

x = Xm

(
−b0 +

∞∑
i=1

bi2−i

)
, (6.75)

where Xm is an arbitrary scale factor and the bis are either 0 or 1. The quantity b0 is
referred to as the sign bit. If b0 = 0, then 0 ≤ x ≤ Xm, and if b0 = 1, then −Xm ≤ x < 0.
Thus, any real number whose magnitude is less than or equal to Xm can be represented
by Eq. (6.75). An arbitrary real number x would require an infinite number of bits for
its exact binary representation. As we saw in the case of A/D conversion, if we use only

5A detailed description of binary number systems and corresponding arithmetic is given by Knuth
(1997).

416 Chapter 6 Structures for Discrete-Time Systems

a finite number of bits (B + 1), then the representation of Eq. (6.75) must be modified
to

x̂ = QB [x] = Xm

(
−b0 +

B∑
i=1

bi2−i

)
= Xmx̂B. (6.76)

The resulting binary representation is quantized, so that the smallest difference between
numbers is

	 = Xm2−B. (6.77)

In this case, the quantized numbers are in the range −Xm ≤ x̂ < Xm. The fractional
part of x̂ can be represented with the positional notation

x̂B = b0�b1b2b3 · · · bB, (6.78)

where � represents the binary point.
The operation of quantizing a number to (B + 1) bits can be implemented by

rounding or by truncation, but in either case, quantization is a nonlinear memory-
less operation. Figures 6.44(a) and 6.44(b) show the input–output relation for two’s-
complement rounding and truncation, respectively, for the case B = 2. In considering
the effects of quantization, we often define the quantization error as

e = QB [x] − x. (6.79)

For the case of two’s-complement rounding,−	/2 < e ≤ 	/2, and for two’s-complement
truncation, −	 < e ≤ 0.6

If a number is larger than Xm (a situation called an overflow), we must implement
some method of determining the quantized result. In the two’s-complement arithmetic
system, this need arises when we add two numbers whose sum is greater than Xm. For
example, consider the 4-bit two’s-complement number 0111, which in decimal form
is 7. If we add the number 0001, the carry propagates all the way to the sign bit, so
that the result is 1000, which in decimal form is −8. Thus, the resulting error can be
very large when overflow occurs. Figure 6.45(a) shows the two’s-complement rounding
quantizer, including the effect of regular two’s-complement arithmetic overflow. An
alternative, which is called saturation overflow or clipping, is shown in Figure 6.45(b).
This method of handling overflow is generally implemented for A/D conversion, and
it sometimes is implemented in specialized DSP microprocessors for the addition of
two’s-complement numbers. With saturation overflow, the size of the error does not
increase abruptly when overflow occurs; however, a disadvantage of the method is that
it voids the following interesting and useful property of two’s-complement arithmetic:
If several two’s-complement numbers whose sum would not overflow are added, then
the result of two’s-complement accumulation of these numbers is correct, even though
intermediate sums might overflow.

Both quantization and overflow introduce errors in digital representations of num-
bers. Unfortunately, to minimize overflow while keeping the number of bits the same,
we must increase Xm and thus increase the size of quantization errors proportionately.
Hence, to simultaneously achieve wider dynamic range and lower quantization error,
we must increase the number of bits in the binary representation.

6Note that Eq. (6.76) also represents the result of rounding or truncating any (B1 + 1)-bit binary
representation, where B1 > B. In this case 	 would be replaced by (− Xm2−B1) in the bounds on the size
of the quantization error.

Section 6.7 Overview of Finite-Precision Numerical Effects 417

x

1
4

1
4

1
2

3
4

1
2

3
4

3
4

–

1
2

–

1
4

–

1
4

–1
2

–3
4

–

(b)

Q [x]

x

1
4

3
8

1
8

5
8

1
2

3
4

–1

–1

3
4

–

1
2

–

1
4

–

3
8

–5
8

–7
8

–

(a)

Q [x]

Figure 6.44 Nonlinear relationships
representing two’s-complement
(a) rounding and (b) truncation for
B = 2.

So far, we have simply stated that the quantity Xm is an arbitrary scale factor;
however, this factor has several useful interpretations. In A/D conversion, we considered
Xm to be the full-scale amplitude of the A/D converter. In this case, Xm would probably
represent a voltage or current in the analog part of the system. Thus, Xm serves as a
calibration constant for relating binary numbers in the range −1 ≤ x̂B < 1 to analog
signal amplitudes.

In digital signal-processing implementations, it is common to assume that all signal
variables and all coefficients are binary fractions. Thus, if we multiply a (B+1)-bit signal
variable by a (B + 1)-bit coefficient, the result is a (2B + 1)-bit fraction that can be
conveniently reduced to (B + 1) bits by rounding or truncating the least significant bits.
With this convention, the quantity Xm can be thought of as a scale factor that allows the

418 Chapter 6 Structures for Discrete-Time Systems

x

001

010

011

000

001

010

100

101

110

111

011

111

110

101

100

(a)

x = Q [x]

2
15�

2
�

�

–
2

11�–
2

7�–
2

5�

2
3�

2�

–2�

–3�

–4�

3�

2
5�

2
9�–

x

000

001

010

011

111

110

101

100

(b)

x = Q [x]

2
�

�

2
7�–

2
9�–

2
5�

2
3�

2�

–2�

–�

–3�

–4�

3�

2
5�

2
7�–

Figure 6.45 Two’s-complement rounding. (a) Natural overflow. (b) Saturation.

representation of numbers that are greater than unity in magnitude. For example, in
fixed-point computations, it is common to assume that each binary number has a scale
factor of the form Xm = 2c. Accordingly, a value c = 2 implies that the binary point is
actually located between b2 and b3 of the binary word in Eq. (6.78). Often, this scale
factor is not explicitly represented; instead, it is implicit in the implementation program
or hardware architecture.

Section 6.7 Overview of Finite-Precision Numerical Effects 419

Still another way of thinking about the scale factor Xm leads to the floating-point
representations, in which the exponent c of the scale factor is called the characteristic
and the fractional part x̂B is called the mantissa. The characteristic and the mantissa
are each represented explicitly as binary numbers in floating-point arithmetic systems.
Floating-point representations provide a convenient means for maintaining both a wide
dynamic range and a small quantization noise; however, quantization error manifests
itself in a somewhat different way.

6.7.2 Quantization in Implementing Systems

Numerical quantization affects the implementation of LTI discrete-time systems in sev-
eral ways. As a simple illustration, consider Figure 6.46(a), which shows a block diagram

(c)

(b)

(a)

x [n] v [n] y [n]

x [n]x [n] v [n] y [n]

xc(t)

xc(t)

ei[n]

ea[n]

eo[n]

xc(t)

x [n] v [n] y [n]

+

+

ev[n]

+ ++ +

+

C/D

C/D

C/D D/C

D/C

T

T

T T

T

yc(t)

yc(t)

yc(t)

T

a

a

a

a = QB[a]

D/C

z–1

z–1

z–1

QB

QB QBoQBi

Figure 6.46 Implementation of discrete-time filtering of an analog signal. (a) Ideal
system. (b) Nonlinear model. (c) Linearized model.

420 Chapter 6 Structures for Discrete-Time Systems

for a system in which a bandlimited continuous-time signal xc(t) is sampled to obtain
the sequence x[n], which is the input to an LTI system whose system function is

H(z) = 1
1 − az−1

. (6.80)

The output of this system, y[n], is converted by ideal bandlimited interpolation to the
bandlimited signal yc(t).

A more realistic model is shown in Figure 6.46(b). In a practical setting, sampling
would be done with an A/D converter with finite precision of (Bi + 1) bits. The sys-
tem would be implemented with binary arithmetic of (B + 1) bits. The coefficient a in
Figure 6.46(a) would be represented with (B + 1) bits of precision. Also, the delayed
variable v̂[n − 1] would be stored in a (B + 1)-bit register, and when the (B + 1)-bit
number v̂[n − 1] is multiplied by the (B + 1)-bit number â, the resulting product would
be (2B + 1) bits in length. If we assume that a (B + 1)-bit adder is used, the product
âv̂[n − 1] must be quantized (i.e., rounded or truncated) to (B + 1) bits before it can
be added to the (Bi + 1)-bit input sample x̂[n]. When Bi < B, the (Bi + 1) bits of the
input samples can be placed anywhere in the (B + 1)-bit binary word with appropriate
extension of the sign. Different choices correspond to different scalings of the input.
The coefficient a has been quantized, so leaving aside the other quantization errors,
the system response cannot in general be the same as in Figure 6.46(a). Finally, the
(B + 1)-bit samples v̂[n], computed by iterating the difference equation represented
by the block diagram, would be converted to an analog signal by a (Bo + 1)-bit D/A
converter. When Bo < B, the output samples must be quantized further before D/A
conversion.

Although the model of Figure 6.46(b) could be an accurate representation of
a real system, it would be difficult to analyze. The system is nonlinear owing to the
quantizers and the possibility of overflow at the adder. Also, quantization errors are
introduced at many points in the system. The effects of these errors are impossible to
analyze precisely, since they depend on the input signal, which we generally consider to
be unknown. Thus, we are forced to adopt several different approximation approaches
to simplify the analysis of such systems.

The effect of quantizing the system parameters, such as the coefficient a in Fig-
ure 6.46(a), is generally determined separately from the effect of quantization in data
conversion or in implementing difference equations. That is, the ideal coefficients of a
system function are replaced by their quantized values, and the resulting response func-
tions are tested to see whether, in the absence of other quantization in the arithmetic,
quantization of the filter coefficients has degraded the performance of the system to
unacceptable levels. For the example of Figure 6.46, if the real number a is quantized
to (B + 1) bits, we must consider whether the resulting system with system function

Ĥ (z) = 1
1 − âz−1

(6.81)

is close enough to the desired system function H(z) given by Eq. (6.80). Since there are
only 2B+1 different (B + 1)-bit binary numbers, the pole of H(z) can occur only at 2B+1

locations on the real axis of the z-plane, and, while it is possible that â = a, in most cases
some deviation from the ideal response would result. This type of analysis is discussed
in more general terms in Section 6.8.

Section 6.8 The Effects of Coefficient Quantization 421

The nonlinearity of the system of Figure 6.46(b) causes behavior that cannot occur
in a linear system. Specifically, systems such as this can exhibit zero-input limit cycles,
where the output oscillates periodically when the input becomes zero after having been
nonzero. Limit cycles are caused both by quantization and by overflow. Although the
analysis of such phenomena is difficult, some useful approximate results have been
developed. Limit cycles are discussed briefly in Section 6.10.

If care is taken in the design of a digital implementation, we can ensure that
overflow occurs only rarely and quantization errors are small. Under these conditions,
the system of Figure 6.46(b) behaves very much like a linear system (with quantized
coefficients) in which quantization errors are injected at the input and output and at
internal points in the structure where rounding or truncation occurs. Therefore, we can
replace the model of Figure 6.46(b) by the linearized model of Figure 6.46(c), where the
quantizers are replaced by additive noise sources (see Gold and Rader, 1969; Jackson,
1970a, 1970b). Figure 6.46(c) is equivalent to Figure 6.46(b) if we know each of the noise
sources exactly. However, as discussed in Section 4.8.3, useful results are obtained if
we assume a random noise model for the quantization noise in A/D conversion. This
same approach can be used in analyzing the effects of arithmetic quantization in digital
implementations of linear systems. As seen in Figure 6.46(c), each noise source injects
a random signal that is processed by a different part of the system, but since we assume
that all parts of the system are linear, we can compute the overall effect by superposition.
In Section 6.9, we illustrate this style of analysis for several important systems.

In the simple example of Figure 6.46, there is little flexibility in the choice of
structure. However, for higher-order systems, we have seen that there is a wide variety
of choices. Some of the structures are less sensitive to coefficient quantization than
others. Similarly, because different structures have different quantization noise sources
and because these noise sources are filtered in different ways by the system, we will find
that structures that are theoretically equivalent sometimes perform quite differently
when finite-precision arithmetic is used to implement them.

6.8 THE EFFECTS OF COEFFICIENT QUANTIZATION

LTI discrete-time systems are generally used to perform a filtering operation. Methods
for designing FIR and IIR filters, which are discussed in Chapter 7, typically assume
a particular form for the system function. The result of the filter design process is a
system function for which we must choose an implementation structure (a set of dif-
ference equations) from an unlimited number of theoretically equivalent implementa-
tions. Although we are almost always interested in implementations that require the
least hardware or software complexity, it is not always possible to base the choice of
implementation structure on this criterion alone. As we will see in Section 6.9, the im-
plementation structure determines the quantization noise generated internally in the
system. Also, some structures are more sensitive than others to perturbations of the
coefficients. As we pointed out in Section 6.7, the standard approach to the study of co-
efficient quantization and round-off noise is to treat them independently. In this section,
we consider the effects of quantizing the system parameters.

422 Chapter 6 Structures for Discrete-Time Systems

6.8.1 Effects of Coefficient Quantization in IIR Systems

When the parameters of a rational system function or corresponding difference equation
are quantized, the poles and zeros of the system function move to new positions in the
z-plane. Equivalently, the frequency response is perturbed from its original value. If the
system implementation structure is highly sensitive to perturbations of the coefficients,
the resulting system may no longer meet the original design specifications, or an IIR
system might even become unstable.

A detailed sensitivity analysis for the general case is complicated and usually of
limited value in specific cases of digital filter implementation. Using powerful simulation
tools, it is usually easy to simply quantize the coefficients of the difference equations
employed in implementing the system and then compute the corresponding frequency
response and compare it with the desired frequency-response function. Even though
simulation of the system is generally necessary in specific cases, it is still worthwhile
to consider, in general, how the system function is affected by quantization of the co-
efficients of the difference equations. For example, the system function representation
corresponding to both direct forms (and their corresponding transposed versions) is the
ratio of polynomials

H(z) =

M∑
k=0

bkz
−k

1 −
N∑

k=1

akz
−k

. (6.82)

The sets of coefficients {ak} and {bk} are the ideal infinite-precision coefficients in both
direct form implementation structures (and corresponding transposed structures). If we
quantize these coefficients, we obtain the system function

Ĥ (z) =

M∑
k=0

b̂kz
−k

1 −
N∑

k=1

âkz
−k

, (6.83)

where âk = ak + 	ak and b̂k = bk + 	bk are the quantized coefficients that differ from
the original coefficients by the quantization errors 	ak and 	bk .

Now consider how the roots of the denominator and numerator polynomials (the
poles and zeros of H(z)) are affected by the errors in the coefficients. Each polynomial
root is affected by all of the errors in the coefficients of the polynomial since each root
is a function of all the coefficients of the polynomial. Thus, each pole and zero will be
affected by all of the quantization errors in the denominator and numerator polynomi-
als, respectively. More specifically, Kaiser (1966) showed that if the poles (or zeros) are
tightly clustered, it is possible that small errors in the denominator (numerator) coeffi-
cients can cause large shifts of the poles (zeros) for the direct form structures. Thus, if
the poles (zeros) are tightly clustered, corresponding to a narrow-bandpass filter or a
narrow-bandwidth lowpass filter, then we can expect the poles of the direct form struc-
ture to be quite sensitive to quantization errors in the coefficients. Furthermore, Kaiser’s

Section 6.8 The Effects of Coefficient Quantization 423

analysis showed that the larger the number of clustered poles (zeros), the greater is the
sensitivity.

The cascade and parallel form system functions, which are given by Eqs. (6.30) and
(6.35), respectively, consist of combinations of 2nd-order direct form systems. However,
in both cases, each pair of complex-conjugate poles is realized independently of all the
other poles. Thus, the error in a particular pole pair is independent of its distance from
the other poles of the system function. For the cascade form, the same argument holds
for the zeros, since they are realized as independent 2nd-order factors. Thus, the cascade
form is generally much less sensitive to coefficient quantization than the equivalent
direct form realization.

As seen in Eq. (6.35), the zeros of the parallel form system function are realized
implicitly, through combining the quantized 2nd-order sections to obtain a common
denominator. Thus, a particular zero is affected by quantization errors in the numerator
and denominator coefficients of all the 2nd-order sections. However, for most practical
filter designs, the parallel form is also found to be much less sensitive to coefficient
quantization than the equivalent direct forms because the 2nd-order subsystems are
not extremely sensitive to quantization. In many practical filters, the zeros are often
widely distributed around the unit circle, or in some cases they may all be located at
z = ±1. In the latter situation, the zeros mainly provide much higher attenuation around
frequencies ω = 0 and ω = π than is specified, and thus, movements of zeros away from
z = ±1 do not significantly degrade the performance of the system.

6.8.2 Example of Coefficient Quantization in an Elliptic
Filter

As an illustration of the effect of coefficient quantization, consider the example of an
IIR bandpass elliptic filter designed using approximation techniques to be discussed in
Chapter 7. The filter was designed to meet the following specifications:

0.99 ≤ |H(ejω)| ≤ 1.01, 0.3π ≤ |ω| ≤ 0.4π,

|H(ejω)| ≤ 0.01(i.e., − 40 dB), |ω| ≤ 0.29π,

|H(ejω)| ≤ 0.01(i.e., − 40 dB), 0.41π ≤ |ω| ≤ π.

That is, the filter should approximate one in the passband, 0.3π ≤ |ω| ≤ 0.4π , and zero
elsewhere in the base interval 0 ≤ |ω| ≤ π . As a concession to computational realizabil-
ity, a transition (do not care) region of 0.01π is allowed on either side of the passband. In
Chapter 7, we will see that specifications for frequency-selective filter design algorithms
are often represented in this form. The MATLAB function for elliptic filter design pro-
duces the coefficients of a 12th-order direct form representation of the system function
of the form of Eq. (6.82), where the coefficients ak and bk were computed with 64-bit
floating-point arithmetic and are shown in Table 6.1 with full 15-decimal-digit precision.
We shall refer to this representation of the filter as “unquantized.”

The frequency response 20 log10 |H(ejω)| of the unquantized filter is shown in
Figure 6.47(a), which shows that the filter meets the specifications in the stopbands (at
least 40 dB attenuation). Also, the solid line in Figure 6.47(b), which is a blow-up of the
passband region 0.3π ≤ |ω| ≤ 0.4π for the unquantized filter, shows that the filter also
meets the specifications in the passband.

TABLE 6.1 UNQUANTIZED DIRECT-FORM
COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER

k bk ak

0 0.01075998066934 1.00000000000000
1 -0.05308642937079 -5.22581881365349
2 0.16220359377307 16.78472670299535
3 -0.34568964826145 -36.88325765883139
4 0.57751602647909 62.39704677556246
5 -0.77113336470234 -82.65403268814103
6 0.85093484466974 88.67462886449437
7 -0.77113336470234 -76.47294840588104
8 0.57751602647909 53.41004513122380
9 -0.34568964826145 -29.20227549870331
10 0.16220359377307 12.29074563512827
11 -0.05308642937079 -3.53766014466313
12 0.01075998066934 0.62628586102551

0 0.1� 0.2� 0.3� 0.4� 0.5� 0.6� 0.7� 0.8� 0.9� �
−100

−80

−60

−40

−20

0

lo
g

m
ag

ni
tu

de
 (

dB
)

Radian frequency (�)

Radian frequency (�)
0.3� 0.32� 0.34� 0.36� 0.38� 0.4� 0.42�

0.985

0.99

0.995

1

1.005

1.01

1.015

m
ag

ni
tu

de

(a)

(b)

Unquantized and 16-bit parallel form 16-bit cascade form

Figure 6.47 IIR coefficient quantization example. (a) Log magnitude for unquantized elliptic
bandpass filter. (b) Magnitude in passband for unquantized (solid line) and 16-bit quantized
cascade form (dashed line).

424

Section 6.8 The Effects of Coefficient Quantization 425

TABLE 6.2 ZEROS AND POLES OF UNQUANTIZED 12TH-ORDER
ELLIPTIC FILTER.

k |ck | � ck |dk | � d1k

1 1.0 ± 1.65799617112574 0.92299356261936 ±1.15956955465354
2 1.0 ± 0.65411612347125 0.92795010695052 ±1.02603244134180
3 1.0 ± 1.33272553462313 0.96600955362927 ±1.23886921536789
4 1.0 ± 0.87998582176421 0.97053510266510 ±0.95722682653782
5 1.0 ± 1.28973944928129 0.99214245914242 ±1.26048962626170
6 1.0 ± 0.91475122405407 0.99333628602629 ±0.93918174153968

Re

Im

(a)

Re

Im

(b)

Figure 6.48 IIR coefficient
quantization example. (a) Poles and
zeros of H(z) for unquantized
coefficients. (b) Poles and zeros for
16-bit quantization of the direct form
coefficients.

Factoring the numerator and denominator polynomials corresponding to the co-
efficients in Table 6.1 in Eq. (6.82) yields a representation

H(z) =
12∏

k=1

b0(1 − ckz
−1)

(1 − dkz−1)
. (6.84)

in terms of the zeros and poles, which are given in Table 6.2.
The poles and zeros of the unquantized filter that lie in the upper half of the z-plane

are plotted in Figure 6.48(a). Note that the zeros are all on the unit circle, with their
angular locations corresponding to the deep nulls in Figure 6.47. The zeros are strate-
gically placed by the filter design method on either side of the passband to provide the
desired stopband attenuation and sharp cutoff. Also note that the poles are clustered in
the narrow passband, with two of the complex conjugate pole pairs having radii greater
than 0.99. This finely tuned arrangement of zeros and poles is required to produce the
narrowband sharp-cutoff bandpass filter frequency response shown in Figure 6.47(a).

A glance at the coefficients in Table 6.1 suggests that quantization of the direct form
may present significant problems. Recall that with a fixed quantizer, the quantization
error size is the same, regardless of the size of the number being quantized; i.e., the
quantization error for coefficient a12 = 0.62628586102551 can be as large as the error
for coefficient a6 = 88.67462886449437, if we use the same number of bits and the
same scale factor for both. For this reason, when the direct form coefficients in Table
6.1 were quantized with 16-bit precision, each coefficient was quantized independently
of the other coefficients so as to maximize the accuracy for each coefficient; i.e., each
16-bit coefficient requires its own scale factor.7 With this conservative approach, the

7To simplify implementation, it would be desirable, but far less accurate, if each coefficient had the
same scale factor.

426 Chapter 6 Structures for Discrete-Time Systems

resulting poles and zeros are as depicted in Figure 6.48(b). Note that the zeros have
shifted noticeably, but not dramatically. In particular, the closely-spaced pair of zeros
toward the top of the circle has remained at about the same angle, but they have moved
off of the unit circle into a group of four complex conjugate reciprocal zeros, whereas
the other zeros are shifted angularly but remain on the unit circle. This constrained
movement is a result of the symmetry of the coefficients of the numerator polynomial,
which is preserved under quantization. However, the tightly clustered poles, having no
symmetry constraints, have moved to much different positions, and, as is easily observed,
some of the poles have moved outside the unit circle. Therefore, the direct form system
cannot be implemented with 16-bit coefficients because it would be unstable.

On the other hand, the cascade form is much less sensitive to coefficient quan-
tization. The cascade form of the present example can be obtained by grouping the
complex conjugate pairs of poles and zeros in Eq. (6.84) and Table 6.2, to form six
2nd-order factors as in

H(z) =
6∏

k=1

b0k(1 − ckz
−1)(1 − c∗

kz
−1)

(1 − dkz−1)(1 − d∗
k z−1)

=
6∏

k=1

b0k + b1kz
−1 + b2kz

−2

1 − a1kz
−1 − a2kz

−2
. (6.85)

The zeros ck and poles dk and coefficients bik and aik of the cascade form can be com-
puted with 64-bit floating-point accuracy so these coefficients can still considered to be
unquantized. Table 6.3 gives the coefficients of the six 2nd-order sections (as defined in
Eq. (6.85). The pairing and ordering of the poles and zeros follows a procedure to be
discussed in Section 6.9.3.

TABLE 6.3 UNQUANTIZED CASCADE-FORM
COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER

k a1k a2k b0k b1k b2k

1 0.737904 -0.851917 0.137493 0.023948 0.137493
2 0.961757 -0.861091 0.281558 -0.446881 0.281558
3 0.629578 -0.933174 0.545323 -0.257205 0.545323
4 1.117648 -0.941938 0.706400 -0.900183 0.706400
5 0.605903 -0.984347 0.769509 -0.426879 0.769509
6 1.173028 -0.986717 0.937657 -1.143918 0.937657

To illustrate how coefficients are quantized and represented as fixed-point num-
bers, the coefficients in Table 6.3 were quantized to 16-bit accuracy. The resulting coef-
ficients are presented in Table 6.4. The fixed-point coefficients are shown as a decimal
integer times a power-of-2 scale factor. The binary representation would be obtained
by converting the decimal integer to a binary number. In a fixed-point implementation,
the scale factor would be represented only implicitly in the data shifts that would be
necessary to line up the binary points of products prior to their addition to other prod-
ucts. Notice that binary points of the coefficients are not all in the same location. For
example, all the coefficients with scale factor 2−15 have their binary points between the
sign bit, b0, and the highest fractional bit, b1, as shown in Eq. (6.78). However, numbers
whose magnitudes do not exceed 0.5, such as the coefficient b02, can be shifted left by
one or more bit positions.8 Thus, the binary point for b02 is actually to the left of the

8The use of different binary point locations retains greater accuracy in the coefficients, but it compli-
cates the programming or system architecture.

Section 6.8 The Effects of Coefficient Quantization 427

sign bit as if the word length is extended to 17 bits. On the other hand, numbers whose
magnitudes exceed 1 but are less than 2, such as a16, must have their binary points
moved one position to the right, i.e., between b1 and b2 in Eq. (6.78).

TABLE 6.4 SIXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS
FOR A 12TH-ORDER ELLIPTIC FILTER

k a1k a2k b0k b1k b2k

1 24196 × 2−15 −27880 × 2−15 17805 × 2−17 3443 × 2−17 17805 × 2−17

2 31470 × 2−15 −28180 × 2−15 18278 × 2−16 −29131 × 2−16 18278 × 2−16

3 20626 × 2−15 −30522 × 2−15 17556 × 2−15 −8167 × 2−15 17556 × 2−15

4 18292 × 2−14 −30816 × 2−15 22854 × 2−15 −29214 × 2−15 22854 × 2−15

5 19831 × 2−15 −32234 × 2−15 25333 × 2−15 −13957 × 2−15 25333 × 2−15

6 19220 × 2−14 −32315 × 2−15 15039 × 2−14 −18387 × 2−14 15039 × 2−14

The dashed line in Figure 6.47(b) shows the magnitude response in the passband
for the quantized cascade form implementation. The frequency response is only slightly
degraded in the passband region and negligibly in the stopband.

To obtain other equivalent structures, the cascade form system function must be
rearranged into a different form. For example, if a parallel form structure is determined
(by partial fraction expansion of the unquantized system function), and the resulting
coefficients are quantized to 16 bits as before, the frequency response in the passband
is so close to the unquantized frequency response that the difference is not observable
in Figure 6.47(a) and barely observable in Figure 6.47(b).

The example just discussed illustrates the robustness of the cascade and paral-
lel forms to the effects of coefficient quantization, and it also illustrates the extreme
sensitivity of the direct forms for high-order filters. Because of this sensitivity, the di-
rect forms are rarely used for implementing anything other than 2nd-order systems.9

Since the cascade and parallel forms can be configured to require the same amount of
memory and the same or only slightly more computation as the canonic direct form,
these modular structures are the most commonly used. More complex structures such
as lattice structures may be more robust for very short word lengths, but they require
significantly more computation for systems of the same order.

6.8.3 Poles of Quantized 2nd-Order Sections

Even for the 2nd-order systems that are used to implement the cascade and parallel
forms, there remains some flexibility to improve the robustness to coefficient quanti-
zation. Consider a complex-conjugate pole pair implemented using the direct form, as
in Figure 6.49. With infinite-precision coefficients, this flow graph has poles at z = rejθ

and z = re−jθ . However, if the coefficients 2r cos θ and −r2 are quantized, only a finite
number of different pole locations is possible. The poles must lie on a grid in the z-plane
defined by the intersection of concentric circles (corresponding to the quantization of
r2) and vertical lines (corresponding to the quantization of 2r cos θ). Such a grid is

9An exception is in speech synthesis, where systems of 10th-order and higher are routinely imple-
mented using the direct form. This is possible because in speech synthesis the poles of the system function
are widely separated (see Rabiner and Schafer, 1978).

428 Chapter 6 Structures for Discrete-Time Systems

y [n]
z–1

z–1

x [n]

2r cos

–r2

Figure 6.49 Direct form
implementation of a complex-conjugate
pole pair.

illustrated in Figure 6.50(a) for 4-bit quantization (3 bits plus 1 bit for the sign); i.e.,
r2 is restricted to seven positive values and zero, whereas 2r cos θ is restricted to seven
positive values, eight negative values, and zero. Figure 6.50(b) shows a denser grid
obtained with 7-bit quantization (6 bits plus 1 bit for the sign). The plots of Figure 6.50
are, of course, symmetrically mirrored into each of the other quadrants of the z-plane.

1.00

0.75

0.50

0.25

0.25 0.50 0.75 1.000

z-plane

z-plane

Realizable pole positions

Unit circle

(a)

0.5 1.00

0.5

1.0

(b)

Re

Re

Im

Im

Figure 6.50 Pole-locations for the
2nd-order IIR direct form system of
Figure 6.49. (a) Four-bit quantization of
coefficients. (b) Seven-bit quantization.

Section 6.8 The Effects of Coefficient Quantization 429

r cos

r sin

r cos

–r sin

y [n]

x [n]

z–1

z–1
Figure 6.51 Coupled form
implementation of a complex-conjugate
pole pair.

Notice that for the direct form, the grid is rather sparse around the real axis. Thus, poles
located around θ = 0 or θ = π may be shifted more than those around θ = π/2. Of
course, it is always possible that the infinite-precision pole location is very close to one
of the allowed quantized poles. In this case, quantization causes no problem whatsoever,
but in general, quantization can be expected to degrade performance.

An alternative 2nd-order structure for realizing poles at z = rejθ and z = re−jθ is
shown in Figure 6.51. This structure is referred to as the coupled form for the 2nd-order
system (see Rader and Gold, 1967). It is easily verified that the systems of Figures 6.49
and 6.51 have the same poles for infinite-precision coefficients. To implement the system
of Figure 6.51, we must quantize r cos θ and r sin θ . Since these quantities are the real and
imaginary parts, respectively, of the pole locations, the quantized pole locations are at
intersections of evenly spaced horizontal and vertical lines in the z-plane. Figures 6.52(a)
and 6.52(b) show the possible pole locations for 4-bit and 7-bit quantization, respectively.
In this case, the density of pole locations is uniform throughout the interior of the unit
circle. Twice as many constant multipliers are required to achieve this more uniform
density. In some situations, the extra computation might be justified to achieve more
accurate pole location with reduced word length.

6.8.4 Effects of Coefficient Quantization in FIR Systems

For FIR systems, we need only be concerned with the locations of the zeros of the system
function, since, for causal FIR systems, all the poles are at z = 0. Although we have just
seen that the direct form structure should be avoided for high-order IIR systems, it turns
out that the direct form structure is commonly used for FIR systems. To understand why
this is so, we express the system function for a direct form FIR system in the form

H(z) =
M∑

n=0

h[n]z−n. (6.86)

Now, suppose that the coefficients {h[n]} are quantized, resulting in a new set of coeffi-
cients {ĥ[n] = h[n] + 	h[n]}. The system function for the quantized system is then

Ĥ (z) =
M∑

n=0

ĥ[n]z−n = H(z) + 	H(z), (6.87)

430 Chapter 6 Structures for Discrete-Time Systems

1.00

0.75

0.50

0.25

0.25 0.50 0.75 1.000

z-plane

z-plane

Realizable pole positions

Unit circle

(a)

0.5 1.00

0.5

1.0

(b)
Re

Re

Im

Im

Figure 6.52 Pole locations for coupled
form 2nd-order IIR system of
Figure 6.51. (a) Four-bit quantization of
coefficients. (b) Seven-bit quantization.

where

	H(z) =
M∑

n=0

	h[n]z−n. (6.88)

Thus, the system function (and therefore, also the frequency response) of the quantized
system is linearly related to the quantization errors in the impulse-response coefficients.
For this reason, the quantized system can be represented as in Figure 6.53, which shows
the unquantized system in parallel with an error system whose impulse response is
the sequence of quantization error samples {	h[n]} and whose system function is the
corresponding z-transform, 	H(z).

Section 6.8 The Effects of Coefficient Quantization 431

x [n] y [n]
+

H(z)

�H(z) Figure 6.53 Representation of
coefficient quantization in FIR systems.

TABLE 6.5 UNQUANTIZED AND QUANTIZED COEFFICIENTS FOR AN OPTIMUM
FIR LOWPASS FILTER (M = 27)

Coefficient Unquantized 16 bits 14 bits 13 bits 8 bits

h[0] = h[27] 1.359657 × 10−3 45 × 2−15 11 × 2−13 6 × 2−12 0 × 2−7

h[1] = h[26] −1.616993 × 10−3 −53 × 2−15 −13 × 2−13 −7 × 2−12 0 × 2−7

h[2] = h[25] −7.738032 × 10−3 −254 × 2−15 −63 × 2−13 −32 × 2−12 −1 × 2−7

h[3] = h[24] −2.686841 × 10−3 −88 × 2−15 −22 × 2−13 −11 × 2−12 0 × 2−7

h[4] = h[23] 1.255246 × 10−2 411 × 2−15 103 × 2−13 51 × 2−12 2 × 2−7

h[5] = h[22] 6.591530 × 10−3 216 × 2−15 54 × 2−13 27 × 2−12 1 × 2−7

h[6] = h[21] −2.217952 × 10−2 −727 × 2−15 −182 × 2−13 −91 × 2−12 −3 × 2−7

h[7] = h[20] −1.524663 × 10−2 −500 × 2−15 −125 × 2−13 −62 × 2−12 −2 × 2−7

h[8] = h[19] 3.720668 × 10−2 1219 × 2−15 305 × 2−13 152 × 2−12 5 × 2−7

h[9] = h[18] 3.233332 × 10−2 1059 × 2−15 265 × 2−13 132 × 2−12 4 × 2−7

h[10] = h[17] −6.537057 × 10−2 −2142 × 2−15 −536 × 2−13 −268 × 2−12 −8 × 2−7

h[11] = h[16] −7.528754 × 10−2 −2467 × 2−15 −617 × 2−13 −308 × 2−12 −10 × 2−7

h[12] = h[15] 1.560970 × 10−1 5115 × 2−15 1279 × 2−13 639 × 2−12 20 × 2−7

h[13] = h[14] 4.394094 × 10−1 14399 × 2−15 3600 × 2−13 1800 × 2−12 56 × 2−7

Another approach to studying the sensitivity of the direct form FIR structure
would be to examine the sensitivity of the zeros to quantization errors in the impulse-
response coefficients, which are, of course the coefficients of the polynomial H(z). If
the zeros of H(z) are tightly clustered, then their locations will be highly sensitive to
quantization errors in the impulse-response coefficients. The reason that the direct form
FIR system is widely used is that, for most linear phase FIR filters, the zeros are more
or less uniformly spread in the z-plane. We demonstrate this by the following example.

6.8.5 Example of Quantization of an Optimum FIR Filter

As an example of the effect of coefficient quantization in the FIR case, consider a
linear-phase lowpass filter designed to meet the following specifications:

0.99 ≤ |H(ejω)| ≤ 1.01, 0 ≤ |ω| ≤ 0.4π,

|H(ejω)| ≤ 0.001(i.e., −60 dB), 0.6π ≤ |ω| ≤ π.

This filter was designed using the Parks–McClellan design technique, which will be
discussed in Section 7.7.3. The details of the design for this example are considered in
Section 7.8.1.

Table 6.5 shows the unquantized impulse-response coefficients for the system,
along with quantized coefficients for 16-, 14-, 13-, and 8-bit quantization. Figure 6.54

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–100

–80

–40

–60

0

–20

20

(a)

A
m

pl
it

ud
e

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–0.010

–0.005

0

0.005

0.010

(b)

A
m

pl
it

ud
e

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–0.010

–0.005

0

0.005

0.010

(c)

Figure 6.54 FIR quantization example. (a) Log magnitude for unquantized case.
(b) Approximation error for unquantized case. (Error not defined in transition band.)
(c) Approximation error for 16-bit quantization.

432

A
m

pl
it

ud
e

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–0.010

–0.005

0

0.005

0.010

(d)

A
m

pl
it

ud
e

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–0.010

–0.005

0

0.005

0.010

(e)

A
m

pl
it

ud
e

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–0.02

–0.01

0

0.02

0.01

0.03

(f)

Figure 6.54 (continued) (d) Approximation error for 14-bit quantization.
(e) Approximation error for 13-bit quantization. (f) Approximation error for 8-bit
quantization.

433

434 Chapter 6 Structures for Discrete-Time Systems

gives a comparison of the frequency responses of the various systems. Figure 6.54(a)
shows the log magnitude in dB of the frequency response for unquantized coefficients.
Figures 6.54(b), (c), (d), (e), and (f) show the passband and stopband approximation
errors (errors in approximating unity in the passband and zero in the stopband) for
the unquantized, 16-, 14-, 13-, and 8-bit quantized cases, respectively. From Figure 6.54,
we see that the system meets the specifications for the unquantized case and both the
16-bit and 14-bit quantized cases. However, with 13-bit quantization the stopband ap-
proximation error becomes greater than 0.001, and with 8-bit quantization the stopband
approximation error is over 10 times as large as specified. Thus, we see that at least 14-bit
coefficients are required for a direct form implementation of the system. However, this
is not a serious limitation, since 16-bit or 14-bit coefficients are well matched to many
of the technologies that might be used to implement such a filter.

The effect of quantization of the filter coefficients on the locations of the zeros
of the filter is shown in Figure 6.55. Note that in the unquantized case, shown in Fig-
ure 6.55(a), the zeros are spread around the z-plane, although there is some clustering
on the unit circle. The zeros on the unit circle are primarily responsible for developing
the stopband attenuation, whereas those at conjugate reciprocal locations off the unit
circle are primarily responsible for forming the passband. Note that little difference
is observed in Figure 6.55(b) for 16-bit quantization, but in Figure 6.55(c), showing
13-bit quantization, the zeros on the unit circle have moved significantly. Finally, in Fig-
ure 6.55(d), we see that 8-bit quantization causes several of the zeros on the unit circle
to pair up and move off the circle to conjugate reciprocal locations. This behavior of
the zeros explains the behavior of the frequency response shown in Figure 6.54.

A final point about this example is worth mentioning. All of the unquantized
coefficients have magnitudes less than 0.5. Consequently, if all of the coefficients (and
therefore, the impulse response) are doubled prior to quantization, more efficient use
of the available bits will result, corresponding in effect to increasing B by 1. In Table 6.5
and Figure 6.54, we did not take this potential for increased accuracy into account.

6.8.6 Maintaining Linear Phase

So far, we have not made any assumptions about the phase response of the FIR sys-
tem. However, the possibility of generalized linear phase is one of the major advan-
tages of an FIR system. Recall that a linear-phase FIR system has either a symmetric
(h[M − n] = h[n]) or an antisymmetric (h[M − n] = −h[n]) impulse response. These
linear-phase conditions are easily preserved for the direct form quantized system. Thus,
all the systems discussed in the example of the previous subsection have a precisely
linear phase, regardless of the coarseness of the quantization. This can be seen in the
way in which the conjugate reciprocal locations are preserved in Figure 6.55.

Figure 6.55(d) suggests that, in situations where quantization is very coarse or for
high-order systems with closely spaced zeros, it may be worthwhile to realize smaller
sets of zeros independently with a cascade form FIR system. To maintain linear phase,
each of the sections in the cascade must also have linear phase. Recall that the zeros
of a linear-phase system must occur as illustrated in Figure 6.34. For example, if we use
2nd-order sections of the form (1+az−1 +z−2) for each complex-conjugate pair of zeros
on the unit circle, the zero can move only on the unit circle when the coefficient a is

Section 6.8 The Effects of Coefficient Quantization 435

–1 0

Im
ag

in
ar

y
pa

rt

–1.5

–1

–0.5

0

0.5

1

1.5

1

Real part

(a)

FIR Lowpass Filter:
Unquantized Coefficients

2 3 –1 0

Im
ag

in
ar

y
pa

rt

–1.5

–1

–0.5

0

0.5

1

1.5

1

Real part

(b)

FIR Lowpass Filter:
16-bit Coefficients

2 3

–1 0

Im
ag

in
ar

y
pa

rt

–1.5

–1

–0.5

0

0.5

1

1.5

1

Real part

(c)

FIR Lowpass Filter:
13-bit Coefficients

2 3 –1 0

Im
ag

in
ar

y
pa

rt

–1.5

–1

–0.5

0

0.5

1

1.5

1

Real part

(d)

FIR Lowpass Filter:
8-bit Coefficients

2 3

Figure 6.55 Effect of impulse response quantization on zeros of H(z). (a) Un-
quantized. (b) 16-bit quantization. (c) 13-bit quantization. (d) 8-bit quantization.

quantized. This prevents zeros from moving away from the unit circle, thereby lessening
their attenuating effect. Similarly, real zeros inside the unit circle and at the reciprocal
location outside the unit circle would remain real. Also, zeros at z = ±1 can be realized
exactly by 1st-order systems. If a pair of complex-conjugate zeros inside the unit circle is
realized by a 2nd-order system rather than a 4th-order system, then we must ensure that,
for each complex zero inside the unit circle, there is a conjugate reciprocal zero outside
the unit circle. This can be done by expressing the 4th-order factor corresponding to
zeros at z = rejθ and z = r−1e−jθ as

1 + cz−1 + dz−2 + cz−3 + z−4

= (1 − 2r cos θz−1 + r2z−2)
1
r2

(r2 − 2r cos θz−1 + z−2).
(6.89)

436 Chapter 6 Structures for Discrete-Time Systems

x [n]

y [n]

z–1 z–1

r 2

z–1 z–1

r 2
r 2
1

–2r cos

–2r cos

Figure 6.56 Subsystem to implement 4th-order factors in a linear-phase FIR
system such that linearity of the phase is maintained independently of parameter
quantization.

This condition corresponds to the subsystem shown in Figure 6.56. This system uses the
same coefficients, −2r cos θ and r2, to realize both the zeros inside the unit circle and
the conjugate reciprocal zeros outside the unit circle. Thus, the linear-phase condition is
preserved under quantization. Notice that the factor (1−2r cos θz−1+r2z−2) is identical
to the denominator of the 2nd-order direct form IIR system of Figure 6.49. Therefore, the
set of quantized zeros is as depicted in Figure 6.50. More details on cascade realizations
of FIR systems are given by Herrmann and Schüssler (1970b).

6.9 EFFECTS OF ROUND-OFF NOISE IN DIGITAL FILTERS

Difference equations realized with finite-precision arithmetic are nonlinear systems.
Although it is important in general to understand how this nonlinearity affects the per-
formance of discrete-time systems, a precise analysis of arithmetic quantization effects
is generally not required in practical applications, where we are typically concerned with
the performance of a specific system. Indeed, just as with coefficient quantization, the
most effective approach is often to simulate the system and measure its performance.
For example, a common objective in quantization error analysis is to choose the digital
word length such that the digital system is a sufficiently accurate realization of the de-
sired linear system and at the same time requires a minimum of hardware or software
complexity. The digital word length can, of course, be changed only in steps of 1 bit,
and as we have already seen in Section 4.8.2, the addition of 1 bit to the word length
reduces the size of quantization errors by a factor of 2. Thus, the choice of word length is
insensitive to inaccuracies in the quantization error analysis; an analysis that is correct
to within 30 to 40 percent is often adequate. For this reason, many of the important
effects of quantization can be studied using linear additive noise approximations. We
develop such approximations in this section and illustrate their use with several ex-
amples. An exception is the phenomenon of zero-input limit cycles, which are strictly
nonlinear phenomena. We restrict our study of nonlinear models for digital filters to a
brief introduction to zero-input limit cycles in Section 6.10.

6.9.1 Analysis of the Direct Form IIR Structures

To introduce the basic ideas, let us consider the direct form structure for an LTI discrete-
time system. The flow graph of a direct form I 2nd-order system is shown in

Section 6.9 Effects of Round-off Noise in Digital Filters 437

y [n]
z–1

z–1

z–1

z–1

x [n]

(a)

b0

b1

b2

a1

a2

y [n]
z–1

z–1

z–1

z–1

x [n]

(b)

b0

b1

b2

a1

a2

Q

Q

Q

Q

Q

e0[n]

e1[n]

e2[n]

e3[n]

e4[n]

y [n]

z–1

z–1

z–1

z–1

x [n]

(c)

b0

b1

b2

a1

a2

Figure 6.57 Models for direct form I
system. (a) Infinite-precision model.
(b) Nonlinear quantized model.
(c) Linear-noise model.

Figure 6.57(a). The general N th-order difference equation for the direct form I
structure is

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k], (6.90)

438 Chapter 6 Structures for Discrete-Time Systems

and the system function is

H(z) =

M∑
k=0

bkz
−k

1 −
N∑

k=1

akz
−k

= B(z)

A(z)
. (6.91)

Let us assume that all signal values and coefficients are represented by (B +1)-bit
fixed-point binary numbers. Then, in implementing Eq. (6.90) with a (B + 1)-bit adder,
it would be necessary to reduce the length of the (2B + 1)-bit products resulting from
multiplying two (B+1)-bit numbers back to (B+1) bits. Since all numbers are treated as
fractions, we would discard the least significant B bits by either rounding or truncation.
This is represented by replacing each constant multiplier branch in Figure 6.57(a) by a
constant multiplier followed by a quantizer, as in the nonlinear model of Figure 6.57(b).
The difference equation corresponding to Figure 6.57(b) is the nonlinear equation

ŷ[n] =
N∑

k=1

Q[akŷ[n − k]] +
M∑

k=0

Q[bkx[n − k]]. (6.92)

Figure 6.57(c) shows an alternative representation in which the quantizers are
replaced by noise sources that are equal to the quantization error at the output of each
quantizer. For example, rounding or truncation of a product bx[n] is represented by a
noise source of the form

e[n] = Q[bx[n]] − bx[n]. (6.93)

If the noise sources are known exactly, then Figure 6.57(c) is exactly equivalent to
Figure 6.57(b). However, Figure 6.57(c) is most useful when we assume that each quan-
tization noise source has the following properties:

1. Each quantization noise source e[n] is a wide-sense-stationary white-noise process.

2. Each quantization noise source has a uniform distribution of amplitudes over one
quantization interval.

3. Each quantization noise source is uncorrelated with the input to the corresponding
quantizer, all other quantization noise sources, and the input to the system.

These assumptions are identical to those made in the analysis of A/D conversion
in Section 4.8. Strictly speaking, our assumptions here cannot be valid, since the quanti-
zation error depends directly on the input to the quantizer. This is readily apparent for
constant and sinusoidal signals. However, experimental and theoretical analyses have
shown (see Bennett, 1948; Widrow, 1956, 1961; Widrow and Kollár, 2008) that in many
situations the approximation just described leads to accurate predictions of measured
statistical averages such as the mean, variance, and correlation function. This is true
when the input signal is a complicated wideband signal such as speech, in which the
signal fluctuates rapidly among all the quantization levels and traverses many of those
levels in going from sample to sample (see Gold and Rader, 1969). The simple linear-
noise approximation presented here allows us to characterize the noise generated in the
system by averages such as the mean and variance and to determine how these averages
are modified by the system.

Section 6.9 Effects of Round-off Noise in Digital Filters 439

2

(a)

(b)

�

� = 2–B

pe(e)

pe(e)

e

1
�

2
�–

e

1
�

–� Figure 6.58 Probability density
function for quantization errors.
(a) Rounding. (b) Truncation.

For (B + 1)-bit quantization, we showed in Section 6.7.1 that, for rounding,

−1
2

2−B < e[n] ≤ 1
2

2−B, (6.94a)

and for two’s-complement truncation,

−2−B < e[n] ≤ 0. (6.94b)

Thus, according to our second assumption, the probability density functions for the
random variables representing quantization error are the uniform densities shown in
Figure 6.58(a) for rounding and in Figure 6.58(b) for truncation. The mean and variance
for rounding are, respectively,

me = 0, (6.95a)

σ 2
e = 2−2B

12
. (6.95b)

For two’s-complement truncation, the mean and variance are

me = −2−B

2
, (6.96a)

σ 2
e = 2−2B

12
. (6.96b)

In general, the autocorrelation sequence of a quantization noise source is, according to
the first assumption,

φee[n] = σ 2
e δ[n] + m2

e . (6.97)

In the case of rounding, which we will assume for convenience henceforth, me = 0, so the
autocorrelation function is φee[n] = σ 2

e δ[n], and the power spectrum is �ee(e
jω) = σ 2

e

for |ω| ≤ π . In this case, the variance and the average power are identical. In the

440 Chapter 6 Structures for Discrete-Time Systems

y [n] = y [n] + f [n]
z–1

z–1

z–1

z–1

x [n]

e [n]

b0

b1

b2

a1

a2

Figure 6.59 Linear-noise model for direct form I with noise sources combined.

case of truncation, the mean is not zero, so average-power results derived for rounding
must be corrected by computing the mean of the signal and adding its square to the
average-power results for rounding.

With this model for each of the noise sources in Figure 6.57(c), we can now proceed
to determine the effect of the quantization noise on the output of the system. To aid
us in doing this, it is helpful to observe that all of the noise sources in that figure are
effectively injected between the part of the system that implements the zeros and the
part that implements the poles. Thus, Figure 6.59 is equivalent to Figure 6.57(c) if e[n]
in Figure 6.59 is

e[n] = e0[n] + e1[n] + e2[n] + e3[n] + e4[n]. (6.98)

Since we assume that all the noise sources are independent of the input and independent
of each other, the variance of the combined noise sources for the 2nd-order direct form
I case is

σ 2
e = σ 2

e0
+ σ 2

e1
+ σ 2

e2
+ σ 2

e3
+ σ 2

e4
= 5 · 2−2B

12
, (6.99)

and for the general direct form I case, it is

σ 2
e = (M + 1 + N)

2−2B

12
. (6.100)

To obtain an expression for the output noise, we note from Figure 6.59 that the
system has two inputs, x[n] and e[n], and since the system is now assumed to be linear,
the output can be represented as ŷ[n] = y[n] + f [n], where y[n] is the response of the
ideal unquantized system to the input sequence x[n] and f [n] is the response of the
system to the input e[n]. The output y[n] is given by the difference equation (6.90), but
since e[n] is injected after the zeros and before the poles, the output noise satisfies the
difference equation

f [n] =
N∑

k=1

akf [n − k] + e[n]; (6.101)

i.e., the properties of the output noise in the direct form I implementation depend only
on the poles of the system.

To determine the mean and variance of the output noise sequence, we can use
some results from Section 2.10. Consider a linear system with system function Hef (z)

Section 6.9 Effects of Round-off Noise in Digital Filters 441

with a white-noise input e[n] and corresponding output f [n]. Then, from Eqs. (2.184)
and (2.185), the mean of the output is

mf = me

∞∑
n=−∞

hef [n] = meHef (ej0). (6.102)

Since me = 0 for rounding, the mean of the output will be zero, so we need not be
concerned with the mean value of the noise if we assume rounding. From Eqs. (6.97) and
(2.190), it follows that, because, for rounding, e[n] is a zero-mean white-noise sequence,
the power density spectrum of the output noise is simply

Pff (ω) = �ff (ejω) = σ 2
e |Hef (ejω)|2. (6.103)

From Eq. (2.192), the variance of the output noise can be shown to be

σ 2
f = 1

2π

∫ π

−π

Pff (ω)dω = σ 2
e

1
2π

∫ π

−π

|Hef (ejω)|2dω. (6.104)

Using Parseval’s theorem in the form of Eq. (2.162), we can also express σ 2
f as

σ 2
f = σ 2

e

∞∑
n=−∞

|hef [n]|2. (6.105)

When the system function corresponding to hef [n] is a rational function, as it will always
be for difference equations of the type considered in this chapter, we can use Eq. (A.66)
in Appendix A for evaluating infinite sums of squares of the form of Eq. (6.105).

We will use the results summarized in Eqs. (6.102)–(6.105) often in our analysis
of quantization noise in linear systems. For example, for the direct form I system of
Figure 6.59, Hef (z) = 1/A(z); i.e., the system function from the point where all the
noise sources are injected to the output consists only of the poles of the system function
H(z) in Eq. (6.91). Thus, we conclude that, in general, the total output variance owing
to internal round-off or truncation is

σ 2
f = (M + 1 + N)

2−2B

12
1

2π

∫ π

−π

dω

|A(ejω)|2

= (M + 1 + N)
2−2B

12

∞∑
n=−∞

|hef [n]|2,
(6.106)

where hef [n] is the impulse response corresponding to Hef (z) = 1/A(z). The use of the
preceding results is illustrated by the following examples.

Example 6.11 Round-off Noise in a 1st-Order System

Suppose that we wish to implement a stable system having the system function

H(z) = b

1 − az−1
, |a| < 1. (6.107)

Figure 6.60 shows the flow graph of the linear-noise model for the implementation
in which products are quantized before addition. Each noise source is filtered by the
system from e[n] to the output, for which the impulse response is hef [n] = anu[n].

442 Chapter 6 Structures for Discrete-Time Systems

Since M = 0 and N = 1 for this example, from Eq. (6.103), the power spectrum of the
output noise is

Pff (ω) = 2
2−2B

12

(
1

1 + a2 − 2a cos ω

)
, (6.108)

and the total noise variance at the output is

σ 2
f = 2

2−2B

12

∞∑
n=0

|a|2n = 2
2−2B

12

(
1

1 − |a|2
)

. (6.109)

From Eq. (6.109), we see that the output noise variance increases as the pole at
z = a approaches the unit circle. Thus, to maintain the noise variance below a specified
level as |a| approaches unity, we must use longer word lengths. The following example
also illustrates this point.

z–1
a

b

x [n]

e [n] = ea[n] + eb[n]

y [n] = y [n] + f [n]ˆ

Figure 6.60 1st-order linear noise model.

Example 6.12 Round-off Noise in a 2nd-Order System

Consider a stable 2nd-order direct form I system with system function

H(z) = b0 + b1z−1 + b2z−2

(1 − rejθ z−1)(1 − re−jθ z−1)
. (6.110)

The linear-noise model for this system is shown in Figure 6.57(c), or equivalently,
Figure 6.59, with a1 = 2r cos θ and a2 = −r2. In this case, the total output noise power
can be expressed in the form

σ 2
f = 5

2−2B

12
1

2π

∫ π

−π

dω

|(1 − rejθ e−jω)(1 − re−jθ e−jω)|2 . (6.111)

Using Eq. (A.66) in Appendix A, the output noise power is found to be

σ 2
f = 5

2−2B

12

(
1 + r2

1 − r2

)
1

r4 + 1 − 2r2 cos 2θ
. (6.112)

As in Example 6.11, we see that as the complex conjugate poles approach the unit
circle (r → 1), the total output noise variance increases, thus requiring longer word
lengths to maintain the variance below a prescribed level.

The techniques of analysis developed so far for the direct form I structure can also
be applied to the direct form II structure. The nonlinear difference equations for the

Section 6.9 Effects of Round-off Noise in Digital Filters 443

direct form II structure are of the form

ŵ[n] =
N∑

k=1

Q[akŵ[n − k]] + x[n], (6.113a)

ŷ[n] =
M∑

k=0

Q[bkŵ[n − k]]. (6.113b)

Figure 6.61(a) shows the linear-noise model for a 2nd-order direct form II system. A
noise source has been introduced after each multiplication, indicating that the products
are quantized to (B + 1) bits before addition. Figure 6.61(b) shows an equivalent linear
model, wherein we have moved the noise sources resulting from implementation of the
poles and combined them into a single noise source ea[n] = e3[n] + e4[n] at the input.
Likewise, the noise sources due to implementation of the zeros are combined into the
single noise source eb[n] = e0[n]+e1[n]+e2[n] that is added directly to the output. From
this equivalent model, it follows that for M zeros and N poles and rounding (me = 0),
the power spectrum of the output noise is

Pff (ω) = N
2−2B

12
|H(ejω)|2 + (M + 1)

2−2B

12
, (6.114)

and the output noise variance is

σ 2
f = N

2−2B

12
1

2π

∫ π

−π

|H(ejω)|2dω + (M + 1)
2−2B

12

= N
2−2B

12

∞∑
n=−∞

|h[n]|2 + (M + 1)
2−2B

12
.

(6.115)

That is, the white noise produced in implementing the poles is filtered by the entire
system, whereas the white noise produced in implementing the zeros is added directly
to the output of the system. In writing Eq. (6.115), we have assumed that the N noise
sources at the input are independent, so that their sum has N times the variance of a
single quantization noise source. The same assumption was made about the (M + 1)
noise sources at the output. These results are easily modified for two’s-complement
truncation. Recall from Eqs. (6.95a)–(6.95b) and Eqs. (6.96a)–(6.96b) that the variance
of a truncation noise source is the same as that of a rounding noise source, but the mean
of a truncation noise source is not zero. Consequently, the formulas in Eqs. (6.106) and
(6.115) for the total output noise variance also hold for truncation. However, the output
noise will have a nonzero average value that can be computed using Eq. (6.102).

A comparison of Eq. (6.106) with Eq. (6.115) shows that the direct form I and direct
form II structures are affected differently by the quantization of products in implement-
ing the corresponding difference equations. In general, other equivalent structures such
as cascade, parallel, and transposed forms will have a total output noise variance differ-
ent from that of either of the direct form structures. However, even though Eqs. (6.106)
and (6.115) are different, we cannot say which system will have the smaller output noise
variance unless we know specific values for the coefficients of the system. In other words,
it is not possible to state that a particular structural form will always produce the least
output noise.

444 Chapter 6 Structures for Discrete-Time Systems

ea[n]

b1

b0

b2

a1

a2

z–1

z–1

x [n]

(a)

(b)

b1a1

a2

z–1

z–1

x [n]
e0[n]

e1[n]

e2[n]

e3[n]

e4[n]

y [n]

eb[n]

b0

b2

y [n]

Figure 6.61 Linear-noise models for
direct form II. (a) Showing quantization
of individual products. (b) With noise
sources combined.

It is possible to improve the noise performance of the direct form systems (and
therefore cascade and parallel forms as well) by using a (2B+1)-bit adder to accumulate
the sum of products required in both direct form systems. For example, for the direct
form I implementation, we could use a difference equation of the form

ŷ[n] = Q

[
N∑

k =1

akŷ[n − k] +
M∑

k =0

bkx[n − k]
]

; (6.116)

i.e., the sums of products are accumulated with (2B + 1)- or (2B + 2)-bit accuracy, and
the result is quantized to (B +1) bits for output and storage in the delay memory. In the
direct form I case, this means that the quantization noise is still filtered by the poles, but
the factor (M +1+N) in Eq. (6.106) is replaced by unity. Similarly, for the direct form II
realization, the difference equations (6.113a)–(6.113b) can respectively be replaced by

ŵ[n] = Q

[
N∑

k=1

akŵ[n − k] + x[n]
]

(6.117a)

and

ŷ[n] = Q

[
M∑

k=0

bkŵ[n − k]
]

. (6.117b)

Section 6.9 Effects of Round-off Noise in Digital Filters 445

This implies a single noise source at both the input and output, so the factors N and
(M + 1) in Eq. (6.115) are each replaced by unity. Thus, the double-length accumulator
provided in most DSP chips can be used to significantly reduce quantization noise in
direct form systems.

6.9.2 Scaling in Fixed-Point Implementations of IIR
Systems

The possibility of overflow is another important consideration in the implementation
of IIR systems using fixed-point arithmetic. If we follow the convention that each fixed-
point number represents a fraction (possibly times a known scale factor), each node in
the structure must be constrained to have a magnitude less than unity to avoid overflow.
If wk[n] denotes the value of the kth node variable, and hk[n] denotes the impulse
response from the input x[n] to the node variable wk[n], then

|wk[n]| =
∣∣∣∣∣

∞∑
m=−∞

x[n − m]hk[m]
∣∣∣∣∣ . (6.118)

The bound

|wk[n]| ≤ xmax

∞∑
m=−∞

|hk[m]| (6.119)

is obtained by replacing x[n−m] by its maximum value xmax and using the fact that the
magnitude of a sum is less than or equal to the sum of the magnitudes of the summands.
Therefore, a sufficient condition for |wk[n]| < 1 is

xmax <
1

∞∑
m=−∞

|hk[m]|
(6.120)

for all nodes in the flow graph. If xmax does not satisfy Eq. (6.120), then we can multiply
x[n] by a scaling multiplier s at the input to the system so that sxmax satisfies Eq. (6.120)
for all nodes in the flow graph; i.e.,

sxmax <
1

max
k

[∞∑
m=−∞

|hk[m]|
] . (6.121)

Scaling the input in this way guarantees that overflow never occurs at any of the nodes in
the flow graph. Equation (6.120) is necessary as well as sufficient, since an input always
exists such that Eq. (6.119) is satisfied with equality. (See Eq. (2.70) in the discussion
of stability in Section 2.4.) However, Eq. (6.120) leads to a very conservative scaling of
the input for most signals.

Another approach to scaling is to assume that the input is a narrowband signal,
modeled as x[n] = xmax cos ω0n. In this case, the node variables will have the form

wk[n] = |Hk(e
jω0)|xmax cos(ω0n + � Hk(e

jω0)). (6.122)

Therefore, overflow is avoided for all sinusoidal signals if

max
k,|ω|≤π

|Hk(e
jω)|xmax < 1 (6.123)

446 Chapter 6 Structures for Discrete-Time Systems

or if the input is scaled by the scale factor s such that

sxmax <
1

max
k,|ω|≤π

|Hk(e
jω)| . (6.124)

Still another scaling approach is based on the energy E = �n|x[n]|2 of the input
signal. We can derive the scale factor in this case by applying the Schwarz inequality
(see Bartle, 2000) to obtain the following inequality relating the square of the node
signal to the energies of the input signal and the node impulse response:

|wk[n]|2 =
∣∣∣∣ 1
2π

∫ π

−π

Hk(e
jω)X (ejω)ejωndω

∣∣∣∣2
(6.125)≤

(
1

2π

∫ π

−π

|Hk(e
jω)|2dω

)(
1

2π

∫ π

−π

|X(ejω)|2dω

)
.

Therefore, if we scale the input sequence values by s and apply Parseval’s theorem, we
see that |wk[n]|2 < 1 for all nodes k if

s2

(∞∑
n=−∞

|x[n]|2
)

= s2E <
1

max
k

[∞∑
n=−∞

|hk[n]|2
] . (6.126)

Since it can be shown that for the kth node,{ ∞∑
n=−∞

|hk[n]|2
}1/2

≤ max
ω

|Hk(e
jω)| ≤

∞∑
n=−∞

|hk[n]|, (6.127)

it follows that (for most input signals) Eqs. (6.121), (6.124), and (6.126) give three de-
creasingly conservative ways of scaling the input to a digital filter (equivalently decreas-
ing the gain of the filter). Of the three, Eq. (6.126) is generally the easiest to evaluate
analytically because the partial fraction method of Appendix A can be used; however
use of Eq. (6.126) requires an assumption about the mean-squared value of the signal,
E. On the other hand, Eq. (6.121) is difficult to evaluate analytically, except for the sim-
plest systems. Of course, if the filter coefficients are fixed numbers, the scale factors can
be estimated by computing the impulse response or frequency response numerically.

If the input must be scaled down (s < 1), the signal-to-noise ratio (SNR) at the
output of the system will be reduced because the signal power is reduced, but the noise
power is dependent only on the rounding operation. Figure 6.62 shows 2nd-order direct
form I and direct form II systems with scaling multipliers at the input. In determining
the scaling multiplier for these systems, it is not necessary to examine each node in
the flow graph. Some nodes do not represent addition and thus cannot overflow. Other
nodes represent partial sums. If we use nonsaturation two’s-complement arithmetic,
such nodes are permitted to overflow if certain key nodes do not. For example, in
Figure 6.62(a), we can focus on the node enclosed by the dashed circle. In the figure, the
scaling multiplier is shown combined with the bks, so that the noise source is the same

Section 6.9 Effects of Round-off Noise in Digital Filters 447

ea[n]

b1

b0

b2

a1

s

a2

z–1

z–1

x [n]

(b)

eb[n]

y [n]

'

w'[n]

'

a1

a2

sb1

sb0

sb2

z–1

z–1

z–1

z–1

x [n]

(a)

e'[n]

y[n]

Figure 6.62 Scaling of direct form
systems. (a) Direct form I. (b) Direct
form II.

as in Figure 6.59; i.e., it has five times the power of a single quantization noise source.10

Since the noise source is again filtered only by the poles, the output noise power is the
same in Figures 6.59 and 6.62(a). However, the overall system function of the system
in Figure 6.62(a) is sH(z) instead of H(z), so the unquantized component of the output
ŷ[n] is sy[n] instead of y[n]. Since the noise is injected after the scaling, the ratio of
signal power to noise power in the scaled system is s2 times the SNR for Figure 6.59.
Because s < 1 if scaling is required to avoid overflow, the SNR is reduced by scaling.

The same is true for the direct form II system of Figure 6.62(b). In this case, we
must determine the scaling multiplier to avoid overflow at both of the circled nodes.
Again, the overall gain of the system is s times the gain of the system in Figure 6.61(b),
but it may be necessary to implement the scaling multiplier explicitly in this case to
avoid overflow at the node on the left. This scaling multiplier adds an additional noise
component to ea[n], so the noise power at the input is, in general, (N + 1)2−2B/12.
Otherwise, the noise sources are filtered by the system in exactly the same way in both
Figure 6.61(b) and Figure 6.62(b). Therefore, the signal power is multiplied by s2, and
the noise power at the output is again given by Eq. (6.115), with N replaced by (N + 1).
The SNR is again reduced if scaling is required to avoid overflow.

10This eliminates a separate scaling multiplication and quantization noise source. However, scaling
(and quantizing) the bks can change the frequency response of the system. If a separate input scaling multiplier
precedes the implementation of the zeros in Figure 6.62(a), then an additional quantization noise source would
contribute to the output noise after going through the entire system H(z).

448 Chapter 6 Structures for Discrete-Time Systems

Example 6.13 Interaction Between Scaling and Round-off
Noise

To illustrate the interaction of scaling and round-off noise, consider the system of
Example 6.11 with system function given by Eq. (6.107). If the scaling multiplier is
combined with the coefficient b, we obtain the flow graph of Figure 6.63 for the scaled
system. Suppose that the input is white noise with amplitudes uniformly distributed
between −1 and +1. Then the total signal variance is σ 2

x = 1/3. To guarantee no
overflow in computing ŷ[n], we use Eq. (6.121) to compute the scale factor

s = 1
∞∑

n=0

|b| |a|n
= 1 − |a|

|b| . (6.128)

The output noise variance was determined in Example 6.11 to be

σ 2
f = 2

2−2B

12
1

1 − a2
(6.129)

and since we again have two (B + 1)-bit rounding operations, the noise power at the
output is the same, i.e., σ 2

f ′ = σ 2
f

. The variance of the output y′[n] due to the scaled
input sx[n] is

σ 2
y′ =
(

1
3

)
s2b2

1 − a2
= s2σ 2

y . (6.130)

Therefore, the SNR at the output is

σ 2
y′

σ 2
f ′

= s2 σ 2
y

σ 2
f

=
(

1 − |a|
|b|
)2 σ 2

y

σ 2
f

. (6.131)

As the pole of the system approaches the unit circle, the SNR decreases because the
quantization noise is amplified by the system and because the high gain of the system
forces the input to be scaled down to avoid overflow. Again, we see that overflow and
quantization noise work in opposition to decrease the performance of the system.

z–1
a

sb

x [n]

e' [n]

y [n] = sy [n] + f' [n]

Figure 6.63 Scaled 1st-order system.

6.9.3 Example of Analysis of a Cascade IIR Structure

The previous results of this section can be applied directly to the analysis of either paral-
lel or cascade structures composed of 2nd-order direct form subsystems. The interaction
of scaling and quantization is particularly interesting in the cascade form. Our general

Section 6.9 Effects of Round-off Noise in Digital Filters 449

comments on cascade systems will be interwoven with a specific example.
An elliptic lowpass filter was designed to meet the following specifications:

0.99 ≤ |H(ejω)| ≤ 1.01, |ω| ≤ 0.5π,

|H(ejω)| ≤ 0.01, 0.56π ≤ |ω| ≤ π.

The system function of the resulting system is

H(z) = 0.079459
3∏

k=1

(
1 + b1kz

−1 + z−2

1 − a1kz
−1 − a2kz

−2

)
= 0.079459

3∏
k=1

Hk(z), (6.132)

where the coefficients are given in Table 6.6. Notice that all the zeros of H(z) are on the
unit circle in this example; however, that need not be the case in general.

Figure 6.64(a) shows a flow graph of a possible implementation of this system as a
cascade of 2nd-order transposed direct form II subsystems. The gain constant, 0.079459,
is such that the overall gain of the system is approximately unity in the passband, and it
is assumed that this guarantees no overflow at the output of the system. Figure 6.64(a)
shows the gain constant placed at the input to the system. This approach reduces the
amplitude of the signal immediately, with the result that the subsequent filter sections
must have high gain to produce an overall gain of unity. Since the quantization noise
sources are introduced after the gain of 0.079459 but are likewise amplified by the rest
of the system, this is not a good approach. Ideally, the overall gain constant, being less
than unity, should be placed at the very end of the cascade, so that the signal and noise
will be attenuated by the same amount. However, this creates the possibility of overflow
along the cascade. Therefore, a better approach is to distribute the gain among the three
stages of the system, so that overflow is just avoided at each stage of the cascade. This
distribution is represented by

H(z) = s1H 1(z)s2H 2(z)s3H 3(z), (6.133)

where s1s2s3 = 0.079459. The scaling multipliers can be incorporated into the coeffi-
cients of the numerators of the individual system functions H ′

k(z) = skHk(z), as in

H(z) =
3∏

k=1

(
b′

0k
+ b′

1k
z−1 + b′

2k
z−2

1 − a1kz
−1 − a2kz

−2

)
=

3∏
k=1

H ′
k(z), (6.134)

where b′
0k

= b′
2k

= sk and b′
1k

= skb1k . The resulting scaled system is depicted in
Figure 6.64(b).

Also shown in Figure 6.64(b) are quantization noise sources representing the quan-
tization of the products before addition. Figure 6.64(c) shows an equivalent noise model,

TABLE 6.6 COEFFICIENTS FOR
ELLIPTIC LOWPASS FILTER IN
CASCADE FORM

k a1k a2k b1k

1 0.478882 −0.172150 1.719454
2 0.137787 −0.610077 0.781109
3 −0.054779 −0.902374 0.411452

450 Chapter 6 Structures for Discrete-Time Systems

w1[n]

e1[n]

b11 a11

a21

z–1

z–1

x [n]

0.079459

(a)

(b)

(c)

y [n]

b12 a12

a22

z–1

z–1

b13 a13

a23

z–1

z–1

b11

e01

e11 e31

e21 e41

a11

a21

z–1

z–1

x [n]

w1[n]

y [n]
e02

e12 e32

e22 e42

e03

e13 e33

e23 e43

a12

a22

z–1

z–1

a13

a23

z–1

z–1

a11

a21

z–1

z–1

x [n] y' [n]

a12

a22

z–1

z–1

a13

a23

z–1

z–1

'

b01'

b21'

b11'

b01'

'

b21'

b12'

b02'

b22'

b13'

b03'

b23'

b12'

b02'

b22'

b13'

b03'

b23'

w2[n]

e2[n]

' w3[n]

e3[n]

'

w2[n] w3[n]

Figure 6.64 Models for 6th-order cascade system with transposed direct form II subsys-
tems. (a) Infinite-precision model. (b) Linear-noise model for scaled system, showing quan-
tization of individual multiplications. (c) Linear-noise model with noise sources combined.

for which it is recognized that all the noise sources in a particular section are filtered
only by the poles of that section (and the subsequent subsystems). Figure 6.64(c) also
uses the fact that delayed white-noise sources are still white noise and are independent
of all the other noise sources, so that all five sources in a subsection can be combined
into a single noise source having five times the variance of a single quantization noise
source.11 Since the noise sources are assumed independent, the variance of the output

11This discussion can be generalized to show that the transposed direct form II has the same noise
behavior as the direct form I system.

Section 6.9 Effects of Round-off Noise in Digital Filters 451

noise is the sum of the variances owing to the three noise sources in Figure 6.64(c).
Therefore, for rounding, the power spectrum of the output noise is

Pf ′f ′(ω) = 5
2−2B

12

[
s2

2 |H 2(e
jω)|2s2

3 |H 3(e
jω)|2

|A 1(e
jω)|2 + s2

3 |H 3(e
jω)|2

|A 2(e
jω)|2 + 1

|A 3(e
jω)|2
]

, (6.135)

and the total output noise variance is

σ 2
f ′ = 5

2−2B

12

[
1

2π

∫ π

−π

s2
2 |H 2(e

jω)|2s2
3 |H 3(e

jω)|2
|A 1(e

jω)|2 dω

+ 1
2π

∫ π

−π

s2
3 |H 3(e

jω)|2
|A 2(e

jω)|2 dω + 1
2π

∫ π

−π

1
|A 3(e

jω)|2 dω

]
.

(6.136)

If a double-length accumulator is available, it would be necessary to quantize only
the sums that are the inputs to the delay elements in Figure 6.64(b). In this case the
factor of 5 in Eqs. (6.135) and (6.136) would be changed to 3. Furthermore, if a double-
length register were used to implement the delay elements, only the variables ŵk[n]
would have to be quantized, and there would be only one quantization noise source per
subsystem. In that case, the factor of 5 in Eqs. (6.135) and (6.136) would be changed to
unity.

The scale factors sk are chosen to avoid overflow at points along the cascade system.
We will use the scaling convention of Eq. (6.124). Therefore, the scaling constants are
chosen to satisfy

s1 max|ω|≤π
|H 1(e

jω)| < 1, (6.137a)

s1s2 max|ω|≤π
|H 1(e

jω)H 2(e
jω)| < 1, (6.137b)

s1s2s3 = 0.079459. (6.137c)

The last condition ensures that there will be no overflow at the output of the system
for unit-amplitude sinusoidal inputs, because the maximum overall gain of the filter is
unity. For the coefficients of Table 6.6, the resulting scale factors are s1 = 0.186447,
s2 = 0.529236, and s3 = 0.805267.

Equations (6.135) and (6.136) show that the shape of the output noise power spec-
trum and the total output noise variance depends on the way that zeros and poles are
paired to form the 2nd-order sections and on the order of the 2nd-order sections in the
cascade form realization. Indeed, it is easily seen that, for N sections, there are (N !)
ways to pair the poles and zeros, and there are likewise (N !) ways to order the result-
ing 2nd-order sections, a total of (N !)2 different systems. In addition, we can choose
either direct form I or direct form II (or their transposes) for the implementation of
the 2nd-order sections. In our example, this implies that there are 144 different cascade
systems to consider, if we wish to find the system with the lowest output noise variance.
For five cascaded sections, there would be 57,600 different systems. Clearly, the complete
analysis of even low-order systems is a tedious task, since an expression like Eq. (6.136)
must be evaluated for each pairing and ordering. Hwang (1974) used dynamic pro-
gramming and Liu and Peled (1975) used a heuristic approach to reduce the amount of
computation.

452 Chapter 6 Structures for Discrete-Time Systems

Re

Im
z-plane

Unit circle

1

1

2

3

Figure 6.65 Pole–zero plot for
6th-order system of Figure 6.64,
showing pairing of poles and zeros.

Even though finding the best pairing and ordering may require computer optimiza-
tion, Jackson (1970a, 1970b, 1996) found that good results are almost always obtained
by applying simple rules of the following form:

1. The pole that is closest to the unit circle should be paired with the zero that is
closest to it in the z-plane.

2. Rule 1 should be repeatedly applied until all the poles and zeros have been paired.

3. The resulting 2nd-order sections should be ordered according to either increasing
closeness to the unit circle or decreasing closeness to the unit circle.

The pairing rules are based on the observation that subsystems with high peak
gain are undesirable because they can cause overflow and because they can amplify
quantization noise. Pairing a pole that is close to the unit circle with an adjacent zero
tends to reduce the peak gain of that section. These heuristic rules are implemented in
design and analysis tools such as the MATLAB function zp2sos.

One motivation for rule 3 is suggested by Eq. (6.135). We see that the frequency re-
sponses of some of the subsystems appear more than once in the equation for the power
spectrum of the output noise. If we do not want the output noise variance spectrum to
have a high peak around a pole that is close to the unit circle, then it is advantageous
to have the frequency-response component owing to that pole not appear frequently in
Eq. (6.135). This suggests moving such “high Q” poles to the beginning of the cascade.
On the other hand, the frequency response from the input to a particular node in the
flow graph will involve a product of the frequency responses of the subsystems that pre-
cede the node. Thus, to avoid excessive reduction of the signal level in the early stages
of the cascade, we should place the poles that are close to the unit circle last in order.

Section 6.9 Effects of Round-off Noise in Digital Filters 453

Clearly then, the question of ordering hinges on a variety of considerations, including
total output noise variance and the shape of the output noise spectrum. Jackson (1970a,
1970b) used Lp norms to quantify the analysis of the pairing-and-ordering problem and
gave a much more detailed set of “rules of thumb” for obtaining good results without
having to evaluate all possibilities.

The pole–zero plot for the system in our example is shown in Figure 6.65. The
paired poles and zeros are circled. In this case, we have chosen to order the sections
from least peaked to most peaked frequency response. Figure 6.66 illustrates how the
frequency responses of the individual sections combine to form the overall frequency
response. Figures 6.66(a)–(c) show the frequency responses of the individual unscaled
subsystems. Figures 6.66(d)–(f) show how the overall frequency response is built up.
Notice that Figures 6.66(d)–(f) demonstrate that the scaling Eqs. (6.137a)–(6.137c) en-
sure that the maximum gain from the input to the output of any subsystem is less than
unity. The solid curve in Figure 6.67 shows the power spectrum of the output noise for
the ordering 123 (least peaked to most peaked). We assume that B + 1 = 16 for the
plot. Note that the spectrum peaks in the vicinity of the pole that is closest to the unit
circle. The dotted curve shows the power spectrum of the output noise when the section
order is reversed (i.e., 321). Since section 1 has high gain at low frequencies, the noise
spectrum is appreciably larger at low frequencies and slightly lower around the peak.
The high Q pole still filters the noise sources of the first section in the cascade, so it still
tends to dominate the spectrum. The total noise power for the two orderings turns out
to be almost the same in this case.

The example we have just presented shows the complexity of the issues that arise
in fixed-point implementations of cascade IIR systems. The parallel form is somewhat
simpler because the issue of pairing and ordering does not arise. However, scaling is still
required to avoid overflow in individual 2nd-order subsystems and when the outputs of
the subsystems are summed to produce the overall output. The techniques that we have
developed must therefore be applied for the parallel form as well. Jackson (1996) dis-
cusses the analysis of the parallel form in detail and concludes that its total output noise
power is typically comparable to that of the best pairings and orderings of the cascade
form. Even so, the cascade form is more common, because, for widely used IIR filters
such that the zeros of the system function are on the unit circle, the cascade form can
be implemented with fewer multipliers and with more control over the locations of the
zeros.

6.9.4 Analysis of Direct-Form FIR Systems

Since the direct form I and direct form II IIR systems include the direct form FIR system
as a special case (i.e., the case where all coefficients ak in Figures 6.14 and 6.15 are zero),
the results and analysis techniques of Sections 6.9.1 and 6.9.2 apply to FIR systems if we
eliminate all reference to the poles of the system function and eliminate the feedback
paths in all the signal flow graphs.

The direct form FIR system is simply the discrete convolution

y[n] =
M∑

k=0

h[k]x[n − k]. (6.138)

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–60

–40

–20

0

20

(a)

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–60

–40

–20

0

20

(b)

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–60

–40

–20

0

20

(c)

Figure 6.66 Frequency-response
functions for example system.
(a) 20 log10 |H 1(ejω)|.
(b) 20 log10 |H 2(ejω)|.
(c) 20 log10 |H 3(ejω)|.

454

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–80

–60

–20

–40

20

0

(d)

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–100

–80

–40

–60

0

–20

20

(e)

dB

Radian frequency (�)
0 0.2� 0.4� 0.6� 0.8� �

–100

–80

–40

–60

0

–20

20

(f)

Figure 6.66 (continued)
(d) 20 log10 |H ′

1(ejω)|.
(e) 20 log10 |H ′

1(ejω)H ′
2(ejω)|.

(f) 20 log10 |H ′
1(ejω)H ′

2(ejω)H ′
3(ejω)|

= 20 log10 |H ′(ejω)|.

455

456 Chapter 6 Structures for Discrete-Time Systems

dB

Radian frequency (�)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–100

–95

–90

–85

–80

–75

–70

Figure 6.67 Output noise power spectrum for 123 ordering (solid line) and 321
ordering (dashed line) of 2nd-order sections.

Figure 6.68(a) shows the ideal unquantized direct form FIR system, and Figure 6.68(b)
shows the linear-noise model for the system, assuming that all products are quantized
before additions are performed. The effect is to inject (M + 1) white-noise sources
directly at the output of the system, so that the total output noise variance is

σ 2
f = (M + 1)

2−2B

12
. (6.139)

This is exactly the result we would obtain by setting N = 0 and hef [n] = δ[n] in
Eqs. (6.106) and (6.115). When a double-length accumulator is available, we would
need to quantize only the output. Therefore, the factor (M + 1) in Eq. (6.139) would be
replaced by unity. This makes the double-length accumulator a very attractive hardware
feature for implementing FIR systems.

Overflow is also a problem for fixed-point realizations of FIR systems in direct
form. For two’s-complement arithmetic, we need to be concerned only about the size
of the output, since all the other sums in Figure 6.68(b) are partial sums. Thus, the
impulse-response coefficients can be scaled to reduce the possibility of overflow. Scaling
multipliers can be determined using any of the alternatives discussed in Section 6.9.2.
Of course, scaling the impulse response reduces the gain of the system, and therefore
the SNR at the output is reduced as discussed in that section.

Section 6.9 Effects of Round-off Noise in Digital Filters 457

x [n]
h [0] h [1] h [3]

(a)

h [M – 1] h [M]

y[n]

z–1 z–1 z–1

h [2]

z–1

x [n]

e0[n]

h [0] h [1] h [3]

(b)

h [M – 1] h [M]

y [n] = y [n] + f [n]

z–1 z–1 z–1

e1[n] e2[n] e3[n] eM – 1[n] eM[n]

h [2]

z–1

Figure 6.68 Direct form realization of an FIR system. (a) Infinite-precision model.
(b) Linear-noise model.

Example 6.14 Scaling Considerations for the FIR System in
Section 6.8.5

The impulse-response coefficients for the system in Section 6.8.5 are given in Table 6.5.
Simple calculations show, and from Figure 6.54(b) we see, that

27∑
n=0

|h[n]| = 1.751352,

⎛⎝ 27∑
n=0

|h[n]|2
⎞⎠1/2

= 0.679442,

max|ω|≤π
|H(ejω)| ≈ 1.009.

These numbers satisfy the ordering relationship in Eq. (6.127). Thus, the system, as
given, is scaled so that overflow is theoretically possible for a sinusoidal signal whose
amplitude is greater than 1/1.009 = 0.9911, but even so, overflow is unlikely for most
signals. Indeed, since the filter has a linear phase, we can argue that, for wideband
signals, since the gain in the passband is approximately unity, and the gain elsewhere
is less than unity, the output signal should be smaller than the input signal.

In Section 6.5.3, we showed that linear-phase systems like the one in Example 6.14
can be implemented with about half the number of multiplications of the general FIR
system. This is evident from the signal flow graphs of Figures 6.32 and 6.33. In these
cases, it should be clear that the output noise variance would be halved if products
were quantized before addition. However, the utilization of such structures involves a
more complicated indexing algorithm than the direct form. The architecture of most
DSP chips combines a double-length accumulator with an efficient pipelined multiply–

458 Chapter 6 Structures for Discrete-Time Systems

accumulate operation and simple looping control to optimize for the case of the direct
form FIR system. For this reason, direct form FIR implementations are often most
attractive, even compared with IIR filters that meet frequency-response specifications
with fewer multiplications, since cascade or parallel structures do not permit long se-
quences of multiply-accumulate operations.

In Section 6.5.3, we discussed cascade realizations of FIR systems. The results and
analysis techniques of Section 6.9.3 apply to these realizations; but for FIR systems
with no poles, the pairing and ordering problem reduces to just an ordering problem.
As in the case of IIR cascade systems, the analysis of all possible orderings can be very
difficult if the system is composed of many subsystems. Chan and Rabiner (1973a, 1973b)
studied this problem and found experimentally that the noise performance is relatively
insensitive to the ordering. Their results suggest that a good ordering is an ordering for
which the frequency response from each noise source to the output is relatively flat and
for which the peak gain is small.

6.9.5 Floating-Point Realizations of Discrete-Time
Systems

From the preceding discussion, it is clear that the limited dynamic range of fixed-point
arithmetic makes it necessary to carefully scale the input and intermediate signal levels
in fixed-point digital realizations of discrete-time systems. The need for such scaling can
be essentially eliminated by using floating-point numeric representations and floating-
point arithmetic.

In floating-point representations, a real number x is represented by the binary
number 2cx̂M , where the exponent c of the scale factor is called the characteristic and
x̂M is a fractional part called the mantissa. Both the characteristic and the mantissa are
represented explicitly as fixed-point binary numbers in floating-point arithmetic sys-
tems. Floating-point representations provide a convenient means for maintaining both
a wide dynamic range and low quantization noise; however, quantization error mani-
fests itself in a somewhat different way. Floating-point arithmetic generally maintains its
high accuracy and wide dynamic range by adjusting the characteristic and normalizing
the mantissa so that 0.5 ≤ x̂M < 1. When floating-point numbers are multiplied, their
characteristics are added and their mantissas are multiplied. Thus, the mantissa must
be quantized. When two floating-point numbers are added, their characteristics must
be adjusted to be the same by moving the binary point of the mantissa of the smaller
number. Hence, addition results in quantization, too. If we assume that the range of the
characteristic is sufficient so that no numbers become larger than 2c, then quantization
affects only the mantissa, but the error in the mantissa is also scaled by 2c. Thus, a
quantized floating-point number is conveniently represented as

x̂ = x(1 + ε) = x + εx. (6.140)

By representing the quantization error as a fraction ε of x, we automatically represent
the fact that the quantization error is scaled up and down with the signal level.

The aforementioned properties of floating-point arithmetic complicate the quan-
tization error analysis of floating-point implementations of discrete-time systems. First,
noise sources must be inserted both after each multiplication and after each addition.
An important consequence is that, in contrast to fixed-point arithmetic, the order in

Section 6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters 459

which multiplications and additions are performed can sometimes make a big differ-
ence. More important for analysis, we can no longer justify the assumption that the
quantization noise sources are white noise and are independent of the signal. In fact,
in Eq. (6.140), the noise is expressed explicitly in terms of the signal. Therefore, we can
no longer analyze the noise without making assumptions about the nature of the input
signal. If the input is assumed to be known (e.g., white noise), a reasonable assumption
is that the relative error ε is independent of x and is uniformly distributed white noise.

With these types of assumptions, useful results have been obtained by Sandberg
(1967), Liu and Kaneko (1969), Weinstein and Oppenheim (1969), and Kan and Ag-
garwal (1971). In particular, Weinstein and Oppenheim, comparing floating-point and
fixed-point realizations of 1st- and 2nd-order IIR systems, showed that if the number
of bits representing the floating-point mantissa is equal to the length of the fixed-point
word, then floating-point arithmetic leads to higher SNR at the output. Not surpris-
ingly, the difference was found to be greater for poles close to the unit circle. However,
additional bits are required to represent the characteristic, and the greater the desired
dynamic range, the more bits are required for the characteristic. Also, the hardware
to implement floating-point arithmetic is much more complex than that for fixed-point
arithmetic. Therefore, the use of floating-point arithmetic entails an increased word
length and increased complexity in the arithmetic unit. Its major advantage is that it
essentially eliminates the problem of overflow, and if a sufficiently long mantissa is used,
quantization also becomes much less of a problem. This translates into greater simplicity
in system design and implementation.

Nowadays, digital filtering of multi-media signals is often implemented on personal
computers or workstations that have very accurate floating point numerical represen-
tions and high speed arithmetic units. In such cases, the quantization issues discussed in
Sections 6.7–6.9 are generally of little or no concern. However, in high volume systems,
fixed point arithmetic is generally required to achieve low cost.

6.10 ZERO-INPUT LIMIT CYCLES IN FIXED-POINT
REALIZATIONS OF IIR DIGITAL FILTERS

For stable IIR discrete-time systems implemented with infinite-precision arithmetic,
if the excitation becomes zero and remains zero for n greater than some value n0,
the output for n > n0 will decay asymptotically toward zero. For the same system,
implemented with finite-register-length arithmetic, the output may continue to oscillate
indefinitely with a periodic pattern while the input remains equal to zero. This effect is
often referred to as zero-input limit cycle behavior and is a consequence either of the
nonlinear quantizers in the feedback loop of the system or of overflow of additions. The
limit cycle behavior of a digital filter is complex and difficult to analyze, and we will not
attempt to treat the topic in any general sense. To illustrate the point, however, we will
give two simple examples that will show how such limit cycles can arise.

6.10.1 Limit Cycles Owing to Round-off and Truncation

Successive round-off or truncation of products in an iterated difference equation can
create repeating patterns. This is illustrated in the following example.

460 Chapter 6 Structures for Discrete-Time Systems

Example 6.15 Limit Cycle Behavior in a 1st-Order System

Consider the 1st-order system characterized by the difference equation

y[n] = ay[n − 1] + x[n], |a| < 1. (6.141)

The signal flow graph of this system is shown in Figure 6.69(a). Let us assume
that the register length for storing the coefficient a, the input x[n], and the filter node
variable y[n − 1] is 4 bits (i.e., a sign bit to the left of the binary point and 3 bits to the
right of the binary point). Because of the finite-length registers, the product ay[n − 1]
must be rounded or truncated to 4 bits before being added to x[n]. The flow graph
representing the actual realization based on Eq. (6.141) is shown in Figure 6.69(b).
Assuming rounding of the product, the actual output ŷ[n] satisfies the nonlinear dif-
ference equation

ŷ[n] = Q[aŷ[n − 1]] + x[n], (6.142)

where Q[·] represents the rounding operation. Let us assume that a = 1/2 = 0�100
and that the input is x[n] = (7/8)δ[n] = (0�111)δ[n]. Using Eq. (6.142), we see that for
n = 0, ŷ[0] = 7/8 = 0�111. To obtain ŷ[1], we multiply ŷ[0] by a, obtaining the result
ây[0] = 0�011100, a 7-bit number that must be rounded to 4 bits. This number, 7/16,
is exactly halfway between the two 4-bit quantization levels 4/8 and 3/8. If we choose
always to round upward in such cases, then 0�011100 rounded to 4 bits is 0�100 = 1/2.
Since x[1] = 0, it follows that ŷ[1] = 0�100 = 1/2. Continuing to iterate the difference
equation gives ŷ[2] = Q[aŷ[1]] = 0�010 = 1/4 and ŷ[3] = 0�001 = 1/8. In both
these cases, no rounding is necessary. However, to obtain ŷ[4], we must round the
7-bit number aŷ[3] = 0�000100 to 0�001. The same result is obtained for all values of
n ≥ 3. The output sequence for this example is shown in Figure 6.70(a). If a = −1/2,
we can carry out the preceding computation again to demonstrate that the output is as
shown in Figure 6.70(b). Thus, because of rounding of the product aŷ[n−1], the output
reaches a constant value of 1/8 when a = 1/2 and a periodic steady-state oscillation
between +1/8 and −1/8 when a = −1/2. These are periodic outputs similar to those
that would be obtained from a 1st-order pole at z = ±1 instead of at z = ±1/2.

y [n]

z–1

a

x [n]

(a)

y [n]

z–1

a

x [n] Q [•]

(b)

Figure 6.69 1st-order IIR system. (a) Infinite-precision linear system. (b) Non-
linear system due to quantization.

Section 6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters 461

1 3 5 7

y[n] (a =)

n

3210

–1 2 4 6 8–2

–1–2 4 5 6 7

1
2

n

1
4

1
8

1
8

1
8

1
8

1
8

7
8

1
4

1
8

1
8

1
8

1
8

7
8

– 1
8

–

1
2

–

1
2

–

y[n] (a =)1
2

1
8

–

(b)

(a)

...

...

Figure 6.70 Response of the 1st-order system of Figure 6.69 to an impulse.
(a) a = 1

2 . (b) a = −1
2 .

When a = +1/2, the period of the oscillation is 1, and when a = −1/2, the
period of oscillation is 2. Such steady-state periodic outputs are called limit cycles, and
their existence was first noted by Blackman (1965), who referred to the amplitude
intervals to which such limit cycles are confined as dead bands. In this case, the dead
band is −2−B ≤ ŷ[n] ≤ +2−B , where B = 3.

The foregoing example has illustrated that a zero-input limit cycle can result from
rounding in a 1st-order IIR system. Similar results can be demonstrated for truncation.
2nd-order systems can also exhibit limit cycle behavior. In the case of parallel realizations

462 Chapter 6 Structures for Discrete-Time Systems

of higher-order systems, the outputs of the individual 2nd-order systems are indepen-
dent when the input is zero. In this case, one or more of the 2nd-order sections could
contribute a limit cycle to the output sum. In the case of cascade realizations, only the
first section has zero input; succeeding sections may exhibit their own characteristic
limit cycle behavior, or they may appear to be simply filtering the limit cycle output of
a previous section. For higher-order systems realized by other filter structures, the limit
cycle behavior becomes more complex, as does its analysis.

In addition to giving an understanding of limit cycle effects in digital filters, the
preceding results are useful when the zero-input limit cycle response of a system is the
desired output. This is the case, for example, when one is concerned with digital sine
wave oscillators for signal generation or for the generation of coefficients for calculation
of the discrete Fourier transform.

6.10.2 Limit Cycles Owing to Overflow

In addition to the classes of limit cycles discussed in the preceding section, a more severe
type of limit cycle can occur owing to overflow. The effect of overflow is to insert a gross
error in the output, and in some cases the filter output thereafter oscillates between
large-amplitude limits. Such limit cycles have been referred to as overflow oscillation.
The problem of oscillations caused by overflow is discussed in detail by Ebert et al.
(1969). Overflow oscillations are illustrated by the following example.

Example 6.16 Overflow Oscillations in a 2nd-Order System

Consider a 2nd-order system realized by the difference equation

ŷ[n] = x[n] + Q[a1ŷ[n − 1]] + Q[a2ŷ[n − 2]], (6.143)

where Q[·] represents two’s-complement rounding with a word length of 3 bits plus 1
bit for the sign. Overflow can occur with two’s-complement addition of the rounded
products. Suppose that a1 = 3/4 = 0�110 and a2 = −3/4 = 1�010, and assume that
x[n] remains equal to zero for n ≥ 0. Furthermore, assume that ŷ[−1] = 3/4 = 0�110
and ŷ[−2] = −3/4 = 1�010. Now the output at sample n = 0 is

ŷ[0] = 0�110 × 0�110 + 1�010 × 1�010.

If we evaluate the products using two’s-complement arithmetic, we obtain

ŷ[0] = 0�100100 + 0�100100,

and if we choose to round upward when a number is halfway between two quantization
levels, the result of two’s-complement addition is

ŷ[0] = 0�101 + 0�101 = 1�010 = − 3
4 .

In this case the binary carry overflows into the sign bit, thus changing the positive sum
into a negative number. Repeating the process gives

ŷ[1] = 1�011 + 1�011 = 0�110 = 3
4 .

The binary carry resulting from the sum of the sign bits is lost, and the negative sum is
mapped into a positive number. Clearly, ŷ[n] will continue to oscillate between +3/4
and −3/4 until an input is applied. Thus, ŷ[n] has entered a periodic limit cycle with a
period of 2 and an amplitude of almost the full-scale amplitude of the implementation.

Section 6.11 Summary 463

The preceding example illustrates how overflow oscillations occur. Much more
complex behavior can be exhibited by higher-order systems, and other frequencies can
occur. Some results are available for predicting when overflow oscillations can be sup-
ported by a difference equation (see Ebert et al., 1969). Overflow oscillations can be
avoided by using the saturation overflow characteristic of Figure 6.45(b) (see Ebert et
al., 1969).

6.10.3 Avoiding Limit Cycles

The possible existence of a zero-input limit cycle is important in applications where a
digital filter is to be in continuous operation, since it is generally desired that the output
approach zero when the input is zero. For example, suppose that a speech signal is
sampled, filtered by a digital filter, and then converted back to an acoustic signal using
a D/A converter. In such a situation it would be very undesirable for the filter to enter
a periodic limit cycle whenever the input is zero, since the limit cycle would produce an
audible tone.

One approach to the general problem of limit cycles is to seek structures that do
not support limit cycle oscillations. Such structures have been derived by using state-
space representations (see Barnes and Fam, 1977; Mills, Mullis and Roberts, 1978)
and concepts analogous to passivity in analog systems (see Rao and Kailath, 1984;
Fettweis, 1986). However, these structures generally require more computation than
an equivalent cascade or parallel form implementation. By adding more bits to the
computational wordlength, we can generally avoid overflow. Similarly, since round-off
limit cycles usually are limited to the least significant bits of the binary word, additional
bits can be used to reduce the effective amplitude of the limit cycle. Also, Claasen
et al. (1973) showed that if a double-length accumulator is used so that quantization
occurs after the accumulation of products, then limit cycles owing to round-off are much
less likely to occur in 2nd-order systems. Thus, the trade-off between word length and
computational algorithm complexity arises for limit cycles just as it does for coefficient
quantization and round-off noise.

Finally, it is important to point out that zero-input limit cycles due to both overflow
and round-off are a phenomenon unique to IIR systems: FIR systems cannot support
zero-input limit cycles, because they have no feedback paths. The output of an FIR
system will be zero no later than (M + 1) samples after the input goes to zero and
remains there. This is a major advantage of FIR systems in applications wherein limit
cycle oscillations cannot be tolerated.

6.11 SUMMARY

In this chapter, we have considered many aspects of the problem of implementing an
LTI discrete-time system. The first half of the chapter was devoted to basic implemen-
tation structures. After introducing block diagram and signal flow graphs as pictorial
representations of difference equations, we discussed a number of basic structures for

464 Chapter 6 Structures for Discrete-Time Systems

IIR and FIR discrete-time systems. These included the direct form I, direct form II, cas-
cade form, parallel form, lattice form, and transposed version of all the basic forms. We
showed that these forms are all equivalent when implemented with infinite-precision
arithmetic. However, the different structures are most significant in the context of finite-
precision implementations. Therefore, the remainder of the chapter addressed problems
associated with finite precision or quantization in fixed-point digital implementations
of the basic structures.

We began the discussion of finite precision effects with a brief review of digital
number representation and an overview showing that the quantization effects that are
important in sampling (discussed in Chapter 4) are also important in representing the
coefficients of a discrete-time system and in implementing systems using finite-precision
arithmetic. We illustrated the effect of quantization of the coefficients of a difference
equation through several examples. This issue was treated independently of the effects
of finite-precision arithmetic, which we showed introduces nonlinearity into the system.
We demonstrated that in some cases this nonlinearity was responsible for limit cycles
that may persist after the input to a system has become zero. We also showed that quan-
tization effects can be modeled in terms of independent random white-noise sources
that are injected internally into the flow graph. Such linear-noise models were devel-
oped for the direct form structures and for the cascade structure. In all of our discussion
of quantization effects, the underlying theme was the conflict between the desire for fine
quantization and the need to maintain a wide range of signal amplitudes. We saw that
in fixed-point implementations, one can be improved at the expense of the other, but to
improve one while leaving the other unaffected requires that we increase the number
of bits used to represent coefficients and signal amplitudes. This can be done either by
increasing the fixed-point word length or by adopting a floating-point representation.

Our discussion of quantization effects serves two purposes. First, we developed
several results that can be useful in guiding the design of practical implementations. We
found that quantization effects depend greatly on the structure used and on the specific
parameters of the system to be implemented, and even though simulation of the system
is generally necessary to evaluate its performance, many of the results discussed are
useful in making intelligent decisions in the design process. A second, equally important
purpose of this part of the chapter was to illustrate a style of analysis that can be applied
in studying quantization effects in a variety of digital signal-processing algorithms. The
examples of the chapter indicate the types of assumptions and approximations that
are commonly made in studying quantization effects. In Chapter 9, we will apply the
analysis techniques developed here to the study of quantization in the computation of
the discrete Fourier transform.

Problems

Basic Problems with Answers

6.1. Determine the system function of the two flow graphs in Figure P6.1, and show that they
have the same poles.

Chapter 6 Problems 465

(a)

Network 1

y [n]x [n]
z–1

2r cos

z–1

–r2

(b)

r cos

r sin

r cos

–r sin

y [n]

x [n]

z–1

z–1

Network 2

Figure P6.1

6.2. The signal flow graph of Figure P6.2 represents a linear difference equation with constant
coefficients. Determine the difference equation that relates the output y[n] to the input
x[n].

y [n]x [n]

z–1

z–1

z–1

z–1

Figure P6.2

6.3. Figure P6.3 shows six systems. Determine which one of the last five, (b)–(f), has the same
system function as (a). You should be able to eliminate some of the possibilities by inspec-
tion.

x [n] y [n]

(a)

(b)

(c)

cos

–sin

z–1

z–1

y [n]

y [n]

x [n]

x [n]

z–1 z–1

z–1

z–1

3
4

3
4

sin 3
4

cos 3
4

1
2

1
2

3
4

–

(d)

y [n]x [n]

z–1

z–1

1
4

2

3
8

1
4

–

3
4

–

Figure P6.3

466

Chapter 6 Problems 467

z–1

z–1

x [n] y [n]

8
3

4
1

4
1

2

(e)

–

z–1

z–1

x [n] y [n]

8
3

4
1

4
1

2

(f)

–

Figure P6.3 (continued)

6.4. Consider the system in Figure P6.3(d).

(a) Determine the system function relating the z-transforms of the input and output.
(b) Write the difference equation that is satisfied by the input sequence x[n] and the output

sequence y[n].
6.5. An LTI system is realized by the flow graph shown in Figure P6.5.

z–1

z–1

z–1

z–1

x [n] y [n]

3

1

1

2
Figure P6.5

(a) Write the difference equation relating x[n] and y[n] for this flow graph.
(b) What is the system function of the system?
(c) In the realization of Figure P6.5, how many real multiplications and real additions are

required to compute each sample of the output? (Assume that x[n] is real, and assume
that multiplication by 1 does not count in the total.)

(d) The realization of Figure P6.5 requires four storage registers (delay elements). Is it
possible to reduce the number of storage registers by using a different structure? If
so, draw the flow graph; if not, explain why the number of storage registers cannot be
reduced.

468 Chapter 6 Structures for Discrete-Time Systems

6.6. Determine the impulse response of each of the systems in Figure P6.6.

–21 4

(a)

3

x [n]

y[n]

z–1 z–1 z–1

–1

z–1

1

z–1

–11 3

(b)

(c)

4

x[n]

x [n]

y [n]

y [n]

z–1 z–1 z–1

z–1 z–1 z–1

z–1 z–1 z–1

z–1

–2

z–1

1

2 3 –1 1

z–1

(d)

x [n]

y [n]

z–1 z–1 z–1

z–1 z–1 z–1

1 2 –1 3

Figure P6.6

6.7. Let x[n] and y[n] be sequences related by the following difference equation:

y[n] − 1
4
y[n − 2] = x[n − 2] − 1

4
x[n].

Draw a direct form II signal flow graph for the causal LTI system corresponding to this
difference equation.

Chapter 6 Problems 469

6.8. The signal flow graph in Figure P6.8 represents an LTI system. Determine a difference
equation that gives a relationship between the input x[n] and the output y[n] of this system.
As usual, all branches of the signal flow graph have unity gain unless specifically indicated
otherwise.

x [n] y[n]
z–1

z–1

2
3

z–1

Figure P6.8

6.9. Figure P6.9 shows the signal flow graph for a causal discrete-time LTI system. Branches
without gains explicitly indicated have a gain of unity.

(a) By tracing the path of an impulse through the flowgraph, determine h[1], the impulse
response at n = 1.

(b) Determine the difference equation relating x[n] and y[n].

z–1

z–1

x [n]

z–1

y [n]

4

–1 2

Figure P6.9

6.10. Consider the signal flow graph shown in Figure P6.10.

(a) Using the node variables indicated, write the set of difference equations represented
by this flow graph.

(b) Draw the flow graph of an equivalent system that is the cascade of two 1st-order
systems.

(c) Is the system stable? Explain.

z–1
x [n]

z–1

y [n]

v [n]

w [n]

1
2

2

1
2

Figure P6.10

470 Chapter 6 Structures for Discrete-Time Systems

6.11. Consider a causal LTI system with impulse response h[n] and system function

H(z) = (1 − 2z−1)(1 − 4z−1)

z
(

1 − 1
2 z−1
)

(a) Draw a direct form II flow graph for the system.
(b) Draw the transposed form of the flow graph in part (a).

6.12. For the LTI system described by the flow graph in Figure P6.12, determine the difference
equation relating the input x[n] to the output y[n].

z–1 z–1

z–1

x [n] y[n]

–11

1

11

2

2

1

Figure P6.12

6.13. Draw the signal flow graph for the direct form I implementation of the LTI system with
system function

H(z) = 1 − 1
2 z−2

1 − 1
4 z−1 − 1

8z−2
.

6.14. Draw the signal flow graph for the direct form II implementation of the LTI system with
system function

H(z) = 1 + 5
6z−1 + 1

6z−2

1 − 1
2 z−1 − 1

2 z−2
.

6.15. Draw the signal flow graph for the transposed direct form II implementation of the LTI sys-
tem with system function

H(z) = 1 − 7
6z−1 + 1

6z−2

1 + z−1 + 1
2 z−2

.

6.16. Consider the signal flow graph shown in Figure P6.16.

(a) Draw the signal flow graph that results from applying the transposition theorem to this
signal flow graph.

(b) Confirm that the transposed signal flow graph that you found in (a) has the same system
function H(z) as the original system in the figure.

z–1
x [n]

–2

z–1

3

2
1–

4
1

z–1

y[n]

Figure P6.16

Chapter 6 Problems 471

6.17. Consider the causal LTI system with system function

H(z) = 1 − 1
3
z−1 + 1

6
z−2 + z−3.

(a) Draw the signal flow graph for the direct form implementation of this system.
(b) Draw the signal flow graph for the transposed direct form implementation of the

system.

6.18. For some nonzero choices of the parameter a, the signal flow graph in Figure P6.18 can
be replaced by a 2nd-order direct form II signal flow graph implementing the same system
function. Give one such choice for a and the system function H(z) that results.

z–1
x [n]

4
3

3

1–
4z–1

4–
8
3

z–1

a

y [n]

Figure P6.18

6.19. Consider the causal LTI system with the system function

H(z) = 2 − 8
3z−1 − 2z−2(

1 − 1
3z−1
) (

1 + 2
3 z−1
) .

Draw a signal flow graph that implements this system as a parallel combination of 1st-order
transposed direct form II sections.

6.20. Draw a signal flow graph implementing the system function

H(z) = (1 + (1 − j/2)z−1)(1 + (1 + j/2)z−1)

(1 + (j/2)z−1)(1 − (j/2)z−1)(1 − (1/2)z−1)(1 − 2z−1)

as a cascade of 2nd-order transposed direct form II sections with real coefficients.

Basic Problems

6.21. For many applications, it is useful to have a system that will generate a sinusoidal sequence.
One possible way to do this is with a system whose impulse response is h[n] = ejω0nu[n].
The real and imaginary parts of h[n] are therefore hr [n] = (cos ω0n)u[n] and hi [n] =
(sin ω0n)u[n], respectively.

In implementing a system with a complex impulse response, the real and imaginary
parts are distinguished as separate outputs. By first writing the complex difference equation
required to produce the desired impulse response and then separating it into its real and
imaginary parts, draw a flow graph that will implement this system. The flow graph that
you draw should have only real coefficients. This implementation is sometimes called the
coupled form oscillator, since, when the input is excited by an impulse, the outputs are
sinusoidal.

472 Chapter 6 Structures for Discrete-Time Systems

6.22. For the system function

H(z) = 1 + 2z−1 + z−2

1 − 0.75z−1 + 0.125z−2
,

draw the flow graphs of all possible realizations for this system as cascades of 1st-order
systems.

6.23. We want to implement a causal system H(z) with the pole–zero diagram shown in Fig-
ure P6.23. For all parts of this problem, z1, z2, p1, and p2 are real, and a gain constant that
is independent of frequency can be absorbed into a gain coefficient in the output branch of
each flow graph.

z1 z2 p1 p2 Re

Im

Figure P6.23

(a) Draw the flow graph of the direct form II implementation. Determine an expression
for each of the branch gains in terms of the variables z1, z2, p1, and p2.

(b) Draw the flow graph of an implementation as a cascade of 2nd-order direct form II
sections. Determine an expression for each of the branch gains in terms of the variables
z1, z2, p1, and p2.

(c) Draw the flow graph of a parallel form implementation with 1st-order direct form II
sections. Specify a system of linear equations that can be solved to express the branch
gains in terms of the variables z1, z2, p1, and p2.

6.24. Consider a causal LTI system whose system function is

H(z) = 1 − 3
10 z−1 + 1

3z−2(
1 − 4

5 z−1 + 2
3 z−2
) (

1 + 1
5z−1
) =

1
2

1 − 4
5z−1 + 2

3 z−2
+

1
2

1 + 1
5z−1

(a) Draw the signal flow graphs for implementations of the system in each of the following
forms:

(i) Direct form I
(ii) Direct form II

(iii) Cascade form using 1st- and 2nd-order direct form II sections
(iv) Parallel form using 1st- and 2nd-order direct form I sections
(v) Transposed direct form II.

(b) Write the difference equations for the flow graph of part (v) in (a) and show that this
system has the correct system function.

Chapter 6 Problems 473

6.25. A causal LTI system is defined by the signal flow graph shown in Figure P6.25, which
represents the system as a cascade of a 2nd-order system with a 1st-order system.

2

z–1

0.4

z–1

0.3

z–1

x [n] y [n]

0.81

−0.8

Figure P6.25

(a) What is the system function of the overall cascade system?
(b) Is the overall system stable? Explain briefly.
(c) Is the overall system a minimum-phase system? Explain briefly.
(d) Draw the signal flow graph of a transposed direct form II implementation of this system.

6.26. A causal LTI system has system function given by the following expression:

H(z) = 1

1 − z−1
+ 1 − z−1

1 − z−1 + 0.8z−2
.

(a) Is this system stable? Explain briefly.
(b) Draw the signal flow graph of a parallel form implementation of this system.
(c) Draw the signal flow graph of a cascade form implementation of this system as a

cascade of a 1st-order system and a 2nd-order system. Use a transposed direct form II
implementation for the 2nd-order system.

6.27. An LTI system with system function

H(z) = 0.2(1 + z−1)6(
1 − 2z−1 + 7

8z−2
) (

1 + z−1 + 1
2 z−2
) (

1 − 1
2 z−1 + z−2

)
is to be implemented using a flow graph of the form shown in Figure P6.27.

z–1

z–1

x [n]
z–1

z–1

z–1

z–1

z–1

z–1

y [n]

Figure P6.27

474 Chapter 6 Structures for Discrete-Time Systems

(a) Fill in all the coefficients in the diagram of Figure P6.27. Is your solution unique?
(b) Define appropriate node variables in Figure P6.27, and write the set of difference

equations that is represented by the flow graph.

6.28. (a) Determine the system function, H(z), from x[n] to y[n] for the flow graph shown in
Figure P6.28-1 (note that the location where the diagonal lines criss-cross is not a single
node).

z–1

z–1

x[n] −1 −4/5

−1/4

y[n]

Figure P6.28-1

(b) Draw the direct form (I and II) flow graph of systems having the system function H(z).
(c) Design H1(z) such that H2(z) in Figure P6.28-2 has a causal stable inverse and

|H2(ejω)| = |H(ejω)|. Note: Zero-pole cancellation is permitted.

x[n] y[n]
H(z) H1(z)

H2(z) Figure P6.28-2

(d) Draw the transposed direct form II flow graph for H2(z).

6.29. (a) Determine the system function H(z) relating the input x[n] to the output y[n] for the
FIR lattice filter depicted in Figure P6.29.

z–1 z–1 z–1

–

–

–

–

x [n] y[n]

1
4

3
5

1
4

3
5

2
3

2
3

Figure P6.29

(b) Draw the lattice filter structure for the all-pole filter 1/H(z).

Chapter 6 Problems 475

6.30. Determine and draw the lattice filter implementation of the following causal all-pole system
function:

H(z) = 1

1 + 3
2 z−1 − z−2 + 3

4 z−3 + 2z−4

Is the system stable?

6.31. An IIR lattice filter is shown in Figure P6.31.

z–1 z–1

1

–1

x [n] y[n]

–

–

1
2

1
2

Figure P6.31

(a) By tracing the path of an impulse through the flowgraph, determine y[1] for input
x[n] = δ[n].

(b) Determine a flow graph for the corresponding inverse filter.
(c) Determine the transfer function for the IIR filter in Figure P6.31.

6.32. The flow graph shown in Figure P6.32 is an implementation of a causal, LTI system.

z–1

z–1

y [n]x [n]
–1/2

1/2

2

2 Figure P6.32

(a) Draw the transpose of the signal flow graph.
(b) For either the original system or its transpose, determine the difference equation relat-

ing the input x[n] to the output y[n]. (Note: The difference equations will be the same
for both structures.)

(c) Is the system BIBO stable?
(d) Determine y[2] if x[n] = (1/2)nu[n].

476 Chapter 6 Structures for Discrete-Time Systems

Advanced Problems

6.33. Consider the LTI system represented by the FIR lattice structure in Figure P6.33-1.

z–1 z–1 z–1

–3

–3

–2

–2

x [n] y[n]

v[n]

1
2

1
2

Figure P6.33-1

(a) Determine the system function from the input x[n] to the output v[n] (NOT y[n]).
(b) Let H(z) be the system function from the input x[n] to the output y[n], and let g[n]

be the result of expanding the associated impulse response h[n] by 2 as shown in
Figure P6.33-2.

h[n]
2

g[n]

Figure P6.33-2

The impulse response g[n] defines a new system with system function G(z). We would
like to implement G(z) using an FIR lattice structure. Determine the k-parameters
necessary for an FIR lattice implementation of G(z). Note: You should think carefully
before diving into a long calculation.

6.34. Figure P6.34-1 shows an impulse response h[n], specified as

h[n] =
{(

1
2

)n/4
u[n], for n an integer multiple of 4

constant in between as indicated
.

h[n]

n0 4 8

1

1/2
1/4 ...

Figure P6.34-1

(a) Determine a choice for h1[n] and h2[n] such that

h[n] = h1[n] ∗ h2[n],
where h1[n] is an FIR filter and where h2[n] = 0 for n/4 not an integer. Is h2[n] an FIR
or IIR filter?

Chapter 6 Problems 477

(b) The impulse response h[n] is to be used in a downsampling system as indicated in
Figure P6.34-2.

x[n]
h[n] 4

y[n]

Figure P6.34-2

Draw a flow graph implementation of the system in Figure P6.34-2 that requires the
minimum number of nonzero and nonunity coefficient multipliers. You may use unit
delay elements, coefficient multipliers, adders and compressors. (Multiplication by a
zero or a one does not require a multiplier.)

(c) For your system, state how many multiplications per input sample and per output
sample are required, giving a brief explanation.

6.35. Consider the system shown in Figure P6.35-1.

x[n]
h[n] 4

y[n]

Figure P6.35-1

We want to implement this system using the polyphase structure shown in Figure P6.35-2.

x[n]

y[n]

e0[n]

e1[n]

e2[n]

e3[n]4

4

4

4

z–1

z–1

z–1

Figure P6.35-2 Polyphase structure of the system.

For parts (a) and (b) only, assume h[n] is defined in Figure P6.35-3

1/ 21/ 21/ 21/ 21/ 2

1/ 41/ 41/ 4

1/ 81/ 81/ 81/ 8

h[n]

n0 1 2 3 4 5 6 7 8 9 10 11 ••• Figure P6.35-3

(h[n] = 0 for all n < 0 and n ≥ 12).

478 Chapter 6 Structures for Discrete-Time Systems

(a) Give the sequences e0[n], e1[n], e2[n], and e3[n] that result in a correct implementation.
(b) We want to minimize the total number of multiplies per output sample for the imple-

mentation of the structure in Figure P6.35-2. Using the appropriate choice of e0[n],
e1[n], e2[n], and e3[n] from part (a), determine the minimum number of multiplies
per output sample for the overall system. Also, determine the minimum number of
multiplies per input sample for the overall system. Explain.

(c) Instead of using the sequences e0[n], e1[n], e2[n], and e3[n] identified in part (a), now
assume that E0(ejω) and E2(ejω) the DTFTs of e0[n] and e2[n], respectively, are as
given in Figure P6.35-4, and E1(ejω) = E3(ejω) = 0.

E0(e j�)

�c−�c

�
0

1

E2(e j�) =
�

r = −�
�(� + 2�r)

Figure P6.35-4

Sketch and label H(ejω) from (−π, π).

6.36. Consider a general flow graph (denoted Network A) consisting of coefficient multipliers
and delay elements, as shown in Figure P6.36-1. If the system is initially at rest, its behavior
is completely specified by its impulse response h[n]. We wish to modify the system to create
a new flow graph (denoted Network A 1) with impulse response h1[n] = (−1)nh[n].

z–1

ak

x [n] y [n]

Network A Figure P6.36-1

(a) If H(ejω) is as given in Figure P6.36-2, sketch H 1(ejω).

1

2
– �–�

2
� � �

H(e j�)

Figure P6.36-2

(b) Explain how to modify Network A by simple modifications of its coefficient multipliers
and/or the delay branches to form the new Network A 1 whose impulse response is
h1[n].

Chapter 6 Problems 479

(c) If Network A is as given in Figure P6.36-3, show how to modify it by simple modifica-
tions to only the coefficient multipliers so that the resulting Network A 1 has impulse
response h1[n].

1

2

z–1

z–1

x [n] y [n]

2

z–1

1

–2

–1

–1

–2

z–1

Figure P6.36-3

6.37. The flow graph shown in Figure P6.37 is noncomputable; i.e., it is not possible to compute
the output using the difference equations represented by the flow graph because it contains
a closed loop having no delay elements.

a

b

–1a

z–1

x [n] y [n]

Figure P6.37

(a) Write the difference equations for the system of Figure P6.37, and from them, find the
system function of the flow graph.

(b) From the system function, obtain a flow graph that is computable.

6.38. The impulse response of an LTI system is

h[n] =
{

an, 0 ≤ n ≤ 7,

0, otherwise.

(a) Draw the flow graph of a direct form nonrecursive implementation of the system.
(b) Show that the corresponding system function can be expressed as

H(z) = 1 − a8z−8

1 − az−1
, |z| > |a|.

(c) Draw the flow graph of an implementation of H(z), as expressed in part (b), corre-
sponding to a cascade of an FIR system (numerator) with an IIR system (denominator).

(d) Is the implementation in part (c) recursive or nonrecursive? Is the overall system FIR
or IIR?

480 Chapter 6 Structures for Discrete-Time Systems

(e) Which implementation of the system requires

(i) the most storage (delay elements)?
(ii) the most arithmetic (multiplications and additions per output sample)?

6.39. Consider an FIR system whose impulse response is

h[n] =
{

1
15 (1 + cos[(2π/15)(n − n0)]), 0 ≤ n ≤ 14,

0, otherwise.

This system is an example of a class of filters known as frequency-sampling filters. Prob-
lem 6.51 discusses these filters in detail. In this problem, we consider just one specific case.

(a) Sketch the impulse response of the system for the cases n0 = 0 and n0 = 15/2.
(b) Show that the system function of the system can be expressed as

H(z) = (1 − z−15) · 1
15

[
1

1 − z−1
+

1
2 e−j2πn0/15

1 − ej2π/15z−1
+

1
2 ej2πn0/15

1 − e−j2π/15z−1

]
.

(c) Show that if n0 = 15/2, the frequency response of the system can be expressed as

H(ejω) = 1
15

e−jω7
{

sin(ω15/2)

sin(ω/2)
+ 1

2
sin[(ω − 2π/15)15/2]
sin[(ω − 2π/15)/2]

1
2

sin[(ω + 2π/15)15/2]
sin[(ω + 2π/15)/2]

}
.

Use this expression to sketch the magnitude of the frequency response of the system
for n0 = 15/2. Obtain a similar expression for n0 = 0. Sketch the magnitude response
for n0 = 0. For which choices of n0 does the system have a generalized linear phase?

(d) Draw a signal flow graph of an implementation of the system as a cascade of an FIR sys-
tem whose system function is 1−z−15 and a parallel combination of a 1st- and 2nd-order
IIR system.

6.40. Consider the discrete-time system depicted in Figure P6.40-1.

1 –1

x [n] y1[n]

z–1

G 1 + r

1 – r

–r r

z–1

Figure P6.40-1

(a) Write the set of difference equations represented by the flow graph of Figure P6.40-1.
(b) Determine the system function H 1(z) = Y1(z)/X (z) of the system in Figure P6.40-1,

and determine the magnitudes and angles of the poles of H 1(z) as a function of r for
−1 < r < 1.

(c) Figure P6.40-2 shows a different flow graph obtained from the flow graph of Fig-
ure P6.40-1 by moving the delay elements to the opposite top branch. How is the
system function H 2(z) = Y2(z)/X (z) related to H 1(z)?

1 –1

x [n] y2[n]

G 1 + r

1 – r

–r r

z–1 z–1

Figure P6.40-2

Chapter 6 Problems 481

6.41. The three flow graphs in Figure P6.41 are all equivalent implementations of the same two-
input, two-output LTI system.

y1[n]

x2[n]

x1[n]

y2[n]

1 + r

1 – r

–r r
y1[n]

x2[n]

Network B

(b)

Network A

(a)

x1[n]

y2[n]

a

b

c d

y1[n]

x2[n]

Network C

(c)

x1[n]

y2[n]

e

f

Figure P6.41

(a) Write the difference equations for Network A.
(b) Determine values of a, b, c, and d for Network B in terms of r in Network A such that

the two systems are equivalent.
(c) Determine values of e and f for Network C in terms of r in Network A such that the

two systems are equivalent.
(d) Why might Network B or C be preferred over Network A? What possible advantage

could Network A have over Network B or C?

6.42. Consider an all-pass system with system function

H(z) = −0.54
1 − (1/0.54)z−1

1 − 0.54z−1
.

A flow graph for an implementation of this system is shown in Figure P6.42.

z–1

d

b

x [n] y [n]

c

Figure P6.42

(a) Determine the coefficients b, c, and d such that the flow graph in Figure P6.42 is a
direct realization of H(z).

(b) In a practical implementation of the network in Figure P6.42, the coefficients b, c, and
d might be quantized by rounding the exact value to the nearest tenth (e.g., 0.54 will
be rounded to 0.5 and 1/0.54 = 1.8518 . . . will be rounded to 1.9). Would the resulting
system still be an all-pass system?

482 Chapter 6 Structures for Discrete-Time Systems

(c) Show that the difference equation relating the input and output of the all-pass system
with system function H(z) can be expressed as

y[n] = 0.54(y[n − 1] − x[n]) + x[n − 1].
Draw the flow graph of a network that implements this difference equation with two
delay elements, but only one multiplication by a constant other than ±1.

(d) With quantized coefficients, would the flow graph of part (c) be an all-pass system?

The primary disadvantage of the implementation in part (c) compared with the im-
plementation in part (a) is that it requires two delay elements. However, for higher-order
systems, it is necessary to implement a cascade of all-pass systems. For N all-pass sections
in cascade, it is possible to use all-pass sections in the form determined in part (c) while
requiring only (N + 1) delay elements. This is accomplished by sharing a delay element
between sections.

(e) Consider the all-pass system with system function

H(z) =
(

z−1 − a

1 − az−1

)(
z−1 − b

1 − bz−1

)
.

Draw the flow graph of a “cascade” realization composed of two sections of the form
obtained in part (c) with one delay element shared between the sections. The resulting
flow graph should have only three delay elements.

(f) With quantized coefficients a and b, would the flow graph in part (e) be an all-pass
system?

6.43. All branches of the signal flow graphs in this problem have unity gain unless specifically
indicated otherwise.

z–1 z–1 z–1

x [n]

y [n]

–1

–1

2

Figure P6.43-1

(a) The signal flow graph of System A, shown in Figure P6.43-1, represents a causal LTI sys-
tem. Is it possible to implement the same input–output relationship using fewer delays?
If it is possible, what is the minimum number of delays required to implement an equiv-
alent system? If it is not possible, explain why not.

(b) Does the System B shown in Figure P6.43-2 represent the same input–output relation-
ship as System A in Figure P6.43-1? Explain clearly.

z–1 z–1 z–1

x [n] y [n]

–1
–1

2

Figure P6.43-2

6.44. Consider an all-pass system whose system function is

H(z) = z−1 − 1
3

1 − 1
3z−1

.

Chapter 6 Problems 483

(a) Draw the direct form I signal flow graph for the system. How many delays and multi-
pliers do you need? (Do not count multiplying by ±1.)

(b) Draw a signal flow graph for the system that uses one multiplier. Minimize the number
of delays.

(c) Now consider another all-pass system whose system function is

H(z) = (z−1 − 1
3)(z−1 − 2)

(1 − 1
3z−1)(1 − 2z−1)

.

Determine and draw a signal flow graph for the system with two multipliers and three
delays.

6.45. With infinite-precision arithmetic, the flow graphs shown in Figure P6.45 have the same
system function, but with quantized fixed-point arithmetic they behave differently. Assume
that a and b are real numbers and 0 < a < 1.

z–1

x [n] y[n]b

a

z–1

x [n] y[n]b

a Figure P6.45

(a) Determine xmax , the maximum amplitude of the input samples so that the maximum
value of the output y[n] of either of the two systems is guaranteed to be less than one.

(b) Assume that the above systems are implemented with two’s-complement fixed-point
arithmetic, and that in both cases all products are immediately rounded to B + 1 bits
(before any additions are done). Insert round-off noise sources at appropriate locations
in the above diagrams to model the rounding error. Assume that each of the noise
sources inserted has average power equal to σ 2

B
= 2−2B/12.

(c) If the products are rounded as described in part (b), the outputs of the two systems
will differ; i.e., the output of the first system will be y1[n] = y[n] + f1[n] and the
output of the second system will be y2[n] = y[n] + f2[n], where f1[n] and f2[n] are
the outputs due to the noise sources. Determine the power density spectra �f1f1(e

jω)

and �f2f2 (e
jω) of the output noise for both systems.

(d) Determine the total noise powers σ 2
f1

and σ 2
f2

at the output for both systems.

6.46. An allpass system is to be implemented with fixed-point arithmetic. Its system function is

H(z) = (z−1 − a∗)(z−1 − a)

(1 − az−1)(1 − a∗z−1)

where a = rejθ .

(a) Draw the signal flow graphs for both the direct form I and direct form II implementa-
tions of this system as a 2nd-order system using only real coefficients.

484 Chapter 6 Structures for Discrete-Time Systems

(b) Assuming that the products are each rounded before additions are performed, insert
appropriate noise sources into the networks drawn in part (a), combining noise sources
where possible, and indicating the power of each noise source in terms of σ 2

B
, the power

of a single rounding noise source.
(c) Circle the nodes in your network diagrams where overflow may occur.
(d) Specify whether or not the output noise power of the direct form II system is inde-

pendent of r , while the output noise power for the direct form I system increases as
r → 1. Give a convincing argument to support your answer. Try to answer the question
without computing the output noise power of either system. Of course, such a compu-
tation would answer the question, but you should be able to see the answer without
computing the noise power.

(e) Now determine the output noise power for both systems.

6.47. Assume that a in the flow graphs shown in Figure P6.47 is a real number and 0 < a < 1.
Note that under infinite-precision arithmetic, the two systems are equivalent.

x [n]

z–1z–1

y[n]

a

Flow Graph #1

x [n]

z–1

y[n]

z–1

a

Flow Graph #2 Figure P6.47

(a) Assume that the two systems are implemented with two’s-complement fixed-point
arithmetic, and that in both cases all products are immediately rounded (before any
additions are done). Insert round-off noise sources at appropriate locations in both
flow graphs to model the rounding error (multiplications by unity do not introduce
noise). Assume that each of the noise sources inserted has average power equal to
σ 2
B

= 2−2B/12.
(b) If the products are rounded as described in part (a), the outputs of the two systems will

differ; i.e., the output of the first system will be y1[n] = y[n] + f1[n] and the output of
the second system will be y2[n] = y[n] + f2[n], where y[n] is the output owing to x[n]
acting alone, and f1[n] and f2[n] are the outputs owing to the noise sources. Determine
the power density spectrum of the output noise �f1f1(e

jω). Also determine the total
noise power of the output of flow graph #1; i.e., determine σ 2

f1
.

(c) Without actually computing the output noise power for flow graph #2, you should be
able to determine which system has the largest total noise power at the output. Give a
brief explanation of your answer.

Chapter 6 Problems 485

6.48. Consider the parallel form flow graph shown in Figure P6.48

z–1

y[n]

z–1

x[n] 0.8

0.5

0.75

−0.9
Figure P6.48

(a) Assume that the system is implemented with two’s-complement fixed-point arithmetic,
and that all products (multiplications by 1 do not introduce noise) are immediately
rounded (before any additions are done). Insert round-off noise sources at appropriate
locations in the flow graph to model the rounding error. Indicate the size (average
power) of each noise source in terms of σ 2

B
, the average power of one (B + 1)-bit

rounding operation.
(b) If the products are rounded as described in part (a), the output can be represented as

ŷ[n] = y[n] + f [n] where y[n] is the output owing to x[n] acting alone, and f [n] is the
total output due to all the noise sources acting independently. Determine the power
density spectrum of the output noise �ff (ejω).

(c) Also determine the total noise power σ 2
f

of the noise component of the output.

6.49. Consider the system shown in Figure P6.49, which consists of a 16-bit A/D converter whose
output is the input to an FIR digital filter that is implemented with 16-bit fixed-point arith-
metic.

x[n]xc(t)

T

y[n]Ideal
C/D

Converter

16-Bit A/D Converter

16-Bit
Quantizer

x[n] LTI
System

h[n], H(e j�)

Figure P6.49

486 Chapter 6 Structures for Discrete-Time Systems

The impulse response of the digital filter is

h[n] = −.375δ[n] + .75δ[n − 1] − .375δ[n − 2].
This system is implemented with 16-bit two’s-complement arithmetic. The products are
rounded to 16-bits before they are accumulated to produce the output. In anticipation of
using the linear noise model to analyze this system, we define x̂[n] = x[n] + e[n] and
ŷ[n] = y[n] + f [n], where e[n] is the quantization error introduced by the A/D converter
and f [n] is the total quantization noise at the output of the filter.

(a) Determine the maximum magnitude of x̂[n] such that no overflow can possibly occur
in implementing the digital filter; i.e., determine xmax such that ŷ[n] < 1 for all −∞ <

n < ∞ when x̂[n] < xmax for all −∞ < n < ∞.
(b) Draw the linear noise model for the complete system (including the linear noise model

of the A/D). Include a detailed flow-graph for the digital filter including all noise
sources due to quantization.

(c) Determine the total noise power at the output. Denote this σ 2
f

.
(d) Determine the power spectrum of the noise at the output of the filter; i.e., determine

�ff (ejω). Plot your result.

Extension Problems

6.50. In this problem, we consider the implementation of a causal filter with system function

H(z) = 1

(1 − .63z−1)(1 − .83z−1)
= 1

1 − 1.46z−1 + 0.5229z−2

This system is to be implemented with (B + 1)-bit two’s-complement rounding arithmetic
with products rounded before additions are performed. The input to the system is a zero-
mean, white, wide-sense stationary random process, with values uniformly distributed be-
tween −xmax and +xmax.

(a) Draw the direct form flow graph implementation for the filter, with all coefficient
multipliers rounded to the nearest tenth.

(b) Draw a flow graph implementation of this system as a cascade of two 1st-order systems,
with all coefficient multipliers rounded to the nearest tenth.

(c) Only one of the implementations from parts (a) and (b) above is usable. Which one?
Explain.

(d) To prevent overflow at the output node, we must carefully choose the parameter xmax.
For the implementation selected in part (c), determine a value for xmax that guarantees
the output will stay between -1 and 1. (Ignore any potential overflow at nodes other
than the output.)

(e) Redraw the flow graph selected in part (c), this time including linearized noise models
representing quantization round-off error.

(f) Whether you chose the direct form or cascade implementation for part (c), there is
still at least one more design alternative:

(i) If you chose the direct form, you could also use a transposed direct form.
(ii) If you chose the cascade form, you could implement the smaller pole first or the

larger pole first.

For the system chosen in part (c), which alternative (if any) has lower output quan-
tization noise power? Note you do not need to explicitly calculate the total output
quantization noise power, but you must justify your answer with some analysis.

Chapter 6 Problems 487

6.51. In this problem, we will develop some of the properties of a class of discrete-time systems
called frequency-sampling filters. This class of filters has system functions of the form

H(z) = (1 − z−N) ·
N−1∑
k=0

H̃ [k]/N
1 − zkz

−1
,

where zk = ej (2π/N)k for k = 0, 1, . . . , N − 1.

(a) System functions such as H(z) can be implemented as a cascade of an FIR system whose
system function is (1−z−N) with a parallel combination of 1st-order IIR systems. Draw
the signal flow graph of such an implementation.

(b) Show that H(z) is an (N − 1)st-degree polynomial in z−1. To do this, it is necessary to
show that H(z) has no poles other than z = 0 and that it has no powers of z−1 higher
than (N −1). What do these conditions imply about the length of the impulse response
of the system?

(c) Show that the impulse response is given by the expression

h[n] =
⎛⎝ 1

N

N−1∑
k=0

H̃ [k]ej (2π/N)kn

⎞⎠ (u[n] − u[n − N]).

Hint: Determine the impulse responses of the FIR and the IIR parts of the system,
and convolve them to find the overall impulse response.

(d) Use l’Hôpital’s rule to show that

H(zm) = H(ej (2π/N)m) = H̃ [m], m = 0, 1, . . . , N − 1;
i.e., show that the constants H̃ [m] are samples of the frequency response of the system,
H(ejω), at equally spaced frequencies ωm = (2π/N)m for m = 0, 1, . . . , N − 1. It is
this property that accounts for the name of this class of FIR systems.

(e) In general, both the poles zk of the IIR part and the samples of the frequency response
H̃ [k] will be complex. However, if h[n] is real, we can find an implementation involving
only real quantities. Specifically, show that if h[n] is real and N is an even integer, then
H(z) can be expressed as

H(z) = (1 − z−N)

{
H(1)/N

1 − z−1
+ H(−1)/N

1 + z−1

+
(N/2)−1∑

k=1

2|H(ej (2π/N)k)|
N

· cos[θ(2πk/N)] − z−1 cos[θ(2πk/N) − 2πk/N]
1 − 2 cos(2πk/N)z−1 + z−2

⎫⎬⎭ ,

where H(ejω) = |H(ejω)|ejθ(ω). Draw the signal flow graph representation of such a
system when N = 16 and H(ejωk) = 0 for k = 3, 4, . . . , 14.

6.52. In Chapter 4, we showed that, in general, the sampling rate of a discrete-time signal can
be reduced by a combination of linear filtering and time compression. Figure P6.52 shows
a block diagram of an M-to-1 decimator that can be used to reduce the sampling rate by
an integer factor M . According to the model, the linear filter operates at the high sampling
rate. However, if M is large, most of the output samples of the filter will be discarded by
the compressor. In some cases, more efficient implementations are possible.

x [n] w [n] y [n] = w [Mn]
M

H(z)
h [n] Figure P6.52

488 Chapter 6 Structures for Discrete-Time Systems

(a) Assume that the filter is an FIR system with impulse response such that h[n] = 0 for
n < 0 and for n > 10. Draw the system in Figure P6.52, but replace the filter h[n]
with an equivalent signal flow graph based on the given information. Note that it is not
possible to implement the M-to-1 compressor using a signal flow graph, so you must
leave this as a box, as shown in Figure P6.52.

(b) Note that some of the branch operations can be commuted with the compression
operation. Using this fact, draw the flow graph of a more efficient realization of the
system of part (a). By what factor has the total number of computations required in
obtaining the output y[n] been decreased?

(c) Now suppose that the filter in Figure P6.52 has system function

H(z) = 1

1 − 1
2 z−1

, |z| > 1
2 .

Draw the flow graph of the direct form realization of the complete system in the figure.
With this system for the linear filter, can the total computation per output sample be
reduced? If so, by what factor?

(d) Finally, suppose that the filter in Figure P6.52 has system function

H(z) = 1 + 7
8z−1

1 − 1
2 z−1

, |z| > 1
2 .

Draw the flow graph for the complete system of the figure, using each of the following
forms for the linear filter:

(i) direct form I
(ii) direct form II

(iii) transposed direct form I
(iv) transposed direct form II.

For which of the four forms can the system of Figure P6.52 be more efficiently imple-
mented by commuting operations with the compressor?

6.53. Speech production can be modeled by a linear system representing the vocal cavity, which is
excited by puffs of air released through the vibrating vocal cords. One approach to synthe-
sizing speech involves representing the vocal cavity as a connection of cylindrical acoustic
tubes of equal length, but with varying cross-sectional areas, as depicted in Figure P6.53.
Let us assume that we want to simulate this system in terms of the volume velocity repre-
senting airflow. The input is coupled into the vocal tract through a small constriction, the
vocal cords. We will assume that the input is represented by a change in volume velocity
at the left end, but that the boundary condition for traveling waves at the left end is that
the net volume velocity must be zero. This is analogous to an electrical transmission line
driven by a current source at one end and with an open circuit at the far end. Current in the
transmission line is then analogous to volume velocity in the acoustic tube, whereas voltage
is analogous to acoustic pressure. The output of the acoustic tube is the volume velocity at
the right end. We assume that each section is a lossless acoustic transmission line.

A1 A2 A3 A4

Figure P6.53

Chapter 6 Problems 489

At each interface between sections, a forward-traveling wave f + is transmitted to the next
section with one coefficient and reflected as a backward-traveling wave f − with a different
coefficient. Similarly, a backward-traveling wave f − arriving at an interface is transmitted
with one coefficient and reflected with a different coefficient. Specifically, if we consider a
forward-traveling wave f + in a tube with cross-sectional area A 1 arriving at the interface
with a tube of cross-sectional area A 2, then the forward-traveling wave transmitted is
(1 + r)f + and the reflected wave is rf +, where

r = A 2 − A 1
A 2 + A 1

.

Consider the length of each section to be 3.4 cm, with the velocity of sound in air equal to
34,000 cm/s. Draw a flow graph that will implement the four-section model in Figure P6.53,
with the output sampled at 20,000 samples/s.

In spite of the lengthy introduction, this a reasonably straightforward problem. If
you find it difficult to think in terms of acoustic tubes, think in terms of transmission-line
sections with different characteristic impedances. Just as with transmission lines, it is difficult
to express the impulse response in closed form. Therefore, draw the flow graph directly from
physical considerations, in terms of forward- and backward-traveling pulses in each section.

6.54. In modeling the effects of round-off and truncation in digital filter implementations, quan-
tized variables are represented as

x̂[n] = Q[x[n]] = x[n] + e[n],
where Q[·] denotes either rounding or truncation to (B +1) bits and e[n] is the quantization
error. We assume that the quantization noise sequence is a stationary white-noise sequence
such that

E{(e[n] − me)(e[n + m] − me)} = σ 2
e δ[m]

and that the amplitudes of the noise sequence values are uniformly distributed over the
quantization step 	 = 2−B . The 1st-order probability densities for rounding and truncation
are shown in Figures P6.54(a) and (b), respectively.

2

(a) (b)

�

p(e)

e

1
�

2
�–

p(e)

e

1
�

–�

Figure P6.54

(a) Determine the mean me and the variance σ 2
e for the noise owing to rounding.

(b) Determine the mean me and the variance σ 2
e for the noise owing to truncation.

6.55. Consider an LTI system with two inputs, as depicted in Figure P6.55. Let h1[n] and h2[n] be
the impulse responses from nodes 1 and 2, respectively, to the output, node 3. Show that if
x1[n] and x2[n] are uncorrelated, then their corresponding outputs y1[n] and y2[n] are also
uncorrelated.

490 Chapter 6 Structures for Discrete-Time Systems

x1[n]

x2[n]

Network
1

3

2

y [n] = y1[n] + y2[n]

Figure P6.55

6.56. The flow graphs in Figure P6.56 all have the same system function. Assume that the systems
in the figure are implemented using (B + 1)-bit fixed-point arithmetic in all the compu-
tations. Assume also that all products are rounded to (B + 1) bits before additions are
performed.

y [n]
z–1

b1a

b0

b0

x[n]

(a)

(c)

y [n]
z–1

b1 a

b1 a

b0

x [n]

(b)

z–1z–1
x [n] y [n]

Figure P6.56

(a) Draw linear-noise models for each of the systems in Figure P6.56.
(b) Two of the flow graphs in Figure P6.56 have the same total output noise power owing to

arithmetic round-off. Without explicitly computing the output noise power, determine
which two have the same output noise power.

(c) Determine the output noise power for each of the flow graphs in Figure P6.56. Express
your answer in terms of σ 2

B
, the power of a single source of round-off noise.

6.57. The flow graph of a 1st-order system is shown in Figure P6.57.

y[n]
z–1

x [n]

1
4 Figure P6.57

(a) Assuming infinite-precision arithmetic, find the response of the system to the input

x[n] =
{ 1

2 , n ≥ 0,

0, n < 0.

What is the response of the system for large n?

Chapter 6 Problems 491

Now suppose that the system is implemented with fixed-point arithmetic. The coef-
ficient and all variables in the flow graph are represented in sign-and-magnitude notation
with 5-bit registers. That is, all numbers are to be considered signed fractions represented
as

b0b1b2b3b4,

where b0, b1, b2, b3, and b4 are either 0 or 1 and

|Register value| = b12−1 + b22−2 + b32−3 + b42−4.

If b0 = 0, the fraction is positive, and if b0 = 1, the fraction is negative. The result of a
multiplication of a sequence value by a coefficient is truncated before additions occur; i.e.,
only the sign bit and the most significant four bits are retained.

(b) Compute the response of the quantized system to the input of part (a), and plot the
responses of both the quantized and unquantized systems for 0 ≤ n ≤ 5. How do the
responses compare for large n?

(c) Now consider the system depicted in Figure P6.57, where

x[n] =
{ 1

2 (−1) n, n ≥ 0,

0, n < 0.

Repeat parts (a) and (b) for this system and input.

y [n]
z–1

x [n]

1
4 Figure P6.57

6.58. A causal LTI system has a system function

H(z) = 1

1 − 1.04z−1 + 0.98z−2
.

(a) Is this system stable?
(b) If the coefficients are rounded to the nearest tenth, would the resulting system be

stable?

6.59. When implemented with infinite-precision arithmetic, the flow graphs in Figure P6.59 have
the same system function.

z–1z–8
x [n] y [n]

a7

–a8

a6a5a4a3a2a

a

1

z–1 z–1 z–1 z–1 z–1 z–1 z–1

x [n]

Network 2

Network 1

y [n]

Figure P6.59

492 Chapter 6 Structures for Discrete-Time Systems

(a) Show that the two systems have the same overall system function from input x[n] to
output y[n].

(b) Assume that the preceding systems are implemented with two’s complement fixed-
point arithmetic and that products are rounded before additions are performed. Draw
signal flow graphs that insert round-off noise sources at appropriate locations in the
signal flow graphs of Figure P6.59.

(c) Circle the nodes in your figure from part (b) where overflow can occur.
(d) Determine the maximum size of the input samples such that overflow cannot occur in

either of the two systems.
(e) Assume that |a| < 1. Determine the total noise power at the output of each system,

and determine the maximum value of |a| such that Network 1 has lower output noise
power than Network 2.

7

Filter Design

Techniques

7.0 INTRODUCTION

Filters are a particularly important class of LTI systems. Strictly speaking, the term
frequency-selective filter suggests a system that passes certain frequency components of
an input signal and totally rejects all others, but in a broader context, any system that
modifies certain frequencies relative to others is also called a filter. While the primary
emphasis in this chapter is on the design of frequency-selective filters, some of the
techniques are more broadly applicable. We concentrate on the design of causal filters,
although in many contexts, filters need not be restricted to causal designs. Very often,
noncausal filters are designed and implemented by modifying causal designs.

The design of discrete-time filters corresponds to determining the parameters of a
transfer function or difference equation that approximates a desired impulse response or
frequency response within specified tolerances. As discussed in Chapter 2, discrete-time
systems implemented with difference equations fall into two basic categories: infinite
impulse response (IIR) systems and finite impulse response (FIR) systems. Designing
IIR filters implies obtaining an approximating transfer function that is a rational function
of z, whereas designing FIR filters implies polynomial approximation. The commonly
used design techniques for these two classes take different forms. When discrete-time
filters first came into common use, their designs were based on mapping well-formulated
and well-understood continuous-time filter designs to discrete-time designs through
techniques such as impulse invariance and the bilinear transformation, as we will discuss
in Sections 7.2.1 and 7.2.2. These always resulted in IIR filters and remain at the core
of the design of frequency selective discrete-time IIR filters. In contrast, since there
is not a body of FIR design techniques in continuous time that could be adapted to

493

494 Chapter 7 Filter Design Techniques

the discrete-time case, design techniques for that class of filters emerged only after they
became important in practical systems. The most prevalent approaches to designing FIR
filters are the use of windowing, as we will discuss in Section 7.5 and the class of iterative
algorithms discussed in Section 7.7 and collectively referred to as the Parks–McClellan
algorithm.

The design of filters involves the following stages: the specification of the desired
properties of the system, the approximation of the specifications using a causal discrete-
time system, and the realization of the system. Although these three steps are certainly
not independent, we focus our attention primarily on the second step, the first being
highly dependent on the application and the third dependent on the technology to be
used for the implementation. In a practical setting, the desired filter is generally im-
plemented with digital hardware and often used to filter a signal that is derived from a
continuous-time signal by means of periodic sampling followed by A/D conversion. For
this reason, it has become common to refer to discrete-time filters as digital filters, even
though the underlying design techniques most often relate only to the discrete-time
nature of the signals and systems. The issues associated with quantization of filter coef-
ficients and signals inherent in digital representations is handled separately, as already
discussed in Chapter 6.

In this chapter, we will discuss a wide range of methods for designing both IIR
and FIR filters. In any practical context, there are a variety of trade offs between these
two classes of filters, and many factors that need to be considered in choosing a specific
design procedure or class of filters. Our goal in this chapter is to discuss and illustrate
some of the most widely used design techniques and to suggest some of the trade offs
involved. The projects and problems on the companion website provide an opportunity
to explore in more depth the characteristics of the various filter types and classes and
the associated issues and trade offs.

7.1 FILTER SPECIFICATIONS

In our discussion of filter design techniques, we will focus primarily on frequency-
selective lowpass filters, although many of the techniques and examples generalize to
other types of filters. Furthermore, as discussed in Section 7.4, lowpass filter designs are
easily transformed into other types of frequency-selective filters.

Figure 7.1 depicts the typical representation of the tolerance limits associated with
approximating a discrete-time lowpass filter that ideally has unity gain in the passband
and zero gain in the stopband. We refer to a plot such as Figure 7.1 as a “tolerance
scheme.”

Since the approximation cannot have an abrupt transition from passband to stop-
band, a transition region from the passband edge frequency ωp to the beginning of the
stopband at ωs is allowed, in which the filter gain is unconstrained.

Depending somewhat on the application, and the historical basis for the design
technique, the passband tolerance limits may vary symmetrically around unity gain in
which case δp1 = δp2 , or the passband may be constrained to have maximum gain of
unity, in which case δp1 = 0.

Section 7.1 Filter Specifications 495

|H(e j�)|

TransitionPassband Stopband

�p �s � �0

1 + �p1

�s

1 − �p2

Figure 7.1 Lowpass filter tolerance
scheme.

Many of the filters used in practice are specified by a tolerance scheme similar
to that which is presented below in Example 7.1, with no constraints on the phase
response other than those imposed implicitly by requirements of stability and causality.
For example, the poles of the system function for a causal and stable IIR filter must lie
inside the unit circle. In designing FIR filters, we often impose the constraint of linear
phase. This removes the phase of the signal from consideration in the design process.

Example 7.1 Determining Specifications for a Discrete-Time
Filter

Consider a discrete-time lowpass filter that is to be used to filter a continuous-time
signal using the basic configuration of Figure 7.2. As shown in Section 4.4, if an LTI
discrete-time system is used as in Figure 7.2, and if the input is bandlimited and the
sampling frequency is high enough to avoid aliasing, then the overall system behaves
as an LTI continuous-time system with frequency response

Heff(j�) =
{

H(ej�T), |�| < π/T ,

0, |�| ≥ π/T .
(7.1a)

In such cases, it is straightforward to convert from specifications on the effective
continuous-time filter to specifications on the discrete-time filter through the relation
ω = �T . That is, H(ejω) is specified over one period by the equation

H(ejω) = Heff

(
j

ω

T

)
, |ω| < π. (7.1b)

C/D
xa(t) ya(t)x [n] y [n]

D/CH(e j�)

T T

Figure 7.2 Basic system for discrete-time filtering of continuous-time signals.

496 Chapter 7 Filter Design Techniques

For this example, the overall system of Figure 7.2 is to have the following prop-
erties when the sampling rate is 104 samples/s (T = 10−4 s):

1. The gain |Heff(j�)| should be within ±0.01 of unity in the frequency band 0 ≤
� ≤ 2π(2000).

2. The gain should be no greater than 0.001 in the frequency band 2π(3000) ≤ �.

Since Eq. (7.1a) is a mapping between the continuous-time and discrete-time frequen-
cies, it only affects the passband and stopband edge frequencies and not the tolerance
limits on frequency response magnitude. For this specific example, the parameters
would be

δp1 = δp2 = 0.01

δs = 0.001

ωp = 0.4π radians

ωs = 0.6π radians.

Therefore, in this case, the ideal passband magnitude is unity and is allowed to vary
between (1+δp1) and (1−δp2), and the stopband magnitude is allowed to vary between
0 and δs . Expressed in units of decibels,

ideal passband gain in decibels = 20 log10(1) = 0 dB
maximum passband gain in decibels = 20 log10(1.01) = 0.0864 dB

minimum passband gain at passband edge in decibels = 20 log10(0.99) = −0.873 dB
maximum stopband gain in decibels = 20 log10(0.001) = −60 dB

Example 7.1 was phrased in the context of using a discrete-time filter to process a
continuous-time signal after periodic sampling. There are many applications in which
a discrete-time signal to be filtered is not derived from a continuous-time signal, and
there are a variety of means besides periodic sampling for representing continuous-time
signals in terms of sequences. Also, in most of the design techniques that we discuss, the
sampling period plays no role whatsoever in the approximation procedure. For these
reasons, we take the point of view that the filter design problem begins from a set of
desired specifications in terms of the discrete-time frequency variable ω. Depending
on the specific application or context, these specifications may or may not have been
obtained from a consideration of filtering in the framework of Figure 7.2.

7.2 DESIGN OF DISCRETE-TIME IIR FILTERS FROM
CONTINUOUS-TIME FILTERS

Historically, as the field of digital signal processing was emerging, techniques for the
design of discrete-time IIR filters relied on the transformation of a continuous-time
filter into a discrete-time filter meeting prescribed specifications. This was and still is a
reasonable approach for several reasons:

• The art of continuous-time IIR filter design is highly advanced, and since useful
results can be achieved, it is advantageous to use the design procedures already
developed for continuous-time filters.

Section 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 497

• Many useful continuous-time IIR design methods have relatively simple closed-
form design formulas. Therefore, discrete-time IIR filter design methods based on
such standard continuous-time design formulas are simple to carry out.

• The standard approximation methods that work well for continuous-time IIR
filters do not lead to simple closed-form design formulas when these methods are
applied directly to the discrete-time IIR case, because the frequency response of
a discrete-time filter is periodic, and that of a continuous-time filter is not.

The fact that continuous-time filter designs can be mapped to discrete-time filter
designs is totally unrelated to, and independent of, whether the discrete-time filter is to
be used in the configuration of Figure 7.2 for processing continuous-time signals. We
emphasize again that the design procedure for the discrete-time system begins from
a set of discrete-time specifications. Henceforth, we assume that these specifications
have been appropriately determined. We will use continuous-time filter approximation
methods only as a convenience in determining the discrete-time filter that meets the
desired specifications. Indeed, the continuous-time filter on which the approximation is
based may have a frequency response that is vastly different from the effective frequency
response when the discrete-time filter is used in the configuration of Figure 7.2.

In designing a discrete-time filter by transforming a prototype continuous-time
filter, the specifications for the continuous-time filter are obtained by a transformation
of the specifications for the desired discrete-time filter. The system function Hc(s) or
impulse response hc(t) of the continuous-time filter is then obtained through one of
the established approximation methods used for continuous-time filter design, such as
those which are discussed in Appendix B. Next, the system function H(z) or impulse
response h[n] for the discrete-time filter is obtained by applying to Hc(s) or hc(t) a
transformation of the type discussed in this section.

In such transformations, we generally require that the essential properties of the
continuous-time frequency response be preserved in the frequency response of the
resulting discrete-time filter. Specifically, this implies that we want the imaginary axis
of the s-plane to map onto the unit circle of the z-plane. A second condition is that a
stable continuous-time filter should be transformed to a stable discrete-time filter. This
means that if the continuous-time system has poles only in the left half of the s-plane,
then the discrete-time filter must have poles only inside the unit circle in the z-plane.
These constraints are basic to all the techniques discussed in this section.

7.2.1 Filter Design by Impulse Invariance

In Section 4.4.2, we discussed the concept of impulse invariance, wherein a discrete-
time system is defined by sampling the impulse response of a continuous-time system.
We showed that impulse invariance provides a direct means of computing samples of
the output of a bandlimited continuous-time system for bandlimited input signals. In
some contexts, it is particularly appropriate and convenient to design a discrete-time
filter by sampling the impulse response of a continuous-time filter. For example, if the
overall objective is to simulate a continuous-time system in a discrete-time setting,
we might typically carry out the simulation in the configuration of Figure 7.2, with the
discrete-time system design such that its impulse response corresponds to samples of the

498 Chapter 7 Filter Design Techniques

continuous-time filter to be simulated. In other contexts, it might be desirable to main-
tain, in a discrete-time setting, certain time-domain characteristics of well-developed
continuous-time filters, such as desirable time-domain overshoot, energy compaction,
controlled time-domain ripple, and so on. Alternatively, in the context of filter design,
we can think of impulse invariance as a method for obtaining a discrete-time system
whose frequency response is determined by the frequency response of a continuous-
time system.

In the impulse invariance design procedure for transforming continuous-time fil-
ters into discrete-time filters, the impulse response of the discrete-time filter is chosen
proportional to equally spaced samples of the impulse response of the continuous-time
filter; i.e.,

h[n] = Tdhc(nTd), (7.2)

where Td represents a sampling interval. As we will see, because we begin the design
problem with the discrete-time filter specifications, the parameter Td in Eq. (7.2) in
fact has no role whatsoever in the design process or the resulting discrete-time filter.
However, since it is customary to specify this parameter in defining the procedure, we
include it in the following discussion. Even if the filter is used in the basic configuration
of Figure 7.2, the design sampling period Td need not be the same as the sampling period
T associated with the C/D and D/C conversion.

When impulse invariance is used as a means for designing a discrete-time filter
with a specified frequency response, we are especially interested in the relationship
between the frequency responses of the discrete-time and continuous-time filters. From
the discussion of sampling in Chapter 4, it follows that the frequency response of the
discrete-time filter obtained through Eq. (7.2) is related to the frequency response of
the continuous-time filter by

H(ejω) =
∞∑

k=−∞
Hc

(
j

ω

Td

+ j
2π

Td

k

)
. (7.3)

If the continuous-time filter is bandlimited, so that

Hc(j�) = 0, |�| ≥ π/Td, (7.4)

then

H(ejω) = Hc

(
j

ω

Td

)
, |ω| ≤ π; (7.5)

i.e., the discrete-time and continuous-time frequency responses are related by a linear
scaling of the frequency axis, namely, ω = �Td for |ω| < π . Unfortunately, any practical
continuous-time filter cannot be exactly bandlimited, and consequently, interference
between successive terms in Eq. (7.3) occurs, causing aliasing, as illustrated in Figure 7.3.
However, if the continuous-time filter approaches zero at high frequencies, the aliasing
may be negligibly small, and a useful discrete-time filter can result from sampling the
impulse response of a continuous-time filter.

When the impulse invariance design procedure is used to utilize continuous-time
filter design procedures for the design of a discrete-time filter with given frequency
response specifications, the discrete-time filter specifications are first transformed to
continuous-time filter specifications through the use of Eq. (7.5). Assuming that the

Section 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 499

�

Hc Td

�
j

1

�

H(e j�)

1

2�–2�

Figure 7.3 Illustration of aliasing in the impulse invariance design technique.

aliasing involved in the transformation from Hc(j�) to H(ejω) is negligible, we obtain
the specifications on Hc(j�) by applying the relation

� = ω/Td (7.6)

to obtain the continuous-time filter specifications from the specifications on H(ejω).
After obtaining a continuous-time filter that meets these specifications, the continuous-
time filter with system function Hc(s) is transformed to the desired discrete-time filter
with system function H(z). We develop the algebraic details of the transformation from
Hc(s) to H(z) shortly. Note, however, that in the transformation back to discrete-time
frequency, H(ejω) will be related to Hc(j�) through Eq. (7.3), which again applies the
transformation of Eq. (7.6) to the frequency axis. As a consequence, the “sampling” pa-
rameter Td cannot be used to control aliasing. Since the basic specifications are in terms
of discrete-time frequency, if the sampling rate is increased (i.e., if Td is made smaller),
then the cutoff frequency of the continuous-time filter must increase in proportion. In
practice, to compensate for aliasing that might occur in the transformation from Hc(j�)

to H(ejω), the continuous-time filter may be somewhat overdesigned, i.e., designed to
exceed the specifications, particularly in the stopband.

While the impulse invariance transformation from continuous time to discrete
time is defined in terms of time-domain sampling, it is easy to carry out as a transfor-
mation on the system function. To develop this transformation, we consider the system
function of a causal continuous-time filter expressed in terms of a partial fraction ex-
pansion, so that1

Hc(s) =
N∑

k=1

Ak

s − sk
. (7.7)

The corresponding impulse response is

hc(t) =

⎧⎪⎨⎪⎩
N∑

k=1

Ake
skt , t ≥ 0,

0, t < 0.

(7.8)

1For simplicity, we assume in the discussion that all poles of H(s) are single order. In Problem 7.41,
we consider the modifications required for multiple-order poles.

500 Chapter 7 Filter Design Techniques

The impulse response of the causal discrete-time filter obtained by sampling Tdhc(t) is

h[n] = Tdhc(nTd) =
N∑

k=1

TdAke
sknTd u[n]

=
N∑

k=1

TdAk(e
skTd)nu[n].

(7.9)

The system function of the causal discrete-time filter is therefore given by

H(z) =
N∑

k=1

TdAk

1 − eskTd z−1
. (7.10)

In comparing Eqs. (7.7) and (7.10), we observe that a pole at s = sk in the s-plane
transforms to a pole at z = eskTd in the z-plane and the coefficients in the partial fraction
expansions of Hc(s) and H(z) are equal, except for the scaling multiplier Td . If the
continuous-time causal filter is stable, corresponding to the real part of sk being less than
zero, then the magnitude of eskTd will be less than unity, so that the corresponding pole in
the discrete-time filter is inside the unit circle. Therefore, the causal discrete-time filter
is also stable. Although the poles in the s-plane map to poles in the z-plane according
to the relationship zk = eskTd , it is important to recognize that the impulse invariance
design procedure does not correspond to a simple mapping of the s-plane to the z-plane
by that relationship. In particular, the zeros in the discrete-time system function are a
function of the poles eskTd and the coefficients TdAk in the partial fraction expansion, and
they will not in general be mapped in the same way the poles are mapped. We illustrate
the impulse invariance design procedure of a lowpass filter with the following example.

Example 7.2 Impulse Invariance with a Butterworth Filter

In this example we consider the design of a lowpass discrete-time filter by applying
impulse invariance to an appropriate continuous-time filter. The class of filters that we
choose for this example is referred to as Butterworth filters, which we discuss in more
detail in Section 7.3 and in Appendix B.2 The specifications for the discrete-time filter
correspond to passband gain between 0 dB and −1 dB, and stopband attenuation of
at least −15 dB, i.e.,

0.89125 ≤ |H(ejω)| ≤ 1, 0 ≤ |ω| ≤ 0.2π, (7.11a)

|H(ejω)| ≤ 0.17783, 0.3π ≤ |ω| ≤ π. (7.11b)

Since the parameter Td cancels in the impulse invariance procedure, we can just as
well choose Td = 1, so that ω = �. In Problem 7.2, this same example is considered,
but with the parameter Td explicitly included to illustrate how and where it cancels.

In designing the filter using impulse invariance on a continuous-time Butter-
worth filter, we must first transform the discrete-time specifications to specifications
on the continuous-time filter. For this example, we will assume that the effect of alias-
ing in Eq. (7.3) is negligible. After the design is complete, we can evaluate the resulting
frequency response against the specifications in Eqs. (7.11a) and (7.11b).

2Continuous-time Butterworth and Chebyshev filters are discussed in Appendix B.

Section 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 501

Because of the preceding considerations, we want to design a continuous-time
Butterworth filter with magnitude function |Hc(j�)| for which

0.89125 ≤ |Hc(j�)| ≤ 1, 0 ≤ |�| ≤ 0.2π, (7.12a)

|Hc(j�)| ≤ 0.17783, 0.3π ≤ |�| ≤ π. (7.12b)

Since the magnitude response of an analog Butterworth filter is a monotonic function
of frequency, Eqs. (7.12a) and (7.12b) will be satisfied if Hc(j0) = 1,

|Hc(j0.2π)| ≥ 0.89125 (7.13a)

and

|Hc(j0.3π)| ≤ 0.17783. (7.13b)

The magnitude-squared function of a Butterworth filter is of the form

|Hc(j�)|2 = 1

1 + (�/�c)2N
, (7.14)

so that the filter design process consists of determining the parameters N and �c to
meet the desired specifications. Using Eq. (7.14) in Eqs. (7.13) with equality leads to
the equations

1 +
(

0.2π

�c

)2N

=
(

1
0.89125

)2
(7.15a)

and

1 +
(

0.3π

�c

)2N

=
(

1
0.17783

)2
. (7.15b)

The simultaneous solution of these two equations is N = 5.8858 and
�c = 0.70474. The parameter N , however, must be an integer. In order that the
specifications are met or exceeded, we must round N up to the nearest integer, N = 6,
in which case the filter will not exactly satisfy both Eqs. (7.15a) and (7.15b) simulta-
neously. With N = 6, the filter parameter �c can be chosen to exceed the specified
requirements (i.e., have lower approximation error) in either the passband, the stop-
band, or both. Specifically, as the value of �c varies, there is a trade-off in the amount by
which the stopband and passband specifications are exceeded. If we substitute N = 6
into Eq. (7.15a), we obtain (�c = 0.7032). With this value, the passband specifications
(of the continuous-time filter) will be met exactly, and the stopband specifications (of
the continuous-time filter) will be exceeded. This allows some margin for aliasing in the
discrete-time filter. With (�c = 0.7032) and with N = 6, the 12 poles of the magnitude-
squared function Hc(s)Hc(−s) = 1/[1+(s/j�c)

2N] are uniformly distributed in angle
on a circle of radius (�c = 0.7032), as indicated in Figure 7.4. Consequently, the poles
of Hc(s) are the three pole pairs in the left half of the s-plane with the following
coordinates:

Pole pair 1: −0.182 ± j (0.679),

Pole pair 2: −0.497 ± j (0.497),

Pole pair 3: −0.679 ± j (0.182).

502 Chapter 7 Filter Design Techniques

�
6

0.7032

s-plane

Re

Im

Figure 7.4 s-plane locations for poles of Hc (s)Hc (−s) for 6th-order Butterworth
filter in Example 7.2.

Therefore,

Hc(s) = 0.12093

(s2 + 0.3640s + 0.4945)(s2 + 0.9945s + 0.4945)(s2 + 1.3585s + 0.4945)
.

(7.16)

If we express Hc(s) as a partial fraction expansion, perform the transformation
of Eq. (7.10), and then combine complex-conjugate terms, the resulting system function
of the discrete-time filter is

H(z) = 0.2871 − 0.4466z−1

1 − 1.2971z−1 + 0.6949z−2
+ −2.1428 + 1.1455z−1

1 − 1.0691z−1 + 0.3699z−2

+ 1.8557 − 0.6303z−1

1 − 0.9972z−1 + 0.2570z−2
.

(7.17)

As is evident from Eq. (7.17), the system function resulting from the impulse invariance
design procedure may be realized directly in parallel form. If either the cascade or
direct form is desired, the separate 2nd-order terms are first combined in an appropriate
way.

The frequency-response functions of the discrete-time system are shown in Fig-
ure 7.5. The prototype continuous-time filter had been designed to meet the specifica-
tions exactly at the passband edge and to exceed the specifications at the stopband edge,
and this turns out to be true for the resulting discrete-time filter. This is an indication
that the continuous-time filter was sufficiently bandlimited so that aliasing presented
no problem. Indeed, the difference between 20 log10 |H(ejω)| and 20 log10 |Hc(j�)|
would not be visible on this plotting scale, except for a slight deviation around ω = π .
(Recall that Td = 1, so � = ω.) Sometimes, aliasing is much more of a problem. If the
resulting discrete-time filter fails to meet the specifications because of aliasing, there
is no alternative with impulse invariance but to try again with a higher-order filter or
with different filter parameters, holding the order fixed.

Section 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 503

Radian frequency (�)

(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20

A
m

pl
it

ud
e

dB

Radian frequency (�)

(b)

0.2� 0.4� 0.6� 0.8� �0

0.2

0.4

0.6

0.8

1.0

1.2

Sa
m

pl
es

Radian frequency (�)

(c)

0.2� 0.4� 0.6� 0.8� �

8

10

0

2

4

6

12

Figure 7.5 Frequency response of 6th-order Butterworth filter transformed by
impulse invariance. (a) Log magnitude in dB. (b) Magnitude. (c) Group delay.

504 Chapter 7 Filter Design Techniques

The basis for impulse invariance is to choose an impulse response for the discrete-
time filter that is similar in some sense to the impulse response of the continuous-
time filter. The use of this procedure may be motivated by a desire to maintain the
shape of the impulse response or by the knowledge that if the continuous-time filter
is bandlimited, consequently the discrete-time filter frequency response will closely
approximate the continuous-time frequency response. When the primary objective is
to control some aspect of the time response, such as the impulse response or the step
response, a natural approach might be to design the discrete-time filter by impulse
invariance or by step invariance. In the latter case, the response of the filter to a sampled
unit step function is defined to be the sequence obtained by sampling the continuous-
time step response. If the continuous-time filter has good step response characteristics,
such as a small rise time and low peak overshoot, these characteristics will be preserved
in the discrete-time filter. Clearly, this concept of waveform invariance can be extended
to the preservation of the output waveshape for a variety of inputs, as illustrated in
Problem 7.1. The problem points out the fact that transforming the same continuous-
time filter by impulse invariance and also by step invariance (or some other waveform
invariance criterion) does not lead to the same discrete-time filter in the two cases.

In the impulse invariance design procedure, the relationship between continuous-
time and discrete-time frequency is linear; consequently, except for aliasing, the shape
of the frequency response is preserved. This is in contrast to the procedure discussed
next, which is based on an algebraic transformation. In concluding this subsection we
iterate that the impulse invariance technique is appropriate only for bandlimited filters;
highpass or bandstop continuous-time filters, for example, would require additional
bandlimiting to avoid severe aliasing distortion if impulse invariance design is used.

7.2.2 Bilinear Transformation

The technique discussed in this subsection uses the bilinear transformation, an algebraic
transformation between the variables s and z that maps the entire j�-axis in the s-plane
to one revolution of the unit circle in the z-plane. Since with this approach, −∞ ≤ � ≤
∞ maps onto −π ≤ ω ≤ π , the transformation between the continuous-time and
discrete-time frequency variables is necessarily nonlinear. Therefore, the use of this
technique is restricted to situations in which the corresponding nonlinear warping of
the frequency axis is acceptable.

With Hc(s) denoting the continuous-time system function and H(z) the discrete-
time system function, the bilinear transformation corresponds to replacing s by

s = 2
Td

(
1 − z−1

1 + z−1

)
; (7.18)

that is,

H(z) = Hc

(
2
Td

(
1 − z−1

1 + z−1

))
. (7.19)

As in impulse invariance, a “sampling” parameter Td is often included in the definition
of the bilinear transformation. Historically, this parameter has been included, because
the difference equation corresponding to H(z) can be obtained by applying the trape-
zoidal integration rule to the differential equation corresponding to Hc(s), with Td

Section 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 505

representing the step size of the numerical integration. (See Kaiser, 1966, and Prob-
lem 7.49.) However, in filter design, our use of the bilinear transformation is based
on the properties of the algebraic transformation given in Eq. (7.18). As with impulse
invariance, the parameter Td is of no consequence in the design procedure, since we
assume that the design problem always begins with specifications on the discrete-time
filter H(ejω). When these specifications are mapped to continuous-time specifications,
and the continuous-time filter is then mapped back to a discrete-time filter, the effect of
Td will cancel. We will retain the parameter Td in our discussion for historical reasons;
in specific problems and examples, any convenient value can be chosen.

To develop the properties of the algebraic transformation specified in Eq. (7.18),
we solve for z to obtain

z = 1 + (Td/2)s

1 − (Td/2)s
, (7.20)

and, substituting s = σ + j� into Eq. (7.20), we obtain

z = 1 + σTd/2 + j�Td/2
1 − σTd/2 − j�Td/2

. (7.21)

If σ < 0, then, from Eq. (7.21), it follows that |z| < 1 for any value of �. Similarly, if
σ > 0, then |z| > 1 for all �. That is, if a pole of Hc(s) is in the left-half s-plane, its
image in the z-plane will be inside the unit circle. Therefore, causal stable continuous-
time filters map into causal stable discrete-time filters.

Next, to show that the j�-axis of the s-plane maps onto the unit circle, we substi-
tute s = j� into Eq. (7.20), obtaining

z = 1 + j�Td/2
1 − j�Td/2

. (7.22)

From Eq. (7.22), it is clear that |z| = 1 for all values of s on the j�-axis. That is, the
j�-axis maps onto the unit circle, so Eq. (7.22) takes the form

ejω = 1 + j�Td/2
1 − j�Td/2

. (7.23)

To derive a relationship between the variables ω and �, it is useful to return to Eq. (7.18)
and substitute z = ejω. We obtain

s = 2
Td

(
1 − e−jω

1 + e−jω

)
, (7.24)

or, equivalently,

s = σ + j� = 2
Td

[
2e−jω/2(j sin ω/2)

2e−jω/2(cos ω/2)

]
= 2j

Td

tan(ω/2). (7.25)

Equating real and imaginary parts on both sides of Eq. (7.25) leads to the relations
σ = 0 and

� = 2
Td

tan(ω/2), (7.26)

or

ω = 2 arctan(�Td/2). (7.27)

506 Chapter 7 Filter Design Techniques

�

z-planes-plane

Image of
s = j� (unit circle)

j�

Image of
left half-plane

Re

Im

Figure 7.6 Mapping of the s-plane
onto the z -plane using the bilinear
transformation.

�

�

–�

� = 2 arctan �Td

�

2

Figure 7.7 Mapping of the
continuous-time frequency axis onto the
discrete-time frequency axis by bilinear
transformation.

These properties of the bilinear transformation as a mapping from the s-plane to
the z-plane are summarized in Figures 7.6 and 7.7. From Eq. (7.27) and Figure 7.7, we
see that the range of frequencies 0 ≤ � ≤ ∞ maps to 0 ≤ ω ≤ π, while the range
−∞ ≤ � ≤ 0 maps to −π ≤ ω ≤ 0. The bilinear transformation avoids the problem
of aliasing encountered with the use of impulse invariance, because it maps the entire
imaginary axis of the s-plane onto the unit circle in the z-plane. The price paid for this,
however, is the nonlinear compression of the frequency axis, as depicted in Figure 7.7.
Consequently, the design of discrete-time filters using the bilinear transformation is
useful only when this compression can be tolerated or compensated for, as in the case
of filters that approximate ideal piecewise-constant magnitude-response characteris-
tics. This is illustrated in Figure 7.8, wherein we show how a continuous-time frequency
response and tolerance scheme maps to a corresponding discrete-time frequency re-
sponse and tolerance scheme through the frequency warping of Eqs. (7.26) and (7.27).
If the critical frequencies (such as the passband and stopband edge frequencies) of the
continuous-time filter are prewarped according to Eq. (7.26) then, when the continuous-
time filter is transformed to the discrete-time filter using Eq. (7.19), the discrete-time
filter will meet the desired specifications.

Although the bilinear transformation can be used effectively in mapping a piece-
wise-constant magnitude-response characteristic from the s-plane to the z-plane, the
distortion in the frequency axis also manifests itself as a warping of the phase response
of the filter. For example, Figure 7.9 shows the result of applying the bilinear transforma-
tion to an ideal linear-phase factor e−sα . If we substitute Eq. (7.18) for s and evaluate
the result on the unit circle, the phase angle is −(2α/Td) tan(ω/2). In Figure 7.9, the

Section 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 507

0

�0

�

�

��s�p0 �

�

�
p

=
ta

n
2 T
d

�
p 2

�
s =

ta
n

2 T
d

�
s 2

� = tan2
Td

�

2

|H
c(

j�
) |

�
p

�
s

|H(e j�)|

Figure 7.8 Frequency warping
inherent in the bilinear transformation of
a continuous-time lowpass filter into a
discrete-time lowpass filter. To achieve
the desired discrete-time cutoff
frequencies, the continuous-time cutoff
frequencies must be prewarped as
indicated.

solid curve shows the function −(2α/Td) tan(ω/2), and the dotted curve is the periodic
linear-phase function −(ωα/Td), which is obtained by using the small-angle approxi-
mation ω/2 ≈ tan(ω/2). From this, it should be evident that if we desire a discrete-time
lowpass filter with a linear-phase characteristic, we cannot obtain such a filter by apply-
ing the bilinear transformation to a continuous-time lowpass filter with a linear-phase
characteristic.

As mentioned previously, because of the frequency warping, the bilinear transfor-
mation is most useful in the design of approximations to filters with piecewise-constant
frequency magnitude characteristics, such as highpass, lowpass and bandpass filters. As
demonstrated in Example 7.2, impulse invariance can also be used to design lowpass
filters. However, impulse invariance cannot be used to map highpass continuous-time
designs to highpass discrete-time designs, since highpass continuous-time filters are not
bandlimited.

In Example 4.4, we discussed a class of filters often referred to as discrete-time
differentiators. A significant feature of the frequency response of this class of filters
is that it is linear with frequency. The nonlinear warping of the frequency axis intro-
duced by the bilinear transformation will not preserve that property. Consequently, the

508 Chapter 7 Filter Design Techniques

2��

Td

–2� 2� �–�

–

–

�

 H(e j�)

2��

Td

��

Td

��

Td

�– �

Td

�
2

tan– 2�

Td

Figure 7.9 Illustration of the effect of the bilinear transformation on a linear-
phase characteristic. (Dashed line is linear phase and solid line is phase resulting
from bilinear transformation.)

bilinear transformation applied to a continuous-time differentiator will not result in a
discrete-time differentiator. However, impulse invariance applied to an appropriately
bandlimited continuous-time differentiator will result in a discrete-time differentiator.

7.3 DISCRETE-TIME BUTTERWORTH, CHEBYSHEV AND
ELLIPTIC FILTERS

Historically, the most widely used classes of frequency-selective continuous-time fil-
ters are those referred to as Butterworth, Chebyshev and elliptic filter designs. In Ap-
pendix B we briefly summarize the characteristics of these three classes of continuous-
time filters. The associated closed-form design formulas make the design procedure
relatively straightforward. As discussed in Appendix B, the magnitude of the frequency
response of a Butterworth continuous-time filter is monotonic in the passband and the
stopband. A type I Chebyshev filter has an equiripple frequency response in the pass-
band and varies monotonically in the stopband. A type II Chebyshev filter is monotonic
in the passband and equiripple in the stopband. An elliptic filter is equiripple in both the
passband and the stopband. Clearly, these properties will be preserved when the filter
is mapped to a digital filter with the bilinear transformation. This is illustrated by the
dashed approximation shown in Figure 7.8. The filters resulting from applying the bilin-
ear transformation to these classes of continuous-time filters, referred to respectively as
discrete-time Butterworth, Chebyshev and elliptic filters have similarly become widely
used as discrete-time frequency selective filters.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 509

As a first step in the design procedure for any of these classes of filters, the critical
frequencies, i.e., the band edge frequencies, must be prewarped to the continuous-time
frequencies using Eq. (7.26) so that the frequency distortion inherent in the bilinear
transformation will map the continuous-time frequencies back to the correct discrete-
time frequencies. This prewarping will be illustrated in more detail in Example 7.3. The
allowed tolerances in the passbands and stopbands will be the same for the discrete-time
and continuous-time filters since the bilinear mapping only distorts the frequency axis,
not the amplitude scale. In using a discrete-time filter design package such as found in
MATLAB and LabVIEW, the typical inputs would be the desired tolerances and the
discrete-time critical frequencies. The design program explicitly or implicitly handles
any necessary prewarping of the frequencies.

In advance of illustrating these classes of filters with several examples, it is worth
commenting on some general characteristics to expect. We have noted above that we
expect the discrete-time Butterworth, Chebyshev and elliptic filter frequency responses
to retain the monotonicity and ripple characteristics of the corresponding continuous-
time filters. The N th-order continuous-time lowpass Butterworth filter has N zeros at
� = ∞. Since the bilinear transformation maps s = ∞ to z = −1, we would expect any
Butterworth design utilizing the bilinear transformation to result in N zeros at z = −1.
The same is also true for the Chebyshev type I lowpass filter.

7.3.1 Examples of IIR Filter Design

In the following discussion, we present a number of examples to illustrate IIR filter
design. The purpose of Example 7.3 is to illustrate the steps in the design of a Butter-
worth filter using the bilinear transformation, in comparison with the use of impulse
invariance. Example 7.4 presents a set of examples comparing the design of a Butter-
worth, Chebyshev I, Chebyshev II, and elliptic filter. Example 7.5 illustrates, with a
different set of specifications, the design of a Butterworth, Chebyshev I, Chebyshev II
and elliptic filter. These designs will be compared in Section 7.8.1 with FIR designs. For
both Example 7.4 and 7.5 the filter design package in the signal processing toolbox of
MATLAB was used.

Example 7.3 Bilinear Transformation of a Butterworth Filter

Consider the discrete-time filter specifications of Example 7.2, in which we illustrated
the impulse invariance technique for the design of a discrete-time filter. The specifica-
tions for the discrete-time filter are

0.89125 ≤ |H(ejω)| ≤ 1, 0 ≤ ω ≤ 0.2π, (7.28a)

|H(ejω)| ≤ 0.17783, 0.3π ≤ ω ≤ π. (7.28b)

510 Chapter 7 Filter Design Techniques

In carrying out the design using the bilinear transformation applied to a continuous-
time design, the critical frequencies of the discrete-time filter are first prewarped to
the corresponding continuous-time frequencies using Eq. (7.26) so that the frequency
distortion inherent in the bilinear transformation will map the continuous-time fre-
quencies back to the correct discrete-time critical frequencies. For this specific filter,
with |Hc(j�)| representing the magnitude-response function of the continuous-time
filter, we require that

0.89125 ≤ |Hc(j�)| ≤ 1, 0 ≤ � ≤ 2
Td

tan
(

0.2π

2

)
, (7.29a)

|Hc(j�)| ≤ 0.17783,
2
Td

tan
(

0.3π

2

)
≤ � ≤ ∞. (7.29b)

For convenience, we choose Td = 1. Also, as with Example 7.2, since a continuous-time
Butterworth filter has a monotonic magnitude response, we can equivalently require
that

|Hc(j2 tan(0.1π))| ≥ 0.89125 (7.30a)

and

|Hc(j2 tan(0.15π))| ≤ 0.17783. (7.30b)

The form of the magnitude-squared function for the Butterworth filter is

|Hc(j�)|2 = 1

1 + (�/�c)2N
. (7.31)

Solving for N and �c with the equality sign in Eqs. (7.30a) and (7.30b), we obtain

1 +
(

2 tan(0.1π)

�c

)2N

=
(

1
0.89

)2
(7.32a)

and

1 +
(

2 tan(0.15π)

�c

)2N

=
(

1
0.178

)2
, (7.32b)

and solving for N in Eqs. (7.32a) and (7.32b) gives

N =
log
[((

1
0.178

)2 − 1
)/((

1
0.89

)2 − 1
)]

2 log[tan(0.15π)/ tan(0.1π)]
= 5.305.

(7.33)

SinceN must be an integer, we chooseN = 6. SubstitutingN = 6 into Eq. (7.32b),
we obtain �c = 0.766. For this value of �c, the passband specifications are exceeded
and the stopband specifications are met exactly. This is reasonable for the bilinear
transformation, since we do not have to be concerned with aliasing. That is, with
proper prewarping, we can be certain that the resulting discrete-time filter will meet
the specifications exactly at the desired stopband edge.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 511

In the s-plane, the 12 poles of the magnitude-squared function are uniformly
distributed in angle on a circle of radius 0.766, as shown in Figure 7.10. The system
function of the causal continuous-time filter obtained by selecting the left half-plane
poles is

Hc(s) = 0.20238

(s2 + 0.3996s + 0.5871)(s2 + 1.0836s + 0.5871)(s2 + 1.4802s + 0.5871)
.

(7.34)

The system function for the discrete-time filter is then obtained by applying the bilinear
transformation to Hc(s) with Td = 1. The result is

H(z) = 0.0007378(1 + z−1)6

(1 − 1.2686z−1 + 0.7051z−2)(1 − 1.0106z−1 + 0.3583z−2)

× 1

(1 − 0.9044z−1 + 0.2155z−2)
.

(7.35)

The magnitude, log magnitude, and group delay of the frequency response of the
discrete-time filter are shown in Figure 7.11. Atω = 0.2π the log magnitude is−0.56 dB,
and at ω = 0.3π the log magnitude is exactly −15 dB.

Since the bilinear transformation maps the entire j�-axis of the s-plane onto
the unit circle in the z-plane, the magnitude response of the discrete-time filter falls off
much more rapidly than that of the continuous-time filter or the Butterworth discrete-
time filter designed by impulse invariance. In particular, the behavior of H(ejω) at ω =
π corresponds to the behavior of Hc(j�) at � = ∞. Therefore, since the continuous-
time Butterworth filter has a 6th-order zero at s = ∞, the resulting discrete-time filter
has a 6th-order zero at z = −1.

�
6

0.766

s-plane

Re

Im

Figure 7.10 s-plane locations for poles of Hc (s)Hc (−s) for 6th-order Butterworth
filter in Example 7.3.

512 Chapter 7 Filter Design Techniques

Radian frequency (�)

(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20

A
m

pl
it

ud
e

dB

Radian frequency (�)

(b)

0.2� 0.4� 0.6� 0.8� �0

0.2

0.4

0.6

0.8

1.0

1.2

Sa
m

pl
es

Radian frequency (�)

(c)

0.2� 0.4� 0.6� 0.8� �

8

10

0

2

4

6

12

Figure 7.11 Frequency response of 6th-order Butterworth filter transformed by
bilinear transform. (a) Log magnitude in dB. (b) Magnitude. (c) Group delay.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 513

Since the general form of the magnitude-squared of the N th-order Butterworth
continuous-time filter is as given by Eq. (7.31), and since ω and � are related by
Eq. (7.26), it follows that the general N th-order Butterworth discrete-time filter has
the magnitude-squared function

|H(ejω)|2 = 1

1 +
(

tan(ω/2)

tan(ωc/2)

)2N
, (7.36)

where tan(ωc/2) = �cTd/2. The frequency-response function of Eq. (7.36) has the same
properties as the continuous-time Butterworth response; i.e., it is maximally flat3 and
|H(ejωc)|2 = 0.5. However, the function in Eq. (7.36) is periodic with period 2π and
falls off more sharply than the continuous-time Butterworth response.

Discrete-time Butterworth filters are not typically designed directly by starting
with Eq. (7.36), because it is not straightforward to determine the z-plane locations of
the poles (all the zeros are at z = −1) associated with the magnitude-squared function of
Eq. (7.36). It is necessary to determine the poles so as to factor the magnitude-squared
function into H(z)H(z−1) and thereby determine H(z). It is much easier to factor the
continuous-time system function, and then transform the left half-plane poles by the
bilinear transformation as we did in Example 7.3.

Equations of the form of Eq. (7.36) may also be obtained for discrete-time Cheby-
shev and elliptic filters. However, the details of the design computations for these com-
monly used classes of filters are best carried out by computer programs that incorporate
the appropriate closed-form design equations.

In the next example, we compare the design of a lowpass filter based on But-
terworth, Chebyshev I, Chebyshev II and elliptic filter designs. There are some specific
characteristics of the frequency response magnitude and the pole–zero patterns for each
of these four discrete-time lowpass filter types, and these characteristics will be evident
in the designs in Example 7.4 and Example 7.5 that follow.

For a Butterworth lowpass filter, the frequency response magnitude decreases
monotonically in both the passband and stopband, and all the zeros of the transfer
function are at z = −1. For a Chebyshev Type I lowpass filter, the frequency response
magnitude will always be equiripple in the passband, i.e., will oscillate with equal max-
imum error on either side of the desired gain and will be monotonic in the stopband.
All the zeros of the corresponding transfer function will be at z = −1. For a Chebyshev
Type II lowpass filter, the frequency response magnitude will be monotonic in the pass-
band and equiripple in the stopband, i.e., oscillates around zero gain. Because of this
equiripple stopband behavior, the zeros of the transfer function will correspondingly
be distributed on the unit circle.

In both cases of Chebyshev approximation, the monotonic behavior in either the
stopband or the passband suggests that perhaps a lower-order system might be obtained
if an equiripple approximation were used in both the passband and the stopband. In-
deed, it can be shown (see Papoulis, 1957) that for fixed values of δp1 , δp2 , δs , ωp, and
ωs in the tolerance scheme of Figure 7.1, the lowest order filter is obtained when the
approximation error ripples equally between the extremes of the two approximation
bands. This equiripple behavior is achieved with the class of filters referred to as elliptic

3The first (2N − 1) derivatives of |H(ejω)|2 are zero at ω = 0.

514 Chapter 7 Filter Design Techniques

filters. Elliptic filters, like the Chebyshev type II filter, has its zeros arrayed in the stop-
band region of the unit circle. These properties of Butterworth, Chebyshev, and elliptic
filters are illustrated by the following example.

Example 7.4 Design Comparisons

For the four filter designs that follow, the signal processing toolbox in MATLAB was
used. This and other typical design programs for IIR lowpass filter design, assume
tolerance specifications as indicated in Figure 7.1 with δp1 = 0. Although the resulting
designs correspond to what would result from applying the bilinear transformation
to appropriate continuous-time designs, any required frequency prewarping and in-
corporation of the bilinear transformation, are internal to these design programs and
transparent to the user. Consequently the specifications are given to the design pro-
gram directly in terms of the discrete-time parameters. For this example, the filter has
been designed to meet or exceed the following specifications.:

passband edge frequency ωp = 0.5π

stopband edge frequency ωs = 0.6π

maximum passband gain = 0 dB
minimum passband gain = −0.3 dB
maximum stopband gain = −30 dB

Referring to Figure 7.1, the corresponding passband and stopband tolerance limits are

20 log10(1 + δp1) = 0 or equivalently δp1 = 0
20 log10(1 − δp2) = −0.3 or equivalently δp2 = 0.0339
20 log10(δs) = −30 or equivalently δs = 0.0316.

Note that the specifications are only on the magnitudes of the frequency re-
sponse. The phase is implicitly determined by the nature of the approximating func-
tions.

Using the filter design program, it is determined that for a Butterworth design,
the minimum (integer) filter order that meets or exceeds the given specifications is a
15th-order filter. The resulting frequency response magnitude, group delay, and pole–
zero plot are shown in Figure 7.12. As expected, all of the zeros of the Butterworth
filter are at z = −1.

For a Chebyshev type I design, the minimum filter order is 7. The resulting
frequency response magnitude and group delay, and the corresponding pole–zero plot
are shown in Figure 7.13. As expected, all of the zeros of the transfer function are
at z = −1 and the frequency response magnitude is equiripple in the passband and
monotonic in the stopband.

For a Chebyshev type II design, the minimum filter order is again 7. The re-
sulting frequency response magnitude, group delay and pole–zero plot are shown in
Figure 7.14. Again as expected, the frequency response magnitude is monotonic in
the passband and equiripple in the stopband. The zeros of the transfer function are
arrayed on the unit circle in the stopband.

In comparing the Chebyshev I and Chebyshev II designs it is worth noting that
for both, the order of the denominator polynomial in the transfer function corre-
sponding to the poles is 7, and the order of the numerator polynomial is also 7. In the
implementation of the difference equation for both the Chebyshev I design and the
Butterworth design, significant advantage can be taken of the fact that all the zeros

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 515

0 �/4 �/2
Frequency, �

3�/4 �

1

0.98

0.96

A
m

pl
it

ud
e

0 �/4 �/2
Frequency, �

3�/4 �

10

0

−10

−20

−30

−40

−50

dB

(a)

(b)

0 �/4 �/2
Frequency, �

3�/4 �

5

0

10

15

20

Sa
m

pl
es

(c)

(d)

15th-order zero

z-plane

unit circle

Re

Im

Figure 7.12 Butterworth filter, 15th-order.

516 Chapter 7 Filter Design Techniques

0 �/4 �/2
Frequency, �

3�/4 �

1

0.98

0.96

A
m

pl
it

ud
e

0 �/4 �/2
Frequency, �

3�/4 �

10

0

−10

−20

−30

−40

−50

dB

(a)

(b)

0 �/4 �/2
Frequency, �

3�/4 �

5

0

10

15

20

Sa
m

pl
es

(c)

(d)

7th order zero

Re

Im z-plane

unit circle

Figure 7.13 Chebyshev Type I filter, 7th-order.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 517

0 �/4 �/2
Frequency, �

3�/4 �

1

0.98

0.96

A
m

pl
it

ud
e

0 �/4 �/2
Frequency, �

3�/4 �

10

0

−10

−20

−30

−40

−50

dB
(a)

(b)

0 �/4 �/2
Frequency, �

3�/4 �

5

0

10

15

20

Sa
m

pl
es

(c)

(d)

Re

Im z-plane

unit circle

Figure 7.14 Chebyshev Type II filter, 7th-order.

518 Chapter 7 Filter Design Techniques

0 �/4 �/2
Frequency, �

3�/4 �

1

0.98

0.96

A
m

pl
it

ud
e

0 �/4 �/2
Frequency, �

3�/4 �

10

0

−10

−20

−30

−40

−50

dB
(a)

(b)

0 �/4 �/2
Frequency, �

3�/4 �

5

0

10

15

20

Sa
m

pl
es

(c)

(d)

Re

Im z-plane

unit circle

Figure 7.15 Elliptic filter, 5th-order, exceeds design specifications.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 519

occur at z = −1. This is not the case for the Chebyshev II filter. Consequently, in an
implementation of the filter, the Chebyshev II design will require more multiplications
than the Chebyshev I design. For the Butterworth design, while advantage can be
taken of the clustered zeros at z = −1, the filter order is more than twice that of the
Chebyshev designs and consequently requires more multiplications.

For the design of an elliptic filter to meet the given specifications, a filter of at
least 5th-order is required. Figure 7.15 shows the resulting design. As with previous
examples, in designing a filter with given specifications, the minimum specifications are
likely to be exceeded, since the filter order is necessarily an integer. Depending on the
application, the designer may choose which of the specifications to exactly meet and
which to exceed. For example, with the elliptic filter design we may choose to exactly
meet the passband and stopband edge frequencies and the passband variation and
minimize the stopband gain. The resulting filter, which achieves 43 dB of attenuation
in the stopband, is shown in Figure 7.16. Alternately, the added flexibility can be used
to narrow the transition band or reduce the deviation from 0 dB gain in the passband.
Again as expected, the frequency response of the elliptic filter is equiripple in both the
passband and the stopband.

0 �/4 �/2
Frequency, �

3�/4 �

1

0.98

0.96

A
m

pl
it

ud
e

0 �/4 �/2
Frequency, �

3�/4 �

10

0

−10

−20

−30

−40

−50

dB

(a)

(b)

Figure 7.16 Elliptic filter, 5th-order, minimizing the passband ripple.

Example 7.5 Design Example for Comparison with FIR
Designs

In this example we return to the specifications of Example 7.1 and illustrate the re-
alization of this filter specification with a Butterworth, Chebyshev I, Chebyshev II,

520 Chapter 7 Filter Design Techniques

Radian frequency (�)

(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20

A
m

pl
it

ud
e

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �
0.990

0.995

1.000

1.005

1.010

Sa
m

pl
es

Radian frequency (�)

(c)

0 0.2� 0.4� 0.6� 0.8� �

20

0

5

10

15

25

Figure 7.17 Frequency response of 14th-order Butterworth filter in Example 7.5.
(a) Log magnitude in dB. (b) Detailed plot of magnitude in passband. (c) Group
delay.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 521

14th-order
zero

Unit
circle

z-plane

(d)

Re

Im

Figure 7.17 (continued) (d) Pole–zero plot of 14th-order Butterworth filter in
Example 7.5.

and elliptic designs. The designs are again carried out using the filter design program
in the MATLAB signal processing toolbox. In Section 7.8.1 we will compare these
IIR designs with FIR designs with the same specifications. Typical design programs
for FIR filters require the passband tolerance limits in Figure 7.1 to be specified with
δp1 = δp2, whereas for IIR filters, it is typically assumed that δp1 = 0. Consequently to
carry out a comparison of IIR and FIR designs, some renormalization of the passband
and stopband specifications may need to be carried out (see, for example, Problem 7.3),
as will be done in Example 7.5.

The lowpass discrete-time filter specifications as used for this example are:

0.99 ≤ |H(ejω)| ≤ 1.01, |ω| ≤ 0.4π, (7.37a)

and

|H(ejω)| ≤ 0.001, 0.6π ≤ |ω| ≤ π. (7.37b)

In terms of the tolerance scheme of Figure 7.1, δp1 = δp2 = 0.01, δs = 0.001,
ωp = 0.4π , and ωs = 0.6π . Rescaling these specifications so that δp1 = 0 corresponds
to scaling the filter by 1/(1 + δp1) to obtain: δp1 = 0, δp2 = 0.0198 and δs = .00099.

The filters are first designed using the filter design program with these specifi-
cations and the filter designs returned by the filter design program are then rescaled
by a factor of 1.01 to satisfy the specifications in Eqs. (7.37a) and (7.37b).

522 Chapter 7 Filter Design Techniques

Radian frequency (�)

(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20

A
m

pl
it

ud
e

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �
0.990

0.995

1.000

1.005

1.010

Sa
m

pl
es

Radian frequency (�)

(c)

0 0.2� 0.4� 0.6� 0.8� �

20

0

5

10

15

25

Figure 7.18 Frequency response of 8th-order Chebyshev type I filter in Exam-
ple 7.5. (a) Log magnitude in dB. (b) Detailed plot of magnitude in passband.
(c) Group delay.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 523

Radian frequency (�)

(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20

A
m

pl
it

ud
e

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �
0.990

0.995

1.000

1.005

1.010

Sa
m

pl
es

Radian frequency (�)

(c)

0 0.2� 0.4� 0.6� 0.8� �

20

0

5

10

15

25

Figure 7.19 Frequency response of 8th-order Chebyshev type II filter in Exam-
ple 7.5. (a) Log magnitude in dB. (b) Detailed plot of magnitude in passband.
(c) Group delay.

524 Chapter 7 Filter Design Techniques

For the specifications in this example, the Butterworth approximation method
requires a system of 14th-order. The frequency response of the discrete-time filter that
results from the bilinear transformation of the appropriate prewarped Butterworth fil-
ter is shown in Figure 7.17. Figure 7.17(a) shows the log magnitude in dB, Figure 7.17(b)
shows the magnitude of H(ejω) in the passband only, and Figure 7.17(c) shows the
group delay of the filter. From these plots, we see that as expected, the Butterworth
frequency response decreases monotonically with frequency, and the gain of the filter
becomes very small above about ω = 0.7π .

Both Chebyshev designs I and II lead to the same order for a given set of specifi-
cations. For our specifications the required order is 8 rather than 14, as was required for
the Butterworth approximation. Figure 7.18 shows the log magnitude, passband magni-
tude, and group delay for the type I approximation to the specifications of Eqs. (7.37a)
and (7.37b). Note that as expected, the frequency response oscillates with equal max-
imum error on either side of the desired gain of unity in the passband.

Figure 7.19 shows the frequency-response functions for the Chebyshev type II
approximation. In this case, the equiripple approximation behavior is in the stopband.
The pole–zero plots for the Chebyshev filters are shown in Figure 7.20. Note that the
Chebyshev type I filter is similar to the Butterworth filter in that it has all eight of its
zeros at z = −1. On the other hand, the type II filter has its zeros arrayed on the unit
circle. These zeros are naturally positioned by the design equations so as to achieve
the equiripple behavior in the stopband.

The specifications of Eqs. (7.37a) and (7.37b) are met by an elliptic filter of
order six. This is the lowest order rational function approximation to the specifica-
tions. Figure 7.21 clearly shows the equiripple behavior in both approximation bands.
Figure 7.22 shows that the elliptic filter, like the Chebyshev type II, has its zeros arrayed
in the stopband region of the unit circle.

8th-order
zero

(a)

Unit
circle

z-plane

(b)

Unit
circle

z-plane

Re

Im

Re

Im

Figure 7.20 Pole–zero plot of 8th-order Chebyshev filters in Example 7.5. (a) Type I.
(b) Type II.

Section 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 525

Radian frequency (�)

(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20

A
m

pl
it

ud
e

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �
0.990

0.995

1.000

1.005

1.010

Sa
m

pl
es

Radian frequency (�)

(c)

0 0.2� 0.4� 0.6� 0.8� �

20

0

5

10

15

25

Figure 7.21 Frequency response of 6th-order elliptic filter in Example 7.5. (a) Log
magnitude in dB. (b) Detailed plot of magnitude in passband. (c) Group delay.

526 Chapter 7 Filter Design Techniques

Unit
circle

z-plane

Re

Im

Figure 7.22 Pole–zero plot of 6th-order elliptic filter in Example 7.5.

7.4 FREQUENCY TRANSFORMATIONS OF LOWPASS IIR
FILTERS

Our discussion and examples of IIR filter design have focused on the design of frequency-
selective lowpass filters. Other types of frequency-selective filters such as highpass, band-
pass, bandstop, and multiband filters are equally important. As with lowpass filters, these
other classes are characterized by one or several passbands and stopbands, each spec-
ified by passband and stopband edge frequencies. Generally the desired filter gain is
unity in the passbands and zero in the stopbands, but as with lowpass filters, the filter
design specifications include tolerance limits by which the ideal gains or attenuation in
the pass- and stopbands can be exceeded. A typical tolerance scheme for a multiband
filter with two passbands and one stopband is shown in Figure 7.23.

�p1

1 + �1

1 − �1

�2

�s1 �p2

�
�s2 �

Figure 7.23 Tolerance scheme for a multiband filter.

Section 7.4 Frequency Transformations of Lowpass IIR Filters 527

The traditional approach to the design of many continuous-time frequency-select-
ive filters is to first design a frequency-normalized prototype lowpass filter and then,
using an algebraic transformation, derive the desired filter from the prototype lowpass
filter (see Guillemin, 1957 and Daniels, 1974). In the case of discrete-time frequency-
selective filters, we could design a continuous-time frequency-selective filter of the de-
sired type and then transform it to a discrete-time filter. This procedure would be accept-
able with the bilinear transformation, but impulse invariance clearly could not be used
to transform highpass and bandstop continuous-time filters into corresponding discrete-
time filters because of the aliasing that results from sampling. An alternative procedure
that works with either the bilinear transformation or impulse invariance is to design a
discrete-time prototype lowpass filter and then perform an algebraic transformation on
it to obtain the desired frequency-selective discrete-time filter.

Frequency-selective filters of the lowpass, highpass, bandpass, and bandstop types
can be obtained from a lowpass discrete-time filter by use of transformations very similar
to the bilinear transformation used to transform continuous-time system functions into
discrete-time system functions. To see how this is done, assume that we are given a
lowpass system function Hlp(Z) that we wish to transform to a new system function
H(z), which has either lowpass, highpass, bandpass, or bandstop characteristics when
evaluated on the unit circle. Note that we associate the complex variable Z with the
prototype lowpass filter and the complex variable z with the transformed filter. Then,
we define a mapping from the Z-plane to the z-plane of the form

Z−1 = G(z−1) (7.38)

such that

H(z) = Hlp(Z)
∣∣
Z−1=G(z−1)

(7.39)

Instead of expressing Z as a function of z, we have assumed in Eq. (7.38) that Z−1 is
expressed as a function of z−1. Thus, according to Eq. (7.39), in obtaining H(z) from
Hlp(z) we replace Z−1 everywhere in Hlp(Z) by the function G(z−1). This is a convenient
representation, because Hlp(Z) is normally expressed as a rational function of Z−1.

If Hlp(Z) is the rational system function of a causal and stable system, we naturally
require that the transformed system function H(z) be a rational function of z−1 and
that the system also be causal and stable. This places the following constraints on the
transformation Z−1 = G(z−1):

1. G(z−1) must be a rational function of z−1.

2. The inside of the unit circle of the Z-plane must map to the inside of the unit circle
of the z-plane.

3. The unit circle of the Z-plane must map onto the unit circle of the z-plane.

528 Chapter 7 Filter Design Techniques

Let θ and ω be the frequency variables (angles) in the Z-plane and z-plane, re-
spectively, i.e., on the respective unit circles Z = ejθ and z = ejω. Then, for condition 3
to hold, it must be true that

e−jθ = |G(e−jω)|ej � G(e−jω), (7.40)

and thus,

|G(e−jω)| = 1. (7.41)

Therefore, the relationship between the frequency variables is

−θ = � G(e−jω). (7.42)

Constantinides (1970) showed that the most general form of the function G(z−1)

that satisfies all the above requirements is

Z−1 = G(z−1) = ±
N∏

k=1

z−1 − αk

1 − αkz−1
. (7.43)

From our discussion of allpass systems in Chapter 5, it should be clear that G(z−1) as
given in Eq. (7.43) satisfies Eq. (7.41), and it is easily shown that Eq. (7.43) maps the
inside of the unit circle of the Z-plane to the inside of the unit circle of the z-plane if and
only if |αk| < 1. By choosing appropriate values for N and the constants αk , a variety of
mappings can be obtained. The simplest is the one that transforms a lowpass filter into
another lowpass filter with different passband and stopband edge frequencies. For this
case,

Z−1 = G(z−1) = z−1 − α

1 − αz−1
. (7.44)

If we substitute Z = ejθ and z = ejω, we obtain

e−jθ = e−jω − α

1 − αe−jω
, (7.45)

from which it follows that

ω = arctan

[
(1 − α2) sin θ

2α + (1 + α2) cos θ

]
. (7.46)

This relationship is plotted in Figure 7.24 for different values of α. Although a warp-
ing of the frequency scale is evident in Figure 7.24 (except in the case α = 0, which
corresponds to Z−1 = z−1), if the original system has a piecewise-constant lowpass
frequency response with cutoff frequency θp, then the transformed system will likewise
have a similar lowpass response with cutoff frequency ωp determined by the choice of α.

�

�

2

�

2

1
2

�

p

�

0

� = 0

� =

1
2

� = −

Figure 7.24 Warping of the frequency
scale in lowpass-to-lowpass
transformation.

TABLE 7.1 TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE
OF CUTOFF FREQUENCY θp TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type Transformations Associated Design Formulas

Lowpass Z−1 = z−1 − α

1 − az−1
α =

sin
(

θp−ωp

2

)
sin
(

θp+ωp

2

)
ωp = desired cutoff frequency

Highpass Z−1 = − z−1 + α

1 + αz−1
α = −

cos
(

θp+ωp

2

)
cos
(

θp−ωp

2

)
ωp = desired cutoff frequency

Bandpass Z−1 = − z−2 − 2αk
k+1 z−1 + k−1

k+1
k−1
k+1 z−2 − 2αk

k+1 z−1 + 1

α =
cos
(

ωp2+ωp1
2

)
cos
(

ωp2−ωp1
2

)
k = cot

(
ωp2 − ωp1

2

)
tan
(

θp

2

)
ωp1 = desired lower cutoff frequency
ωp2 = desired upper cutoff frequency

Bandstop Z−1 = z−2 − 2α
1+k

z−1 + 1−k
1+k

1−k
1+k

z−2 − 2α
1+k

z−1 + 1

α =
cos
(

ωp2+ωp1
2

)
cos
(

ωp2−ωp1
2

)
k = tan

(
ωp2 − ωp1

2

)
tan
(

θp

2

)
ωp1 = desired lower cutoff frequency
ωp2 = desired upper cutoff frequency

529

530 Chapter 7 Filter Design Techniques

Solving for α in terms of θp and ωp, we obtain

α = sin[(θp − ωp)/2]
sin[(θp + ωp)/2] . (7.47)

Thus, to use these results to obtain a lowpass filter H(z) with cutoff frequency ωp from an
already available lowpass filter Hlp(Z) with cutoff frequency θp, we would use Eq. (7.47)
to determine α in the expression

H(z) = Hlp(Z)
∣∣
Z−1=(z−1−α)/(1−αz−1)

. (7.48)

(Problem 7.51 explores how the lowpass–lowpass transformation can be used to obtain
a network structure for a variable cutoff frequency filter where the cutoff frequency is
determined by a single parameter α.)

Transformations from a lowpass filter to highpass, bandpass, and bandstop filters
can be derived in a similar manner. These transformations are summarized in Table 7.1.
In the design formulas, all of the cutoff frequencies are assumed to be between zero
and π radians. The following example illustrates the use of such transformations.

Example 7.6 Transformation of a Lowpass Filter
to a Highpass Filter

Consider a Type I Chebyshev lowpass filter with system function

Hlp(Z) = 0.001836(1 + Z−1)4

(1 − 1.5548Z−1 + 0.6493Z−2)(1 − 1.4996Z−1 + 0.8482Z−2)
. (7.49)

This 4th-order system was designed to meet the specifications
0.89125 ≤ |Hlp(ejθ)| ≤ 1, 0 ≤ θ ≤ 0.2π, (7.50a)

|Hlp(ejθ)| ≤ 0.17783, 0.3π ≤ θ ≤ π. (7.50b)
The frequency response of this filter is shown in Figure 7.25.

To transform this filter to a highpass filter with passband cutoff frequency
ωp = 0.6π , we obtain from Table 7.1

α = − cos [(0.2π + 0.6π)/2]
cos [(0.2π − 0.6π)/2]

= −0.38197. (7.51)

Thus, using the lowpass–highpass transformation indicated in Table 7.1, we obtain

H(z) = Hlp(Z)

∣∣∣
Z−1=−[(z−1−0.38197)/(1−0.38197z−1)]

= 0.02426(1 − z−1)4

(1 + 1.0416z−1 + 0.4019z−2)(1 + 0.5661z−1 + 0.7657z−2)
. (7.52)

The frequency response of this system is shown in Figure 7.26. Note that except for
some distortion of the frequency scale, the highpass frequency response appears very
much as if the lowpass frequency response were shifted in frequency by π . Also note
that the 4th-order zero at Z = −1 for the lowpass filter now appears at z = 1 for
the highpass filter. This example also verifies that the equiripple passband and stop-
band behavior is preserved by frequency transformations of this type. Also note that
the group delay in Figure 7.26(c) is not simply a stretched and shifted version of Fig-
ure 7.25(c). This is because the phase variations are stretched and shifted, so that the
derivative of the phase is smaller for the highpass filter.

Section 7.4 Frequency Transformations of Lowpass IIR Filters 531

20

0

−20

−40

−60

−80

−100
0 0.2� 0.4�

 Radian frequency (�)
 (a)

 d
B

0.6� 0.8� �

1.2

1

0.8

0.6

0.4

0.2

0
0 0.2� 0.4�

 Radian frequency (�)
 (b)

 A
m

pl
it

ud
e

0.6� 0.8� �

16

0

4

8

12

0 0.2� 0.4�

 Radian frequency (�)
(c)

Sa
m

pl
es

0.6� 0.8� �

Figure 7.25 Frequency response of 4th-order Chebyshev lowpass filter. (a) Log
magnitude in dB. (b) Magnitude. (c) Group delay.

532 Chapter 7 Filter Design Techniques

20

0

−20

−40

−60

−80

−100
0 0.2� 0.4�

 Radian frequency (�)
 (a)

 d
B

0.6� 0.8� �

1.2

1

0.8

0.6

0.4

0.2

0
0 0.2� 0.4�

 Radian frequency (�)
 (b)

 A
m

pl
it

ud
e

0.6� 0.8� �

16

0

4

8

12

0 0.2� 0.4�

 Radian frequency (�)
(c)

Sa
m

pl
es

0.6� 0.8� �

Figure 7.26 Frequency response of 4th-order Chebyshev highpass filter obtained
by frequency transformation. (a) Log magnitude in dB. (b) Magnitude. (c) Group
delay.

Section 7.5 Design of FIR Filters by Windowing 533

7.5 DESIGN OF FIR FILTERS BY WINDOWING

As discussed in Section 7.2, commonly used techniques for the design of IIR filters have
evolved from applying transformations of continuous-time IIR systems into discrete-
time IIR systems. In contrast, the design techniques for FIR filters are based on directly
approximating the desired frequency response or impulse response of the discrete-time
system.

The simplest method of FIR filter design is called the window method. This method
generally begins with an ideal desired frequency response that can be represented as

Hd(ejω) =
∞∑

n=−∞
hd [n]e−jωn, (7.53)

where hd [n] is the corresponding impulse response sequence, which can be expressed
in terms of Hd(ejω) as

hd [n] = 1
2π

∫ π

−π

Hd(ejω)ejωndω. (7.54)

Many idealized systems are defined by piecewise-constant or piecewise-smooth fre-
quency responses with discontinuities at the boundaries between bands. As a result,
these systems have impulse responses that are noncausal and infinitely long. The most
straightforward approach to obtaining an FIR approximation to such systems is to trun-
cate the ideal impulse response through the process referred to as windowing. Equa-
tion (7.53) can be thought of as a Fourier series representation of the periodic frequency
response Hd(ejω), with the sequence hd [n] playing the role of the Fourier coefficients.
Thus, the approximation of an ideal filter by truncation of the ideal impulse response
is identical to the issue of the convergence of Fourier series, a subject that has received
a great deal of study. A particularly important concept from this theory is the Gibbs
phenomenon, which was discussed in Example 2.18. In the following discussion, we will
see how this effect of nonuniform convergence manifests itself in the design of FIR
filters.

A particularly simple way to obtain a causal FIR filter from hd [n] is to truncate
hd [n], i.e., to define a new system with impulse response h[n] given by4

h[n] =
{

hd [n], 0 ≤ n ≤ M,

0, otherwise.
(7.55)

More generally, we can represent h[n] as the product of the desired impulse response
and a finite-duration “window” w[n]; i.e.,

h[n] = hd [n]w[n], (7.56)

4The notation for FIR systems was established in Chapter 5. That is, M is the order of the system
function polynomial. Thus, (M +1) is the length, or duration, of the impulse response. Often in the literature,
N is used for the length of the impulse response of an FIR filter; however, we have used N to denote the order
of the denominator polynomial in the system function of an IIR filter. Thus, to avoid confusion and maintain
consistency throughout this book, we will consider the length of the impulse response of an FIR filter to be
(M + 1).

534 Chapter 7 Filter Design Techniques

where, for simple truncation as in Eq. (7.55), the window is the rectangular window

w[n] =
{

1, 0 ≤ n ≤ M,

0, otherwise.
(7.57)

It follows from the modulation, or windowing, theorem (Section 2.9.7) that

H(ejω) = 1
2π

∫ π

−π

Hd(ejθ)W(ej (ω−θ))dθ. (7.58)

That is, H(ejω) is the periodic convolution of the desired ideal frequency response
with the Fourier transform of the window. Thus, the frequency response H(ejω) will
be a “smeared” version of the desired response Hd(ejω). Figure 7.27(a) depicts typical
functions Hd(ejθ) and W(ej(ω−θ)) as a function of θ , as required in Eq. (7.58).

If w[n] = 1 for all n (i.e., if we do not truncate at all), W(ejω) is a periodic impulse
train with period 2π , and therefore, H(ejω) = Hd(ejω). This interpretation suggests
that if w[n] is chosen so that W(ejω) is concentrated in a narrow band of frequencies
around ω = 0, i.e., it approximates an impulse, then H(ejω) will “look like” Hd(ejω),

except where Hd(ejω) changes very abruptly. Consequently, the choice of window is
governed by the desire to have w[n] as short as possible in duration, so as to minimize
computation in the implementation of the filter, while having W(ejω) approximate an
impulse; that is, we want W(ejω) to be highly concentrated in frequency so that the
convolution of Eq. (7.58) faithfully reproduces the desired frequency response. These
are conflicting requirements, as can be seen in the case of the rectangular window of
Eq. (7.57), where

W(ejω) =
M∑

n=0

e−jωn = 1 − e−jω(M+1)

1 − e−jω
= e−jωM/2 sin[ω(M + 1)/2]

sin(ω/2)
. (7.59)

The magnitude of the function sin[ω(M + 1)/2]/sin(ω/2) is plotted in Figure 7.28 for
the case M = 7. Note that W(ejω) for the rectangular window has a generalized linear
phase. As M increases, the width of the “main lobe” decreases. The main lobe is usually
defined as the region between the first zero-crossings on either side of the origin. For
the rectangular window, the width of the main lobe is 	ωm = 4π/(M + 1). However,
for the rectangular window, the side lobes are large, and in fact, as M increases, the
peak amplitudes of the main lobe and the side lobes grow in a manner such that the
area under each lobe is a constant while the width of each lobe decreases with M .
Consequently, as W(ej(ω−θ)) “slides by” a discontinuity of Hd(ejθ) as ω varies, the
integral of W(ej(ω−θ))Hd(ejθ) will oscillate as each side lobe of W(ej(ω−θ)) moves past
the discontinuity. This result is depicted in Figure 7.27(b). Since the area under each
lobe remains constant with increasing M , the oscillations occur more rapidly, but do not
decrease in amplitude as M increases.

In the theory of Fourier series, it is well known that this nonuniform convergence,
the Gibbs phenomenon, can be moderated through the use of a less abrupt truncation
of the Fourier series. By tapering the window smoothly to zero at each end, the height
of the side lobes can be diminished; however, this is achieved at the expense of a wider
main lobe and thus a wider transition at the discontinuity.

Section 7.5 Design of FIR Filters by Windowing 535

� � 2�

W(e j(� –
))

Hd(e j
)

(a)

� 2� �

H(e j�)

(b)

Figure 7.27 (a) Convolution process implied by truncation of the ideal impulse
response. (b) Typical approximation resulting from windowing the ideal impulse
response.

� 2�

Mainlobe
width

Peak sidelobe

��m

�2�

(M + 1)
2�

8

(M + 1)
–

sin (�(M + 1)/2)
sin (�/2) (M = 7)

Figure 7.28 Magnitude of the Fourier
transform of a rectangular window
(M = 7).

7.5.1 Properties of Commonly Used Windows

Some commonly used windows are shown in Figure 7.29. These windows are defined
by the following equations:

Rectangular

w[n] =
{

1, 0 ≤ n ≤ M,

0, otherwise
(7.60a)

536 Chapter 7 Filter Design Techniques

M M
n

2
0

0.2

Hamming
Hann
Blackman
Bartlett

0.4

0.6

0.8

1.0

w [n] Rectangular

Figure 7.29 Commonly used windows.

Bartlett (triangular)

w[n] =

⎧⎪⎨⎪⎩
2n/M, 0 ≤ n ≤ M/2, M even

2 − 2n/M, M/2 < n ≤ M,

0, otherwise

(7.60b)

Hann

w[n] =
{

0.5 − 0.5 cos(2πn/M), 0 ≤ n ≤ M,

0, otherwise
(7.60c)

Hamming

w[n] =
{

0.54 − 0.46 cos(2πn/M), 0 ≤ n ≤ M,

0, otherwise
(7.60d)

Blackman

w[n] =
{

0.42 − 0.5 cos(2πn/M) + 0.08 cos(4πn/M), 0 ≤ n ≤ M,

0, otherwise
(7.60e)

(For convenience, Figure 7.29 shows these windows plotted as functions of a con-
tinuous variable; however, as specified in Eq. (7.60), the window sequence is defined
only at integer values of n.)

The Bartlett, Hann, Hamming, and Blackman windows are all named after their
originators. The Hann window is associated with Julius von Hann, an Austrian meteor-
ologist. The term “hanning” was used by Blackman and Tukey (1958) to describe the
operation of applying this window to a signal and has since become the most widely
used name for the window, with varying preferences for the choice of “Hanning” or
“hanning.” There is some slight variation in the definition of the Bartlett and Hann
windows. As we have defined them, w[0] = w[M] = 0, so that it would be reasonable
to assert that with this definition, the window length is really only M −1 samples. Other

Section 7.5 Design of FIR Filters by Windowing 537

definitions of the Bartlett and Hann windows are related to our definitions by a shift of
one sample and redefinition of the window length.

As will be discussed in Chapter 10, the windows defined in Eq. (7.60) are commonly
used for spectrum analysis as well as for FIR filter design. They have the desirable
property that their Fourier transforms are concentrated around ω = 0, and they have a
simple functional form that allows them to be computed easily. The Fourier transform of
the Bartlett window can be expressed as a product of Fourier transforms of rectangular
windows, and the Fourier transforms of the other windows can be expressed as sums of
frequency-shifted Fourier transforms of the rectangular window, as given by Eq. (7.59).
(See Problem 7.43.)

The function 20 log10 |W(ejω)| is plotted in Figure 7.30 for each of these windows
with M = 50. The rectangular window clearly has the narrowest main lobe, and thus,
for a given length, it should yield the sharpest transitions of H(ejω) at a discontinuity
of Hd(ejω). However, the first side lobe is only about 13 dB below the main peak,
resulting in oscillations of H(ejω) of considerable size around discontinuities of Hd(ejω).
Table 7.2, which compares the windows of Eq. (7.60), shows that, by tapering the window
smoothly to zero, as with the Bartlett, Hamming, Hann, and Blackman windows, the
side lobes (second column) are greatly reduced in amplitude; however, the price paid
is a much wider main lobe (third column) and thus wider transitions at discontinuities
of Hd(ejω). The other columns of Table 7.2 will be discussed later.

20
 lo

g 1
0

|W
(e

j�
)|

Radian frequency (�)
(a)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

20
 lo

g 1
0

|W
(e

j�
)|

Radian frequency (�)
(b)

0 0.2� 0.4� 0.6� 0.8� �
–100

–80

–60

–40

–20

0

Figure 7.30 Fourier transforms (log
magnitude) of windows of Figure 7.29
with M = 50. (a) Rectangular.
(b) Bartlett.

538 Chapter 7 Filter Design Techniques

20
 lo

g 1
0

|W
(e

j�
)|

Radian frequency (�)

(e)

0 0.2� 0.4� 0.6� 0.8� �

0

–100

–80

–40

–60

–20

20
 lo

g 1
0

|W
(e

j�
)|

Radian frequency (�)

(c)

0 0.2� 0.4� 0.6� 0.8� �

0

–100

–80

–40

–60

–20
20

 lo
g 1

0
|W

(e
j�

)|

Radian frequency (�)

(d)

0 0.2� 0.4� 0.6� 0.8� �

0

–100

–80

–40

–60

–20

Figure 7.30 (continued) (c) Hann.
(d) Hamming. (e) Blackman.

7.5.2 Incorporation of Generalized Linear Phase

In designing many types of FIR filters, it is desirable to obtain causal systems with a
generalized linear-phase response. All the windows of Eq. (7.60) have been defined in
anticipation of this need. Specifically, note that all the windows have the property that

w[n] =
{

w[M − n], 0 ≤ n ≤ M,

0, otherwise; (7.61)

Section 7.5 Design of FIR Filters by Windowing 539

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition
Peak Approximation Equivalent Width

Side-Lobe Approximate Error, Kaiser of Equivalent
Type of Amplitude Width of 20 log10 δ Window, Kaiser
Window (Relative) Main Lobe (dB) β Window

Rectangular −13 4π/(M + 1) −21 0 1.81π/M

Bartlett −25 8π/M −25 1.33 2.37π/M

Hann −31 8π/M −44 3.86 5.01π/M

Hamming −41 8π/M −53 4.86 6.27π/M

Blackman −57 12π/M −74 7.04 9.19π/M

i.e., they are symmetric about the point M/2. As a result, their Fourier transforms are
of the form

W(ejω) = We(e
jω)e−jωM/2, (7.62)

where We(e
jω) is a real, even function of ω. This is illustrated by Eq. (7.59). The conven-

tion of Eq. (7.61) leads to causal filters in general, and if the desired impulse response
is also symmetric about M/2, i.e., if hd [M − n] = hd [n], then the windowed impulse
response will also have that symmetry, and the resulting frequency response will have
a generalized linear phase; that is,

H(ejω) = Ae(e
jω)e−jωM/2, (7.63)

where Ae(e
jω) is real and is an even function of ω. Similarly, if the desired impulse

response is antisymmetric about M/2, i.e., if hd [M − n] = −hd [n], then the windowed
impulse response will also be antisymmetric about M/2, and the resulting frequency
response will have a generalized linear phase with a constant phase shift of ninety
degrees; i.e.,

H(ejω) = jAo(e
jω)e−jωM/2, (7.64)

where Ao(e
jω) is real and is an odd function of ω.

Although the preceding statements are straightforward if we consider the product
of the symmetric window with the symmetric (or antisymmetric) desired impulse re-
sponse, it is useful to consider the frequency-domain representation. Suppose
hd [M − n] = hd [n]. Then,

Hd(ejω) = He(e
jω)e−jωM/2, (7.65)

where He(e
jω) is real and even.

If the window is symmetric, we can substitute Eqs. (7.62) and (7.65) into Eq. (7.58)
to obtain

H(ejω) = 1
2π

∫ π

−π

He(e
jθ)e−jθM/2We(e

j (ω−θ))e−j (ω−θ)M/2dθ. (7.66)

A simple manipulation of the phase factors leads to

H(ejω) = Ae(e
jω)e−jωM/2, (7.67)

540 Chapter 7 Filter Design Techniques

where

Ae(e
jω) = 1

2π

∫ π

−π

He(e
jθ)We(e

j (ω−θ))dθ. (7.68)

Thus, we see that the resulting system has a generalized linear phase and, moreover,
the real function Ae(e

jω) is the result of the periodic convolution of the real functions
He(e

jω) and We(e
jω).

The detailed behavior of the convolution of Eq. (7.68) determines the magnitude
response of the filter that results from windowing. The following example illustrates this
for a linear-phase lowpass filter.

Example 7.7 Linear-Phase Lowpass Filter

The desired frequency response is defined as

Hlp(ejω) =
{

e−jωM/2, |ω| < ωc,

0, ωc < |ω| ≤ π,
(7.69)

where the generalized linear-phase factor has been incorporated into the definition of
the ideal lowpass filter. The corresponding ideal impulse response is

hlp[n] = 1
2π

∫ ωc

−ωc

e−jωM/2ejωndω = sin[ωc(n − M/2)]
π(n − M/2)

(7.70)

for −∞ < n < ∞. It is easily shown that hlp[M −n] = hlp[n], so if we use a symmetric
window in the equation

h[n] = sin[ωc(n − M/2)]
π(n − M/2)

w[n], (7.71)

then a linear-phase system will result.
The upper part of Figure 7.31 depicts the character of the amplitude response

that would result for all the windows of Eq. (7.60), except the Bartlett window, which is
rarely used for filter design. (For M even, the Bartlett window would produce a mono-
tonic function Ae(e

jω), because We(e
jω) is a positive function.) The figure displays

the important properties of window method approximations to desired frequency re-
sponses that have step discontinuities. It applies accurately when ωc is not close to
zero or to π and when the width of the main lobe is smaller than 2ωc. At the bottom
of the figure is a typical Fourier transform for a symmetric window (except for the
linear phase). This function should be visualized in different positions as an aid in
understanding the shape of the approximation Ae(e

jω) in the vicinity of ωc.
When ω = ωc, the symmetric function We(e

j (ω−θ)) is centered on the disconti-
nuity, and about one-half its area contributes to Ae(e

jω). Similarly, we can see that the
peak overshoot occurs when We(e

j (ω−θ)) is shifted such that the first negative side lobe
on the right is just to the right of ωc. Similarly, the peak negative undershoot occurs
when the first negative side lobe on the left is just to the left of ωc. This means that the
distance between the peak ripples on either side of the discontinuity is approximately
the main-lobe width 	ωm, as shown in Figure 7.31. The transition width 	ω as defined
in the figure is therefore somewhat less than the main-lobe width. Finally, owing to the
symmetry of We(e

j (ω−θ)), the approximation tends to be symmetric around ωc; i.e.,
the approximation overshoots by an amount δ in the passband and undershoots by the
same amount in the stopband.

Section 7.5 Design of FIR Filters by Windowing 541

�

0.5

–�
�

�

�c

��m

�

1 – �

1 + �

��

Ae(e j�)

He(e j�)

We(e j(� –
))

Figure 7.31 Illustration of type of approximation obtained at a discontinuity of
the ideal frequency response.

The fourth column of Table 7.2 shows the peak approximation error at a discon-
tinuity (in dB) for the windows of Eq. (7.60). Clearly, the windows with the smaller
side lobes yield better approximations of the ideal response at a discontinuity. Also, the
third column, which shows the width of the main lobe, suggests that narrower transition
regions can be achieved by increasing M. Thus, through the choice of the shape and du-
ration of the window, we can control the properties of the resulting FIR filter. However,
trying different windows and adjusting lengths by trial and error is not a very satisfac-
tory way to design filters. Fortunately, a simple formalization of the window method has
been developed by Kaiser (1974).

7.5.3 The Kaiser Window Filter Design Method

The trade-off between the main-lobe width and side-lobe area can be quantified by
seeking the window function that is maximally concentrated around ω = 0 in the fre-
quency domain. The issue was considered in depth in a series of classic papers by Slepian
et al. (1961). The solution found in this work involves prolate spheroidal wave func-
tions, which are difficult to compute and therefore unattractive for filter design. How-
ever, Kaiser (1966, 1974) found that a near-optimal window could be formed using the
zeroth-order modified Bessel function of the first kind, a function that is much easier to

542 Chapter 7 Filter Design Techniques

compute. The Kaiser window is defined as

w[n] =
⎧⎨⎩ I0[β(1 − [(n − α)/α]2)1/2]

I0(β)
, 0 ≤ n ≤ M,

0, otherwise,

(7.72)

where α = M/2, and I0(·) represents the zeroth-order modified Bessel function of the
first kind. In contrast to the other windows in Eqs. (7.60), the Kaiser window has two
parameters: the length (M + 1) and a shape parameter β. By varying (M + 1) and β,
the window length and shape can be adjusted to trade side-lobe amplitude for main-
lobe width. Figure 7.32(a) shows continuous envelopes of Kaiser windows of length
M + 1 = 21 for β = 0, 3, and 6. Notice from Eq. (7.72) that the case β = 0 reduces
to the rectangular window. Figure 7.32(b) shows the corresponding Fourier transforms
of the Kaiser windows in Figure 7.32(a). Figure 7.32(c) shows Fourier transforms of
Kaiser windows with β = 6 and M = 10, 20, and 40. The plots in Figures 7.32(b) and (c)
clearly show that the desired trade-off can be achieved. If the window is tapered more,
the side lobes of the Fourier transform become smaller, but the main lobe becomes
wider. Figure 7.32(c) shows that increasing M while holding β constant causes the main
lobe to decrease in width, but it does not affect the peak amplitude of the side lobes. In
fact, through extensive numerical experimentation, Kaiser obtained a pair of formulas
that permit the filter designer to predict in advance the values of M and β needed to
meet a given frequency-selective filter specification. The upper plot of Figure 7.31 is
also typical of approximations obtained using the Kaiser window, and Kaiser (1974)
found that, over a usefully wide range of conditions, the peak approximation error (δ
in Figure 7.31) is determined by the choice of β. Given that δ is fixed, the passband
cutoff frequency ωp of the lowpass filter is defined to be the highest frequency such
that |H(ejω)| ≥ 1 − δ. The stopband cutoff frequency ωs is defined to be the lowest
frequency such that |H(ejω)| ≤ δ. Therefore, the transition region has width

	ω = ωs − ωp (7.73)

for the lowpass filter approximation. Defining

A = −20 log10 δ, (7.74)

Kaiser determined empirically that the value of β needed to achieve a specified value
of A is given by

β =

⎧⎪⎪⎨⎪⎪⎩
0.1102(A − 8.7), A > 50,

0.5842(A − 21)0.4 + 0.07886(A − 21), 21 ≤ A ≤ 50,

0.0, A < 21.

(7.75)

(Recall that the case β = 0 is the rectangular window for which A = 21.) Furthermore,
Kaiser found that to achieve prescribed values of A and 	ω, M must satisfy

M = A − 8
2.285	ω

. (7.76)

Equation (7.76) predicts M to within ±2 over a wide range of values of 	ω and A. Thus,
with these formulas, the Kaiser window design method requires almost no iteration or
trial and error. The examples in Section 7.6 outline and illustrate the procedure.

A
m

pl
it

ud
e

Samples

(a)

5 10 15 200

0.3

0.6

0.9

1.2

� = 0
� = 3
� = 6

dB

Radian frequency (�)

(b)

0.2� 0.6�0.4� 0.8�

0.2� 0.6�0.4� 0.8�

�0

–75

–100

–50

–25

0

� = 0
� = 3
� = 6

dB

Radian frequency (�)

(c)

�0

–75

–100

–50

–25

0

M = 10
M = 20
M = 40

Figure 7.32 (a) Kaiser windows for β = 0, 3, and 6 and M = 20. (b) Fourier
transforms corresponding to windows in (a). (c) Fourier transforms of Kaiser win-
dows with β = 6 and M = 10, 20, and 40.

543

544 Chapter 7 Filter Design Techniques

Relationship of the Kaiser Window to Other Windows

The basic principle of the window design method is to truncate the ideal impulse re-
sponse with a finite-length window such as one of those discussed in this section. The
corresponding effect in the frequency domain is that the ideal frequency response is
convolved with the Fourier transform of the window. If the ideal filter is a lowpass filter,
the discontinuity in its frequency response is smeared as the main lobe of the Fourier
transform of the window moves across the discontinuity in the convolution process.
To a first approximation, the width of the resulting transition band is determined by
the width of the main lobe of the Fourier transform of the window, and the passband
and stopband ripples are determined by the side lobes of the Fourier transform of the
window. Because the passband and stopband ripples are produced by integration of the
symmetric window side lobes, the ripples in the passband and the stopband are approx-
imately the same. Furthermore, to a very good approximation, the maximum passband
and stopband deviations are not dependent on M and can be changed only by changing
the shape of the window used. This is illustrated by Kaiser’s formula, Eq. (7.75), for the
window shape parameter, which is independent of M . The last two columns of Table 7.2
compare the Kaiser window with the windows of Eqs. (7.60). The fifth column gives the
Kaiser window shape parameter (β) that yields the same peak approximation error (δ)

as the window indicated in the first column. The sixth column shows the corresponding
transition width [from Eq. (7.76)] for filters designed with the Kaiser window. This for-
mula would be a much better predictor of the transition width for the other windows
than would the main-lobe width given in the third column of the table.

In Figure 7.33 is shown a comparison of maximum approximation error versus
transition width for the various fixed windows and the Kaiser window for different

0 0.1� 0.2� 0.3� 0.4� 0.5�

−90

−80

−70

−60

−50

−40

−30

−20
Bartlett

Hamming

Hanning

Blackman

Kaiser1

Kaiser2

Kaiser3

Kaiser4

Kaiser5

Kaiser6

Kaiser7

Kaiser8

Kaiser9

Approximation error vs. Transition width [* = fixed windows, o = Kaiser (� = integer)]

Transition width (Δ�)

A
pp

ro
xi

m
at

io
n

er
ro

r
(d

B
)

Figure 7.33 Comparison of fixed windows with Kaiser windows in a lowpass filter
design application (M = 32 and ωc = π/2). (Note that the designation “Kaiser 6”
means Kaiser window with β = 6, etc.)

Section 7.6 Examples of FIR Filter Design by the Kaiser Window Method 545

values of β. The dashed line obtained from Eq. (7.76), shows that Kaiser’s formula is
an accurate representation of approximation error as a function of transition width for
the Kaiser window.

7.6 EXAMPLES OF FIR FILTER DESIGN BY THE KAISER
WINDOW METHOD

In this section, we give several examples that illustrate the use of the Kaiser window
to obtain FIR approximations to several filter types including lowpass filters. These
examples also serve to point out some important properties of FIR systems.

7.6.1 Lowpass Filter

With the use of the design formulas for the Kaiser window, it is straightforward to design
an FIR lowpass filter to meet prescribed specifications. The procedure is as follows:

1. First, the specifications must be established. This means selecting the desired ωp

and ωs and the maximum tolerable approximation error. For window design, the
resulting filter will have the same peak error δ in both the passband and the
stopband. For this example, we use the same specifications as in Example 7.5,
ωp = 0.4π, ωs = 0.6π, δ1 = 0.01, and δ2 = 0.001. Since filters designed by the
window method inherently have δ1 = δ2, we must set δ = 0.001.

2. The cutoff frequency of the underlying ideal lowpass filter must be found. Owing
to the symmetry of the approximation at the discontinuity of Hd(ejω), we would
set

ωc = ωp + ωs

2
= 0.5π.

3. To determine the parameters of the Kaiser window, we first compute

	ω = ωs − ωp = 0.2π, A = −20 log10 δ = 60.

We substitute these two quantities into Eqs. (7.75) and (7.76) to obtain the required
values of β and M . For this example the formulas predict

β = 5.653, M = 37.

4. The impulse response of the filter is computed using Eqs. (7.71) and (7.72). We
obtain

h[n] =

⎧⎪⎨⎪⎩
sin ωc(n − α)

π(n − α)
· I0[β(1 − [(n − α)/α]2)1/2]

I0(β)
, 0 ≤ n ≤ M,

0, otherwise,

where α = M/2 = 37/2 = 18.5. Since M = 37 is an odd integer, the resulting
linear-phase system would be of type II. (See Section 5.7.3 for the definitions
of the four types of FIR systems with generalized linear phase.) The response
characteristics of the filter are shown in Figure 7.34. Figure 7.34(a), which shows
the impulse response, displays the characteristic symmetry of a type II system.

A
m

pl
it

ud
e

Sample number (n)

(a)

0 10 20 30 40
–0.2

0

0.2

0.4

0.6

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

20

0

–20

–40

–60

–80

–100

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.0010

–0.0005

0

0.0005

0.0010

Figure 7.34 Response functions for the lowpass filter designed with a Kaiser
window. (a) Impulse response (M = 37). (b) Log magnitude. (c) Approximation
error for Ae (e

jω).546

Section 7.6 Examples of FIR Filter Design by the Kaiser Window Method 547

Figure 7.34(b), which shows the log magnitude response in dB, indicates that
H(ejω) is zero at ω = π or, equivalently, that H(z) has a zero at z = −1, as
required for a type II FIR system. Figure 7.34(c) shows the approximation error
in the passband and stopbands. This error function is defined as

EA(ω) =
{

1 − Ae(e
jω), 0 ≤ ω ≤ ωp,

0 − Ae(e
jω), ωs ≤ ω ≤ π.

(7.77)

(The error is not defined in the transition region, 0.4π < ω < 0.6π .) Note the slight
asymmetry of the approximation error, and note also that the peak approximation
error is δ = 0.00113 instead of the desired value of 0.001. In this case it is necessary
to increase M to 40 in order to meet the specifications.

5. Finally, observe that it is not necessary to plot either the phase or the group delay,
since we know that the phase is precisely linear and the delay is M/2 = 18.5
samples.

7.6.2 Highpass Filter

The ideal highpass filter with generalized linear phase has the frequency response

Hhp(ejω) =
{

0, |ω| < ωc,

e−jωM/2, ωc < |ω| ≤ π.
(7.78)

The corresponding impulse response can be found by evaluating the inverse transform
of Hhp(ejω), or we can observe that

Hhp(ejω) = e−jωM/2 − Hlp(ejω), (7.79)

where Hlp(ejω) is given by Eq. (7.69). Thus, hhp[n] is

hhp[n] = sin π(n − M/2)

π(n − M/2)
− sin ωc(n − M/2)

π(n − M/2)
, −∞ < n < ∞. (7.80)

To design an FIR approximation to the highpass filter, we can proceed in a manner
similar to that in Section 7.6.1.

Suppose that we wish to design a filter to meet the highpass specifications

|H(ejω)| ≤ δ2, |ω| ≤ ωs

1 − δ1 ≤ |H(ejω)| ≤ 1 + δ1, ωp ≤ |ω| ≤ π

where ωs = 0.35π, ωp = 0.5π , and δ1 = δ2 = δ = 0.02. Since the ideal response
also has a discontinuity, we can apply Kaiser’s formulas in Eqs. (7.75) and (7.76) with
A = 33.98 and 	ω = 0.15π to estimate the required values of β = 2.65 and M = 24.
Figure 7.35 shows the response characteristics that result when a Kaiser window with
these parameters is applied to hhp[n] with ωc = (0.35π + 0.5π)/2. Note that, since M

is an even integer, the filter is a type I FIR system with linear phase, and the delay
is precisely M/2 = 12 samples. In this case, the actual peak approximation error is
δ = 0.0209 rather than 0.02, as specified. Since the error is less than 0.02 everywhere
except at the stopband edge, it is tempting to simply increase M to 25, keeping β the
same, thereby narrowing the transition region. This type II filter, which is shown in
Figure 7.36, is highly unsatisfactory, owing to the zero of H(z) that is forced by the

A
m

pl
it

ud
e

Sample number (n)

(a)

0 10 20 30

–0.2

0

0.2

0.4

–0.4

0.6

0.8

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

20

0

–20

–40

–60

–80

–100

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.04

–0.02

0

0.02

0.04

Figure 7.35 Response functions for type I FIR highpass filter. (a) Impulse re-
sponse (M = 24). (b) Log magnitude. (c) Approximation error for Ae (e

jω).
548

A
m

pl
it

ud
e

Sample number (n)

(a)

0 10 20 30

–0.4

–0.2

0

0.2

–0.6

0.4

0.6
dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

20

0

–20

–40

–60

–80

–100

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.2

0

0.8

0.6

0.4

0.2

1.0

Figure 7.36 Response functions for
type II FIR highpass filter. (a) Impulse
response (M = 25). (b) Log magnitude
of Fourier transform. (c) Approximation
error for Ae (e

jω).

549

550 Chapter 7 Filter Design Techniques

G4

G2

G1

�1 �2 �3 �

|Hmb(e j�)|
Nmb = 4

�
Figure 7.37 Ideal frequency response
for multiband filter.

linear-phase constraint to be at z = −1, i.e., ω = π . Although increasing the order by 1
leads to a worse result, increasing M to 26 would, of course, lead to a type I system that
would exceed the specifications. Clearly, type II FIR linear-phase systems are generally
not appropriate approximations for either highpass or bandstop filters.

The previous discussion of highpass filter design can be generalized to the case
of multiple passbands and stopbands. Figure 7.37 shows an ideal multiband frequency-
selective frequency response. This generalized multiband filter includes lowpass, high-
pass, bandpass, and bandstop filters as special cases. If such a magnitude function is
multiplied by a linear-phase factor e−jωM/2, the corresponding ideal impulse response
is

hmb[n] =
Nmb∑
k=1

(Gk − Gk+1)
sin ωk(n − M/2)

π(n − M/2)
, (7.81)

where Nmb is the number of bands and GNmb+1 = 0. If hmb[n] is multiplied by a Kaiser
window, the type of approximations that we have observed at the single discontinuity of
the lowpass and highpass systems will occur at each of the discontinuities. The behavior
will be the same at each discontinuity, provided that the discontinuities are far enough
apart. Thus, Kaiser’s formulas for the window parameters can be applied to this case to
predict approximation errors and transition widths. Note that the approximation errors
will be scaled by the size of the jump that produces them. That is, if a discontinuity of
unity produces a peak error of δ, then a discontinuity of one-half will have a peak error
of δ/2.

7.6.3 Discrete-Time Differentiators

As illustrated in Example 4.4, sometimes it is of interest to obtain samples of the deriva-
tive of a bandlimited signal from samples of the signal itself. Since the Fourier transform
of the derivative of a continuous-time signal is j� times the Fourier transform of the
signal, it follows that, for bandlimited signals, a discrete-time system with frequency re-
sponse (jω/T) for −π < ω < π (and that is periodic, with period 2π) will yield output
samples that are equal to samples of the derivative of the continuous-time signal. A
system with this property is referred to as a discrete-time differentiator.

Section 7.6 Examples of FIR Filter Design by the Kaiser Window Method 551

For an ideal discrete-time differentiator with linear phase, the appropriate fre-
quency response is

Hdiff(e
jω) = (jω)e−jωM/2, −π < ω < π. (7.82)

(We have omitted the factor 1/T .) The corresponding ideal impulse response is

hdiff[n] = cos π(n − M/2)

(n − M/2)
− sin π(n − M/2)

π(n − M/2)2
, −∞ < n < ∞. (7.83)

If hdiff[n] is multiplied by a symmetric window of length (M + 1), then it is easily shown
that h[n] = −h[M − n]. Thus, the resulting system is either a type III or a type IV
generalized linear-phase system.

Since Kaiser’s formulas were developed for frequency responses with simple mag-
nitude discontinuities, it is not straightforward to apply them to differentiators, wherein
the discontinuity in the ideal frequency response is introduced by the phase. Neverthe-
less, as we show in the next example, the window method is very effective in designing
such systems.

Kaiser Window Design of a Differentiator

To illustrate the window design of a differentiator, suppose M = 10 and β = 2.4. The
resulting response characteristics are shown in Figure 7.38. Figure 7.38(a) shows the
antisymmetric impulse response. Since M is even, the system is a type III linear-phase
system, which implies that H(z) has zeros at both z = +1 (ω = 0) and z = −1 (ω = π).
This is clearly displayed in the magnitude response shown in Figure 7.38(b). The phase
is exact, since type III systems have a π/2-radian constant phase shift plus a linear phase
corresponding in this case to M/2 = 5 samples delay. Figure 7.38(c) shows the amplitude
approximation error

Ediff(ω) = ω − Ao(e
jω), 0 ≤ ω ≤ 0.8π, (7.84)

where Ao(e
jω) is the amplitude of the approximation. (Note that the error is large

around ω = π and is not plotted for frequencies above ω = 0.8π .) Clearly, the linearly
increasing magnitude is not achieved over the whole band, and, obviously, the relative
error (i.e., Ediff(ω)/ω) is very large for low frequencies or high frequencies (around
ω = π).

Type IV linear-phase systems do not constrain H(z) to have a zero at z = −1.
This type of system leads to much better approximations to the amplitude function, as
shown in Figure 7.39, for M = 5 and β = 2.4. In this case, the amplitude approximation
error is very small up to and beyond ω = 0.8π . The phase for this system is again a π/2-
radian constant phase shift plus a linear phase corresponding to a delay of M/2 = 2.5
samples. This noninteger delay is the price paid for the exceedingly good amplitude
approximation. Instead of obtaining samples of the derivative of the continuous-time
signal at the original sampling times t = nT , we obtain samples of the derivative at
times t = (n − 2.5)T . However, in many applications, this noninteger delay may not
cause a problem, or it could be compensated for by other noninteger delays in a more
complex system involving other linear-phase filters.

A
m

pl
it

ud
e

Sample number (n)

(a)

0 2 4 6 8 10

–1

0

–2

1

2
A

m
pl

it
ud

e

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

4

3

2

1

0

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.2

0.1

0

–0.1

0.2

Figure 7.38 Response functions for
type III FIR discrete-time differentiator.
(a) Impulse response (M = 10).
(b) Magnitude. (c) Approximation error
for A0(ejω).

552

A
m

pl
it

ud
e

Sample number (n)

(a)

0 1 2 3 4 5

–1

0

–2

1

2
A

m
pl

it
ud

e

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

4

3

2

1

0

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.04

0.06

0.04

0.02

0

–0.02

0.08

Figure 7.39 Response functions for
type IV FIR discrete-time differentiator.
(a) Impulse response (M = 5).
(b) Magnitude. (c) Approximation error
for A0(ejω).

553

554 Chapter 7 Filter Design Techniques

7.7 OPTIMUM APPROXIMATIONS OF FIR FILTERS

The design of FIR filters by windowing is straightforward and is quite general, even
though it has a number of limitations as discussed below. However, we often wish to
design a filter that is the “best” that can be achieved for a given value of M . It is
meaningless to discuss this question in the absence of an approximation criterion. For
example, in the case of the window design method, it follows from the theory of Fourier
series that the rectangular window provides the best mean-square approximation to a
desired frequency response for a given value of M . That is,

h[n] =
{

hd [n], 0 ≤ n ≤ M,

0, otherwise,
(7.85)

minimizes the expression

ε2 = 1
2π

∫ π

−π

|Hd(ejω) − H(ejω)|2dω. (7.86)

(See Problem 7.25.) However, as we have seen, this approximation criterion leads to
adverse behavior at discontinuities of Hd(ejω). Furthermore, the window method does
not permit individual control over the approximation errors in different bands. For
many applications, better filters result from a minimax strategy (minimization of the
maximum errors) or a frequency-weighted error criterion. Such designs can be achieved
using algorithmic techniques.

As the previous examples show, frequency-selective filters designed by windowing
often have the property that the error is greatest on either side of a discontinuity of the
ideal frequency response, and the error becomes smaller for frequencies away from
the discontinuity. Furthermore, as suggested by Figure 7.31, such filters typically result
in approximately equal errors in the passband and stopband. (See Figures 7.34(c) and
7.35(c), for example.) We have already seen that, for IIR filters, if the approximation
error is spread out uniformly in frequency and if the passband and stopband ripples are
adjusted separately, a given design specification can be met with a lower-order filter than
if the approximation just meets the specification at one frequency and far exceeds it at
others. This intuitive notion is confirmed for FIR systems by a theorem to be discussed
later in the section.

In the following discussion, we consider a particularly effective and widely used
algorithmic procedure for the design of FIR filters with a generalized linear phase.
Although we consider only type I filters in detail, we indicate where appropriate, how
the results apply to types II, III, and IV generalized linear-phase filters.

In designing a causal type I linear-phase FIR filter, it is convenient first to consider
the design of a zero-phase filter, i.e., one for which

he[n] = he[−n], (7.87)

and then to insert a delay sufficient to make it causal. Consequently, we consider he[n]
satisfying the condition of Eq. (7.87). The corresponding frequency response is given
by

Ae(e
jω) =

L∑
n=−L

he[n]e−jωn, (7.88)

Section 7.7 Optimum Approximations of FIR Filters 555

1 – �1

1

�2

–�2

1 + �1

�p �s � �

Ae(e j�)

Figure 7.40 Tolerance scheme and
ideal response for lowpass filter.

with L = M/2 an integer, or, because of Eq. (7.87),

Ae(e
jω) = he[0] +

L∑
n=1

2he[n] cos(ωn). (7.89)

Note that Ae(e
jω) is a real, even, and periodic function of ω. A causal system can be

obtained from he[n] by delaying it by L = M/2 samples. The resulting system has
impulse response

h[n] = he[n − M/2] = h[M − n] (7.90)

and frequency response

H(ejω) = Ae(e
jω)e−jωM/2. (7.91)

Figure 7.40 shows a tolerance scheme for an approximation to a lowpass filter with a real
function such as Ae(e

jω). Unity is to be approximated in the band 0 ≤ |ω| ≤ ωp with
maximum absolute error δ1, and zero is to be approximated in the band ωs ≤ |ω| ≤ π

with maximum absolute error δ2. An algorithmic technique for designing a filter to meet
these specifications must, in effect, systematically vary the (L + 1) unconstrained im-
pulse response values he[n], where 0 ≤ n ≤ L. Design algorithms have been developed
in which some of the parameters L, δ1, δ2, ωp, and ωs are fixed and an iterative proce-
dure is used to obtain optimum adjustments of the remaining parameters. Two distinct
approaches have been developed. Herrmann (1970), Herrmann and Schüssler (1970a),
and Hofstetter, Oppenheim and Siegel (1971) developed procedures in which L, δ1, and
δ2 are fixed, and ωp and ωs are variable. Parks and McClellan (1972a, 1972b), McClellan
and Parks (1973), and Rabiner (1972a, 1972b) developed procedures in which L, ωp, ωs ,
and the ratio δ1/δ2 are fixed and δ1 (or δ2) is variable. Since the time when these different
approaches were developed, the Parks–McClellan algorithm has become the dominant
method for optimum design of FIR filters. This is because it is the most flexible and the
most computationally efficient. Thus, we will discuss only that algorithm here.

The Parks–McClellan algorithm is based on reformulating the filter design prob-
lem as a problem in polynomial approximation. Specifically, the terms cos(ωn) in
Eq. (7.89) can be expressed as a sum of powers of cos ω in the form

cos(ωn) = Tn(cos ω), (7.92)

556 Chapter 7 Filter Design Techniques

where Tn(x) is an nth-order polynomial.5 Consequently, Eq. (7.89) can be rewritten as
an Lth-order polynomial in cos ω, namely,

Ae(e
jω) =

L∑
k=0

ak(cos ω)k, (7.93)

where the aks are constants that are related to he[n], the values of the impulse response.
With the substitution x = cos ω, we can express Eq. (7.93) as

Ae(e
jω) = P(x)|x=cos ω, (7.94)

where P(x) is the Lth-order polynomial

P(x) =
L∑

k=0

akx
k. (7.95)

We will see that it is not necessary to know the relationship between the aks and he[n]
(although a formula can be obtained); it is enough to know that Ae(e

jω) can be expressed
as the Lth-order trigonometric polynomial of Eq. (7.93).

The key to gaining control over ωp and ωs is to fix them at their desired values and
let δ1 and δ2 vary. Parks and McClellan (1972a, 1972b) showed that with L, ωp, and ωs

fixed, the frequency-selective filter design problem becomes a problem in Chebyshev ap-
proximation over disjoint sets, an important problem in approximation theory and one
for which several useful theorems and procedures have been developed. (See Cheney,
1982.) To formalize the approximation problem in this case, let us define an approxi-
mation error function

E(ω) = W(ω)[Hd(ejω) − Ae(e
jω)], (7.96)

where the weighting function W(ω) incorporates the approximation error parameters
into the design process. In this design method, the error function E(ω), the weighting
function W(ω), and the desired frequency response Hd(ejω) are defined only over closed
subintervals of 0 ≤ ω ≤ π . For example, to approximate a lowpass filter, these functions
are defined for 0 ≤ ω ≤ ωp and ωs ≤ ω ≤ π . The approximating function Ae(e

jω) is not
constrained in the transition region(s) (e.g., ωp < ω < ωs), and it may take any shape
necessary to achieve the desired response in the other subintervals.

For example, suppose that we wish to obtain an approximation as in Figure 7.40,
where L, ωp, and ωs are fixed design parameters. For this case,

Hd(ejω) =
{

1, 0 ≤ ω ≤ ωp,

0, ωs ≤ ω ≤ π.
(7.97)

The weighting function W(ω) allows us to weight the approximation errors differently
in the different approximation intervals. For the lowpass filter approximation problem,
the weighting function is

W(ω) =
⎧⎨⎩

1
K

, 0 ≤ ω ≤ ωp,

1, ωs ≤ ω ≤ π,

(7.98)

5More specifically, Tn(x) is the nth-order Chebyshev polynomial, defined as Tn(x) = cos(n cos−1 x).

Section 7.7 Optimum Approximations of FIR Filters 557

1 – �1

�2

–�2

1 + �1

�p � �

Ae(e j�)

�s Figure 7.41 Typical frequency
response meeting the specifications
of Figure 7.40.

�

–�

E(�)

�p �s � �

Figure 7.42 Weighted error for the
approximation of Figure 7.41.

where K = δ1/δ2. If Ae(e
jω) is as shown in Figure 7.41, the weighted approximation

error, E(ω) in Eq. (7.96), would be as indicated in Figure 7.42. Note that with this
weighting, the maximum weighted absolute approximation error is δ = δ2 in both
bands.

The particular criterion used in this design procedure is the so-called minimax
or Chebyshev criterion, where, within the frequency intervals of interest (the passband
and stopband for a lowpass filter), we seek a frequency response Ae(e

jω) that minimizes
the maximum weighted approximation error of Eq. (7.96). Stated more compactly, the
best approximation is to be found in the sense of

min
{he[n]:0≤n≤L}

(
max
ω∈F

|E(ω)|
)
,

where F is the closed subset of 0 ≤ ω ≤ π such that 0 ≤ ω ≤ ωp or ωs ≤ ω ≤ π . Thus,
we seek the set of impulse response values that minimizes δ in Figure 7.42.

Parks and McClellan (1972a, 1972b) applied the following theorem of approxi-
mation theory to this filter design problem.

Alternation Theorem: Let FP denote the closed subset consisting of the disjoint union
of closed subsets of the real axis x. Furthermore,

P(x) =
r∑

k=0

akx
k

is an rth-order polynomial, and DP (x) denotes a given desired function of x that is contin-
uous on FP ; WP (x) is a positive function, continuous on FP , and

EP (x) = WP (x)[DP (x) − P(x)]
is the weighted error. The maximum error is defined as

‖E‖ = max
x∈FP

|EP (x)|.

558 Chapter 7 Filter Design Techniques

A necessary and sufficient condition that P(x) be the unique rth-order polynomial that
minimizes ‖E‖ is that EP (x) exhibit at least (r + 2) alternations; i.e., there must exist at
least (r + 2) values xi in Fp such that x1 < x2 < · · · < xr+2 and such that Ep(xi) =
−EP (xi+1) = ± ‖E‖ for i = 1, 2, . . . , (r + 1).

At first glance, it may seem to be difficult to relate this formal theorem to the
problem of filter design. However, in the discussion that follows, all of the elements of
the theorem will be shown to be important in developing the design algorithm. To aid in
understanding the alternation theorem, in Section 7.7.1 we will interpret it specifically
for the design of a type I lowpass filter. Before proceeding to apply the alternation
theorem to filter design, however, we illustrate in Example 7.8 how the theorem is
applied to polynomials.

Example 7.8 Alternation Theorem and Polynomials

The alternation theorem provides a necessary and sufficient condition that a poly-
nomial must satisfy in order that it be the polynomial that minimizes the maximum
weighted error for a given order. To illustrate how the theorem is applied, suppose we
want to examine polynomials P(x) that approximate unity for −1 ≤ x ≤ −0.1 and zero
for 0.1 ≤ x ≤ 1. Consider three such polynomials, as shown in Figure 7.43. Each of
these polynomials is of 5th-order, and we would like to determine which, if any, satisfy
the alternation theorem. The closed subsets of the real axis x referred to in the theorem
are the regions −1 ≤ x ≤ −0.1 and 0.1 ≤ x ≤ 1. We will weight errors equally in both
regions, i.e., Wp(x) = 1. To begin, it will be useful for the reader to carefully construct
sketches of the approximation error function for each polynomial in Figure 7.43.

According to the alternation theorem, the optimal 5th-order polynomial must
exhibit at least seven alternations of the error in the regions corresponding to the
closed subset FP . P1(x) has only five alternations—three in the region −1 ≤ x ≤ −0.1
and two in the region 0.1 ≤ x ≤ 1. The points x at which the polynomial attains the
maximum approximation error ||E|| within the set FP are called extremal points (or
simply extremals). All alternations occur at extremals, but not all extremal points are
alternations, as we will see. For example, the point with zero slope close to x = 1 that
does not touch the dotted line is a local maximum, but is not an alternation, because the
corresponding error function does not reach the negative extreme value.6 The alterna-
tion theorem specifies that adjacent alternations must alternate sign, so the extremal
value at x = 1 cannot be an alternation either, since the previous alternation was a
positive extremal value at the first point with zero slope in 0.1 ≤ x ≤ 1. The locations
of the alterations are indicated by the symbol ◦ on the polynomials in Figure 7.43.

P2(x) also has only five alternations and thus is not optimal. Specifically, P2(x)

has three alternations in −1 ≤ x ≤ −0.1, but again, only two alternations in
0.1 ≤ x ≤ 1. The difficulty occurs because x = 0.1 is not a negative extremal value. The
previous alternation at x = −0.1 is a positive extremal value, so we need a negative ex-
tremal value for the next alternation. The first point with zero slope inside 0.1 ≤ x ≤ 1
also cannot be counted, since it is a positive extremal value, like x = −0.1, and does
not alternate sign. We can count the second point with zero slope in this region and
x = 1, giving two alternations in 0.1 ≤ x ≤ 1 and a total of five.

6In this discussion, we refer to positive and negative extremals of the error function. Since the polyno-
mial is subtracted from a constant to form the error, the extremal points are easily located on the polynomial
curves in Figure 7.43, but the sign is opposite of the variation above and below the desired constant values.

Section 7.7 Optimum Approximations of FIR Filters 559

1

0–0.1

1 1

x

x x

P1(x)

P2(x) P3(x)

0.1 1

0–0.1 0.1 1 0–0.1

–1

–1 –1 0.1 1

Figure 7.43 5th-order polynomials for Example 7.8. Alternation points are indi-
cated by ◦.

P3(x) has eight alternations; all points of zero slope, x = −1, x = −0.1, x = 0.1
and x = 1. Since eight alternations satisfies the alternation theorem, which specifies a
minimum of seven, P3(x) is the unique optimal 5th-order polynomial approximation
for this region.

7.7.1 Optimal Type I Lowpass Filters

For type I filters, the polynomial P(x) is the cosine polynomial Ae(e
jω) in Eq. (7.93),

with the transformation of variable x = cos ω and r = L :

P(cos ω) =
L∑

k=0

ak(cos ω)k. (7.99)

DP (x) is the desired lowpass filter frequency response in Eq. (7.97), with x = cos ω:

DP (cos ω) =
{

1, cos ωp ≤ cos ω ≤ 1,

0, −1 ≤ cos ω ≤ cos ωs.
(7.100)

WP (cos ω) is given by Eq. (7.98), rephrased in terms of cos ω:

WP (cos ω) =
⎧⎨⎩

1
K

, cos ωp ≤ cos ω ≤ 1,

1, −1 ≤ cos ω ≤ cos ωs.
(7.101)

And the weighted approximation error is

EP (cos ω) = WP (cos ω)[DP (cos ω) − P(cos ω)]. (7.102)

560 Chapter 7 Filter Design Techniques

�2

–�2

1 – �1

1 + �1

� ��3�2�1 �4

�p �s

�5 �7
�6 �8

Ae(e
j�)

Figure 7.44 Typical example of a lowpass filter approximation that is optimal
according to the alternation theorem for L = 7.

The closed subset FP is made up of the union of the intervals 0 ≤ ω ≤ ωp and
ωs ≤ ω ≤ π , or, in terms of cos ω, of the corresponding intervals cos ωp ≤ cos ω ≤ 1 and
−1 ≤ cos ω ≤ cos ωs . The alternation theorem then states that a set of coefficients ak in
Eq. (7.99) will correspond to the filter representing the unique best approximation to
the ideal lowpass filter, with the ratio δ1/δ2 fixed at K and with passband and stopband
edges ωp and ωs , if and only if EP (cos ω) exhibits at least (L+2) alternations on FP , i.e.,
if and only if EP (cos ω) alternately equals plus and minus its maximum value at least
(L + 2) times. We have previously seen such equiripple approximations in the case of
elliptic IIR filters.

Figure 7.44 shows a filter frequency response that is optimal according to the
alternation theorem for L = 7. In this figure, Ae(e

jω) is plotted against ω. To formally
test the alternation theorem, we should first redraw Ae(e

jω) as a function of x = cos ω.
Furthermore, we want to explicitly examine the alternations of EP (x). Consequently, in
Figure 7.45(a), (b), and (c), we show P(x), WP (x), and EP (x), respectively, as a function
of x = cos ω. In this example, where L = 7, we see that there are nine alternations of
the error. Consequently, the alternation theorem is satisfied. An important point is that,
in counting alternations, we include the points cos ωp and cos ωs , since, according to the
alternation theorem, the subsets (or subintervals) included in FP are closed, i.e., the
endpoints of the intervals are counted. Although this might seem to be a small issue, it
is in fact very significant, as we will see.

Comparing Figures 7.44 and 7.45 suggests that when the desired filter is a lowpass
filter (or any piecewise-constant filter) we could easily count the alternations by direct
examination of the frequency response, keeping in mind that the maximum error is
different (in the ratio K = δ1/δ2) in the passband and stopband.

The alternation theorem states that the optimum filter must have a minimum
of (L + 2) alternations, but it does not exclude the possibility of more than (L + 2)
alternations. In fact, we will show that for a lowpass filter, the maximum possible number
of alternations is (L + 3). First, however, we illustrate this in Figure 7.46 for L = 7.

Section 7.7 Optimum Approximations of FIR Filters 561

1
K
1

–1 cos �s cos �p 1 x = cos �

cos �p

cos �s

x = cos �–1

(a)

(b)

–1

cos �pcos �s 1

x = cos �1

WP(x) EP(x)

(c)

1

P(x)

1 + �1
1 – �1

�2

–�2

–�2

�2

Figure 7.45 Equivalent polynomial approximation functions as a function of x = cos ω.
(a) Approximating polynomial. (b) Weighting function. (c) Approximation error.

Figure 7.46(a) has L + 3 = 10 alternations, whereas Figures 7.46(b), (c), and (d) each
have L+2 = 9 alternations. The case of L+3 alternations (Figure 7.46a) is often referred
to as the extraripple case. Note that for the extraripple filter, there are alternations
at ω = 0 and π , as well as at ω = ωp and ω = ωs , i.e., at all the band edges. For
Figures 7.46(b) and (c), there are again alternations at ωp and ωs , but not at both ω = 0
and ω = π . In Figure 7.46(d), there are alternations at 0, π, ωp, and ωs , but there is
one less point of zero slope inside the stopband. We also observe that all of these cases
are equiripple inside the passband and stopband; i.e., all points of zero slope inside the
interval 0 < ω < π are frequencies at which the magnitude of the weighted error is
maximal. Finally, because all of the filters in Figure 7.46 satisfy the alternation theorem
for L = 7 and for the same value of K = δ1/δ2, it follows that ωp and/or ωs must be
different for each, since the alternation theorem states that the optimum filter under
the conditions of the theorem is unique.

The properties referred to in the preceding paragraph for the filters in Figure 7.46
result from the alternation theorem. Specifically, we will show that for type I lowpass
filters:

• The maximum possible number of alternations of the error is (L + 3).

• Alternations will always occur at ωp and ωs .

• All points with zero slope inside the passband and all points with zero slope inside
the stopband (for 0 < ω < ωp and ωs < ω < π) will correspond to alternations;
i.e., the filter will be equiripple, except possibly at ω = 0 and ω = π .

�p � �

Ae(e j�)

(a)

�p � �

Ae(e j�)

(b)

�p
� �

Ae(e j�)

(c)

�p � �

Ae(e j�)

(d)

�s

�s

�s

�s

Figure 7.46 Possible optimum
lowpass filter approximations for L = 7.
(a) L + 3 alternations (extraripple case).
(b) L + 2 alternations (extremum at
ω = π). (c) L + 2 alternations
(extremum at ω = 0). (d) L + 2
alternations (extremum at both ω = 0
and ω = π).

562

Section 7.7 Optimum Approximations of FIR Filters 563

The maximum possible number of alternations is (L + 3)

Reference to Figure 7.44 or Figure 7.46 suggests that the maximum possible number of
locations for alternations, are the four band edges (ω = 0, π, ωp, ωs) and the frequencies
at which Ae(e

jω) has zero slope. Since an Lth-order polynomial can have at most (L−1)
points with zero slope in an open interval, the maximum possible number of locations
for alternations are the (L− 1) local maxima or minima of the polynomial plus the four
band edges, a total of (L + 3). In considering points with zero slope for trigonometric
polynomials, it is important to observe that the trigonometric polynomial

P(cos ω) =
L∑

k=0

ak(cos ω)k, (7.103)

when considered as a function of ω, will always have zero slope at ω = 0 and ω = π , even
though P(x) considered as a function of x may not have zero slope at the corresponding
points x = 1 and x = −1. This is because

dP (cos ω)

dω
= − sin ω

(
L∑

k=0

kak(cos ω)k−1

)

= − sin ω

⎛⎝L−1∑
k=0

(k + 1)ak+1(cos ω)k

⎞⎠ ,

(7.104)

which is always zero at ω = 0 and ω = π, as well as at the (L− 1) roots of the (L− 1)st-
order polynomial represented by the sum. This behavior at ω = 0 and ω = π is evident
in Figure 7.46. In Figure 7.46(d), it happens that the polynomial P(x) also has zero slope
at x = −1 = cos π .

Alternations always occur at ωp and ωs

For all of the frequency responses in Figure 7.46, Ae(e
jω) is exactly equal to 1 − δ1 at

the passband edge ωp and exactly equal to +δ2 at the stopband edge ωs . To suggest why
this must always be the case, let us consider whether the filter in Figure 7.46(a) could
also be optimal if we redefined ωp as indicated in Figure 7.47 leaving the polynomial
unchanged. The frequencies at which the magnitude of the maximum weighted error
are equal are the frequencies ω = 0, ω1, ω2, ωs , ω3, ω4, ω5, ω6, and ω = π , for a
total of (L + 2) = 9. However, not all of the frequencies are alternations, since, to
be counted in the alternation theorem, the error must alternate between δ = ±‖E‖
at these frequencies. Therefore, because the error is negative at both ω2 and ωs , the
frequencies counted in the alternation theorem are ω = 0, ω1, ω2, ω3, ω4, ω5, ω6, and
π , for a total of 8. Since (L + 2) = 9, the conditions of the alternation theorem are not

564 Chapter 7 Filter Design Techniques

��p0

Ae(e
j�)

�1 �3 �4 �5 �6 ��2 �s

Figure 7.47 Illustration that the
passband edge ωp must be an
alternation frequency.

satisfied, and the frequency response of Figure 7.47 is not optimal with ωp and ωs as
indicated. In other words, the removal of ωp as an alternation frequency removes two
alternations. Since the maximum number is (L + 3), this leaves at most (L + 1), which
is not a sufficient number. An identical argument would hold if ωs were removed as an
alternation frequency. A similar argument can be constructed for highpass filters, but
this is not necessarily the case for bandpass or multiband filters. (See Problem 7.63.)

The filter will be equiripple except possibly at ω = 0 or ω = π

The argument here is very similar to the one used to show that both ωp and ωs must
be alternations. Suppose, for example, that the filter in Figure 7.46(a) was modified as
indicated in Figure 7.48, so that one point with zero slope did not achieve the maximum
error. Although the maximum error occurs at nine frequencies, only eight of these can
be counted as alternations. Consequently, eliminating one ripple as a point of maximum
error reduces the number of alternations by two, leaving (L+1) as the maximum possible
number.

The foregoing represent only a few of many properties that can be inferred from
the alternation theorem. A variety of others are discussed in Rabiner and Gold (1975).
Furthermore, we have considered only type I lowpass filters. While a much broader
and detailed discussion of type II, III, and IV filters or filters with more general desired
frequency responses is beyond the scope of this book, we briefly consider type II lowpass
filters to further emphasize a number of aspects of the alternation theorem.

��p0

Ae(e
j�)

�1 �3 �4 �5 �6 ��2 �s

Figure 7.48 Illustration that the
frequency response must be equiripple
in the approximation bands.

Section 7.7 Optimum Approximations of FIR Filters 565

7.7.2 Optimal Type II Lowpass Filters

A type II causal filter is a filter for which h[n] = 0 outside the range 0 ≤ n ≤ M , with
the filter length (M + 1) even, i.e., M odd, and with the symmetry property

h[n] = h[M − n]. (7.105)

Consequently, the frequency response H(ejω) can be expressed in the form

H(ejω) = e−jωM/2
(M−1)/2∑

n=0

2h[n] cos
[
ω

(
M

2
− n

)]
. (7.106)

Letting b[n] = 2h[(M + 1)/2 − n], n = 1, 2, . . . , (M + 1)/2, we can rewrite Eq. (7.106)
as

H(ejω) = e−jωM/2

⎧⎨⎩
(M+1)/2∑

n=1

b[n] cos
[
ω

(
n − 1

2

)]⎫⎬⎭ . (7.107)

To apply the alternation theorem to the design of type II filters, we must be able
to identify the problem as one of polynomial approximation. To accomplish this, we
express the summation in Eq. (7.107) in the form

(M+1)/2∑
n=1

b[n] cos
[
ω

(
n − 1

2

)]
= cos(ω/2)

⎡⎣(M−1)/2∑
n=0

b̃[n] cos(ωn)

⎤⎦ . (7.108)

(See Problem 7.58.) The summation on the right-hand side of Eq. (7.108) can now be
represented as a trigonometric polynomial P(cos ω) so that

H(ejω) = e−jωM/2 cos(ω/2)P (cos ω), (7.109a)

where

P(cos ω) =
L∑

k=0

ak(cos ω)k (7.109b)

and L = (M − 1)/2. The coefficients ak in Eq. (7.109b) are related to the coefficients
b̃[n] in Eq. (7.108), which in turn are related to the coefficients b[n] = 2h[(M +1)/2−n]
in Eq. (7.107). As in the type I case, it is not necessary to obtain an explicit relationship
between the impulse response and the aks. We now can apply the alternation theorem
to the weighted error between P(cos ω) and the desired frequency response. For a
type I lowpass filter with a specified ratio K of passband to stopband ripple, the desired
function is given by Eq. (7.97), and the weighting function for the error is given by
Eq. (7.98). For type II lowpass filters, because of the presence of the factor cos(ω/2) in
Eq. (7.109a), the function to be approximated by the polynomial P(cos ω) is defined as

Hd(ejω) = DP (cos ω) =

⎧⎪⎨⎪⎩
1

cos(ω/2)
, 0 ≤ ω ≤ ωp,

0, ωs ≤ ω ≤ π,

(7.110)

and the weighting function to be applied to the error is

W(ω) = WP (cos ω) =

⎧⎪⎨⎪⎩
cos(ω/2)

K
, 0 ≤ ω ≤ ωp,

cos(ω/2), ωs ≤ ω ≤ π.

(7.111)

566 Chapter 7 Filter Design Techniques

Consequently, type II filter design is a different polynomial approximation prob-
lem than type I filter design.

In this section, we have only outlined the design of type II filters, principally to
highlight the requirement that the design problem first be formulated as a polynomial
approximation problem. A similar set of issues arises in the design of type III and type IV
linear-phase FIR filters. Specifically, these classes also can be formulated as polynomial
approximation problems, but in each class, the weighting function applied to the error
has a trigonometric form, just as it does for type II filters. (See Problem 7.58.) A detailed
discussion of the design and properties of these classes of filters can be found in Rabiner
and Gold (1975).

The details of the formulation of the problem for type I and type II linear-phase
systems have been illustrated for the case of the lowpass filter. However, the discussion
of type II systems in particular should suggest that there is great flexibility in the choice
of both the desired response function Hd(ejω) and the weighting function W(ω). For
example, the weighting function can be defined in terms of the desired function so as to
yield equiripple percentage error approximation. This approach is valuable in designing
type III and type IV differentiator systems.

7.7.3 The Parks–McClellan Algorithm

The alternation theorem gives necessary and sufficient conditions on the error for op-
timality in the Chebyshev or minimax sense. Although the theorem does not state
explicitly how to find the optimum filter, the conditions that are presented serve as the
basis for an efficient algorithm for finding it. While our discussion is phrased in terms
of type I lowpass filters, the algorithm easily generalizes.

From the alternation theorem, we know that the optimum filter Ae(e
jω) will satisfy

the set of equations

W(ωi)[Hd(ejωi) − Ae(e
jωi)] = (−1)i+1δ, i = 1, 2, . . . , (L + 2), (7.112)

where δ is the optimum error and Ae(e
jω) is given by either Eq. (7.89) or Eq. (7.93).

Using Eq. (7.93) for Ae(e
jω), we can write these equations as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 · · · xL

1
1

W(ω1)

1 x2 x2
2 · · · xL

2
−1

W(ω2)
...

...
...

...
...

1 xL+2 x2
L+2 · · · xL

L+2
(−1)L+1

W(ωL+2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
a0
a1
...

δ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Hd(ejω1)

Hd(ejω2)
...

Hd(ejωL+2)

⎤⎥⎥⎥⎦ , (7.113)

where xi = cos ωi . This set of equations serves as the basis for an iterative algorithm
for finding the optimum Ae(e

jω). The procedure begins by guessing a set of alternation
frequencies ωi for i = 1, 2, . . . , (L+2). Note that ωp and ωs are fixed and, based on our
discussion in Section 7.7.1, are necessarily members of the set of alternation frequencies.
Specifically, if ω
 = ωp, then ω
+1 = ωs . The set of Eqs. (7.113) could be solved for the
set of coefficients ak and δ. However, a more efficient alternative is to use polynomial

Section 7.7 Optimum Approximations of FIR Filters 567

interpolation. In particular, Parks and McClellan (1972a, 1972b) found that, for the
given set of the extremal frequencies,

δ =

L+2∑
k=1

bkHd(ejωk)

L+2∑
k=1

bk(−1)k+1

W(ωk)

, (7.114)

where

bk =
L+2∏
i=1
i �=k

1
(xk − xi)

(7.115)

and, as before, xi = cos ωi . That is, if Ae(e
jω) is determined by the set of coefficients ak

that satisfy Eq. (7.113), with δ given by Eq. (7.114), then the error function goes through
±δ at the (L + 2) frequencies ωi , or, equivalently, Ae(e

jω) has values 1±Kδ if 0 ≤ ωi ≤
ωp and ±δ if ωs ≤ ωi ≤ π . Now, since Ae(e

jω) is known to be an Lth-order trigonometric
polynomial, we can interpolate a trigonometric polynomial through (L+1) of the (L+2)
known values E(ωi) (or equivalently, Ae(e

jωi)). Parks and McClellan used the Lagrange
interpolation formula to obtain

Ae(e
jω) = P(cos ω) =

L+1∑
k=1

[dk/(x − xk)]Ck

L+1∑
k=1

[dk/(x − xk)]
, (7.116a)

where x = cos ω, xi = cos ωi ,

Ck = Hd(ejωk) − (−1)k+1δ

W(ωk)
, (7.116b)

and

dk =
L+1∏
i=1
i �=k

1
(xk − xi)

= bk(xk − xL+2). (7.116c)

Although only the frequencies ω1, ω2, . . ., ωL+1 are used in fitting the Lth-order
polynomial, we can be assured that the polynomial also takes on the correct value at
ωL+2 because Eqs. (7.113) are satisfied by the resulting Ae(e

jω).
Now Ae(e

jω) is available at any desired frequency, without the need to solve
the set of equations (7.113) for the coefficients ak . The polynomial of Eq. (7.116a)
can be used to evaluate Ae(e

jω) and also E(ω) on a dense set of frequencies in the
passband and stopband. If |E(ω)| ≤ δ for all ω in the passband and stopband, then the
optimum approximation has been found. Otherwise, we must find a new set of extremal
frequencies.

568 Chapter 7 Filter Design Techniques

�1 �2 �p �s �6 �7 � ��3
Figure 7.49 Illustration of the
Parks–McClellan algorithm for
equiripple approximation.

Figure 7.49 shows a typical example for a type I lowpass filter before the optimum
has been found. Clearly, the set of frequencies ωi used to find δ (as represented by open
circles in the figure) was such that δ was too small. Adopting the philosophy of the
Remez exchange method (see Cheney, 2000), the extremal frequencies are exchanged
for a completely new set defined by the (L + 2) largest peaks of the error curve. The
points marked with × would be the new set of frequencies for the example shown in
the figure. As before, ωp and ωs must be selected as extremal frequencies. Recall that
there are at most (L − 1) local minima and maxima in the open intervals 0 < ω < ωp

and ωs < ω < π . The remaining extremal frequency can be at either ω = 0 or ω = π .
If there is a maximum of the error function at both 0 and π , then the frequency at
which the greatest error occurs is taken as the new estimate of the frequency of the
remaining extremum. The cycle—computing the value of δ, fitting a polynomial to the
assumed error peaks, and then locating the actual error peaks—is repeated until δ does
not change from its previous value by more than a prescribed small amount. This value
of δ is then the desired minimum maximum weighted approximation error.

A flowchart for the Parks–McClellan algorithm is shown in Figure 7.50. In this
algorithm, all the impulse response values he[n] are implicitly varied on each iteration
to obtain the desired optimal approximation, but the values of he[n] are never explicitly
computed. After the algorithm has converged, the impulse response can be computed
from samples of the polynomial representation using the discrete Fourier transform, as
will be discussed in Chapter 8.

7.7.4 Characteristics of Optimum FIR Filters

Optimum lowpass FIR filters have the smallest maximum weighted approximation error
δ for prescribed passband and stopband edge frequencies ωp and ωs . For the weighting
function of Eq. (7.98), the resulting maximum stopband approximation error is δ2 = δ,
and the maximum passband approximation error is δ1 = Kδ. In Figure 7.51, we illustrate
how δ varies with the order of the filter and the passband cutoff frequency. For this

Section 7.7 Optimum Approximations of FIR Filters 569

Initial guess of
(L + 2) extremal frequencies

Calculate the optimum
� on extremal set

Interpolate through (L + 1)
points to obtain Ae(e j�)

Check whether the
extremal points changed

Best approximation

Calculate error E(�)
and find local maxima

where |E(�)| � �

Retain (L + 2)
largest

extrema

More than
(L + 2)

extrema?

Yes

No

Changed

Unchanged
Figure 7.50 Flowchart of
Parks–McClellan algorithm.

example, K = 1 and the transition width is fixed at (ωs − ωp) = 0.2π . The curves
show that as ωp increases, the error δ attains local minima. These minima on the curves
correspond to the extraripple (L + 3 extrema) filters. All points between the minima
correspond to filters that are optimal according to the alternation theorem. The filters
for M = 8 and M = 10 are type I filters, while M = 9 and M = 11 correspond to a type
II filter. It is interesting to note that, for some choices of parameters, a shorter filter
(M = 9) may be better (i.e., it yields a smaller error) than a longer filter (M = 10).
This may at first seem surprising and even contradictory. However, the cases M = 9
and M = 10 represent fundamentally different types of filters. Interpreted another way,
filters for M = 9 cannot be considered to be special cases of M = 10 with one point set
to zero, since this would violate the linear-phase symmetry requirement. On the other
hand, M = 8 could always be thought of as a special case of M = 10 with the first and
last samples set to zero. For that reason, an optimal filter for M = 8 cannot be better
than one for M = 10. This restriction can be seen in Figure 7.51, where the curve for
M = 8 is always above or equal to the one for M = 10. The points at which the two
curves touch correspond to identical impulse responses, with the M = 10 filter having
the first and last points equal to zero.

Herrmann et al. (1973) did an extensive computational study of the relationships

570 Chapter 7 Filter Design Techniques

P
as

sb
an

d
or

 s
to

pb
an

d
ri

pp
le

Passband cutoff (�)

0.0 0.2 � 0.4 � 0.6 �

M = 8

M = 9

M = 10
M = 11

0.8 �
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 7.51 Illustration of the dependence of passband and stopband error on
cutoff frequency for optimal approximations of a lowpass filter. For this example,
K = 1 and (ωs − ωp) = 0.2π. (After Herrmann, Rabiner and Chan, 1973.)

among the parameters M , δ1, δ2, ωp, and ωs for equiripple lowpass approximations, and
Kaiser (1974) subsequently obtained the simplified formula

M = −10 log10(δ1δ2) − 13
2.324	ω

, (7.117)

where 	ω = ωs −ωp, as a fit to their data. By comparing Eq. (7.117) with the design for-
mula of Eq. (7.76) for the Kaiser window method, we can see that, for the comparable
case (δ1 = δ2 = δ), the optimal approximations provide about 5 dB better approxima-
tion error for a given value of M . Another important advantage of the equiripple filters
is that δ1 and δ2 need not be equal, as must be the case for the window method.

7.8 EXAMPLES OF FIR EQUIRIPPLE APPROXIMATION

The Parks–McClellan algorithm for optimum equiripple approximation of FIR filters
can be used to design a wide variety of such filters. In this section, we give several
examples that illustrate some of the properties of the optimum approximation and
suggest the great flexibility that is afforded by the design method.

7.8.1 Lowpass Filter

For the lowpass filter case, we again approximate the set of specifications used in Ex-
ample 7.5 and Section 7.6.1 so that we can compare all the major design methods on the

Section 7.8 Examples of FIR Equiripple Approximation 571

same lowpass filter specifications. These specifications call for ωp = 0.4π , ωs = 0.6π ,
δ1 = 0.01, and δ2 = 0.001. In contrast to the window method, the Parks–McClellan
algorithm can accommodate the different approximation error in the passband versus
that in the stopband by fixing the weighting function parameter at K = δ1/δ2 = 10.

Substituting the foregoing specifications into Eq. (7.117) and rounding up yields
the estimate M = 26 for the value of M that is necessary to achieve the specifications.
Figures 7.52(a), (b), and (c) show the impulse response, log magnitude, and approxima-
tion error, respectively, for the optimum filter with M = 26, ωp = 0.4π , and ωs = 0.6π .
Figure 7.52(c) shows the unweighted approximation error

EA(ω) = E(ω)

W(ω)
=
{

1 − Ae(e
jω), 0 ≤ ω ≤ ωp,

0 − Ae(e
jω), ωs ≤ ω ≤ π,

(7.118)

rather than the weighted error used in the formulation of the design algorithm. The
weighted error would be identical to Figure 7.52(c), except that the error would be di-
vided by 10 in the passband.7 The alternations of the approximation error are clearly in
evidence in Figure 7.52(c). There are seven alternations in the passband and eight in the
stopband, for a total of fifteen alternations. Since L = M/2 for type I (M even) systems,
and M = 26, the minimum number of alternations is (L + 2) = (26/2 + 2) = 15. Thus,
the filter of Figure 7.52 is the optimum filter for M = 26, ωp = 0.4π , and ωs = 0.6π .
However, Figure 7.52(c) shows that the filter fails to meet the original specifications
on passband and stopband error. (The maximum errors in the passband and stopband
are 0.0116 and 0.00116, respectively.) To meet or exceed the specifications, we must
increase M .

The filter response functions for the case M = 27 are shown in Figure 7.53. Now
the passband and stopband approximation errors are slightly less than the specified
values. (The maximum errors in the passband and stopband are 0.0092 and 0.00092,
respectively.) In this case, there are again seven alternations in the passband and eight
alternations in the stopband, for a total of fifteen. Note that, since M = 27, this is a type
II system, and for type II systems, the order of the implicit approximating polynomial is
L = (M −1)/2 = (27−1)/2 = 13. Thus, the minimum number of alternations is still 15.
Note also that in the type II case, the system is constrained to have a zero of its system
function at z = −1 or ω = π . This is clearly shown in Figures 7.53(b) and (c).

If we compare the results of this example with the results of Section 7.6.1, we
find that the Kaiser window method requires a value M = 40 to meet or exceed the
specifications, whereas the Parks–McClellan method requires M = 27. This disparity
is accentuated because the window method produces approximately equal maximum
errors in the passband and stopband, while the Parks–McClellan method can weight
the errors differently.

7.8.2 Compensation for Zero-Order Hold

In many cases, a discrete-time filter is designed to be used in a system such as that de-
picted in Figure 7.54; i.e., the filter is used to process a sequence of samples x[n] to obtain

7For frequency-selective filters, the unweighted approximation error also conveniently displays the
passband and stopband behavior, since Ae(e

jω) = 1 − E(ω) in the passband and Ae(e
jω) = −E(ω) in the

stopband.

A
m

pl
it

ud
e

Sample number (n)

(a)

0 10 20 30

0

0.2

0.4

–0.2

0.6

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

20

0

–20

–40

–60

–80

–100

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.015

–0.005

–0.010

0

0.005

0.010

0.015

Figure 7.52 Optimum type I FIR lowpass filter for ωp = 0.4π, ωs = 0.6π,
K = 10, and M = 26. (a) Impulse response. (b) Log magnitude of the frequency
response. (c) Approximation error (unweighted).

572

A
m

pl
it

ud
e

0

0.1

0.2

0.3

0.4

–0.1

0.5

dB

20

0

–20

–40

–60

–80

–100

A
m

pl
it

ud
e

Sample number (n)

(a)

0 10 20 30

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.010

–0.005

0

0.005

0.010

Figure 7.53 Optimum type II FIR lowpass filter for ωp = 0.4π, ωs = 0.6π,
K = 10, and M = 27. (a) Impulse response. (b) Log magnitude of frequency
response. (c) Approximation error (unweighted).

573

574 Chapter 7 Filter Design Techniques

Discrete-time
filter

H(e j�)x [n]

Reconstruction
filter

Hr(j�)yDA(t) yc(t)

D/A
converter
H0(j�)y [n]

T

~

Figure 7.54 Precompensation of a discrete-time filter for the effects of a D/A
converter.

a sequence y[n], which is then the input to a D/A converter and continuous-time lowpass
filter (as an approximation to the ideal D/C converter) used for the reconstruction of a
continuous-time signal yc(t). Such a system arises as part of a system for discrete-time
filtering of a continuous-time signal, as discussed in Section 4.8. If the D/A converter
holds its output constant for the entire sampling period T , the Fourier transform of the
output yc(t) is

Yc(j�) = H̃ r (j�)Ho(j�)H(ej�T)X (ej�T), (7.119)

where H̃r (j�) is the frequency response of an appropriate lowpass reconstruction filter
and

Ho(j�) = sin(�T/2)

�/2
e−j�T/2 (7.120)

is the frequency response of the zero-order hold of the D/A converter. In Section 4.8.4,
we suggested that compensation for Ho(j�) could be incorporated into the continuous-
time reconstruction filter; i.e., H̃ r (j�) could be chosen as

H̃ r (j�) =

⎧⎪⎨⎪⎩
�T/2

sin(�T/2)
|�| < π

T

0 otherwise
(7.121)

so that the effect of the discrete-time filter H(ej�T) would be undistorted by the zero-
order hold. Another approach is to build the compensation into the discrete-time filter
by designing a filter H̃ (ej�T) such that

H̃ (e
j�T) = �T/2

sin(�T/2)
H(ej�T). (7.122)

A D/A-compensated lowpass filter can be readily designed by the Parks–McClellan
algorithm if we simply define the desired response as

H̃ d(ejω) =
⎧⎨⎩

ω/2
sin(ω/2)

, 0 ≤ ω ≤ ωp,

0, ωs ≤ ω ≤ π.

(7.123)

Figure 7.55 shows the response functions for such a filter, wherein the specifications
are again ωp = 0.4π, ωs = 0.6π, δ1 = 0.01, and δ2 = 0.001. In this case, the specifications
are met with M = 28 rather than M = 27 as in the previous constant-gain case. Thus,
for essentially no penalty, we have incorporated compensation for the D/A converter
into the discrete-time filter so that the effective passband of the filter will be flat. (To
emphasize the sloping nature of the passband, Figure 7.55(c) shows the magnitude
response in the passband, rather than the approximation error, as in the frequency
response plots for the other FIR examples.)

A
m

pl
it

ud
e

Sample number (n)

(a)

0 10 20 30

0

0.2

0.4

–0.2

0.6
dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

20

0

–20

–40

–60

–80

–100

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
0.90

1

0.95

1.05

1.10

Figure 7.55 Optimum
D/A-compensated lowpass filter for
ωp = 0.4π, ωs = 0.6π, K = 10, and
M = 28. (a) Impulse response. (b) Log
magnitude of the frequency response.
(c) Magnitude response in passband.

575

576 Chapter 7 Filter Design Techniques

7.8.3 Bandpass Filter

Section 7.7 focused entirely on the lowpass optimal FIR, for which there are only two
approximation bands. However, bandpass and bandstop filters require three approx-
imation bands. To design such filters, it is necessary to generalize the discussion of
Section 7.7 to the multiband case. This requires that we explore the implications of the
alternation theorem and the properties of the approximating polynomial in the more
general context. First, recall that, as stated, the alternation theorem does not assume
any limit on the number of disjoint approximation intervals. Therefore, the minimum
number of alternations for the optimum approximation is still (L+ 2). However, multi-
band filters can have more than (L+3) alternations, because there are more band edges.
(Problem 7.63 explores this issue.) This means that some of the statements proved in
Section 7.7.1 are not true in the multiband case. For example, it is not necessary for all
the local maxima or minima of Ae(e

jω) to lie inside the approximation intervals. Thus,
local extrema can occur in the transition regions, and the approximation need not be
equiripple in the approximation regions.

To illustrate this, consider the desired response

Hd(ejω) =
⎧⎨⎩

0, 0 ≤ ω ≤ 0.3π,

1, 0.35π ≤ ω ≤ 0.6π,

0, 0.7π ≤ ω ≤ π,

(7.124)

and the error weighting function

W(ω) =
⎧⎨⎩

1, 0 ≤ ω ≤ 0.3π,

1, 0.35π ≤ ω ≤ 0.6π,

0.2, 0.7π ≤ ω ≤ π.

(7.125)

A value of M + 1 = 75 was chosen for the length of the impulse response of the filter.
Figure 7.56 shows the response functions for the resulting filter. Note that the transi-
tion region from the second approximation band to the third is no longer monotonic.
However, the use of two local extrema in this unconstrained region does not violate
the alternation theorem. Since M = 74, the filter is a type I system, and the order of
the implicit approximating polynomial is L = M/2 = 74/2 = 37. Thus, the alternation
theorem requires at least L+2 = 39 alternations. It can be readily seen in Figure 7.56(c),
which shows the unweighted approximation error, that there are 13 alternations in each
band, for a total of 39.

Such approximations as shown in Figure 7.56 are optimal in the sense of the alter-
nation theorem, but they would probably be unacceptable in a filtering application. In
general, there is no guarantee that the transition regions of a multiband filter will be
monotonic, because the Parks–McClellan algorithm leaves these regions completely
unconstrained. When this kind of response results for a particular choice of the filter
parameters, acceptable transition regions can usually be obtained by systematically
changing one or more of the band edge frequencies, the impulse-response length, or
the error-weighting function and redesigning the filter.

A
m

pl
it

ud
e

Sample number (n)

(a)

0 4020 60 80

–0.2

0

0.2

–0.4

0.4

dB

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �

20

0

–20

–40

–60

–80

A
m

pl
it

ud
e

Radian frequency (�)

(c)

0 0.2� 0.6�0.4� 0.8� �
–0.060

–0.020

–0.040

0

0.020

0.040

0.060

Figure 7.56 Optimum FIR bandpass filter for M = 74. (a) Impulse response.
(b) Log magnitude of the frequency response. (c) Approximation error (un-
weighted).

577

578 Chapter 7 Filter Design Techniques

7.9 COMMENTS ON IIR AND FIR DISCRETE-TIME FILTERS

This chapter has been concerned with design methods for LTI discrete-time systems.
We have discussed a wide range of methods of designing both infinite-duration and
finite-duration impulse-response filters.

The choice between an FIR filter and an IIR filter depends on the importance to
the design problem of the advantages of each type. IIR filters, for example, have the
advantage that a variety of frequency-selective filters can be designed using closed-form
design formulas. That is, once the problem has been specified in terms appropriate for a
given approximation method (e.g., Butterworth, Chebyshev, or elliptic), then the order
of the filter that will meet the specifications can be computed, and the coefficients (or
poles and zeros) of the discrete-time filter can be obtained by straightforward substi-
tution into a set of design equations. This kind of simplicity of the design procedure
makes it feasible to design IIR filters by manual computation if necessary, and it leads
to straightforward noniterative computer programs for IIR filter design. These methods
are limited to frequency-selective filters, and they permit only the magnitude response
to be specified. If other magnitude shapes are desired, or if it is necessary to approx-
imate a prescribed phase- or group-delay response, an algorithmic procedure will be
required.

In contrast, FIR filters can have a precisely (generalized) linear phase. However,
closed-form design equations do not exist for FIR filters. Although the window method
is straightforward to apply, some iteration may be necessary to meet a prescribed spec-
ification. The Parks–McClellan algorithm leads to lower-order filters than the window
method and filter design programs are readily available for both methods. Also, the
window method and most of the algorithmic methods afford the possibility of approx-
imating rather arbitrary frequency-response characteristics with little more difficulty
than is encountered in the design of lowpass filters. In addition, the design problem for
FIR filters is much more under control than the IIR design problem, because of the
existence of an optimality theorem for FIR filters that is meaningful in a wide range of
practical situations. Design techniques for FIR filters without linear phase have been
given by Chen and Parks (1987), Parks and Burrus (1987), Schüssler and Steffen (1988),
and Karam and McClellan (1995).

Questions of economics also arise in implementing a discrete-time filter. Eco-
nomic concerns are usually measured in terms of hardware complexity, chip area, or
computational speed. These factors are more or less directly related to the order of
the filter required to meet a given specification. In applications where the efficiencies
of polyphase implementations cannot be exploited, it is generally true that a given
magnitude-response specification can be met most efficiently with an IIR filter. How-
ever, in many cases, the linear phase available with an FIR filter may be well worth the
extra cost.

In any specific practical setting, the choice of class of filters and design method
will be highly dependent on the context, constraints, specifications, and implementation
platform. In this section, we conclude the chapter with one specific example to illustrate
some of the trade offs and issues that can arise. However, it is only one of many scenarios,
each of which can result in different choices and conclusions.

Section 7.10 Design of an Upsampling Filter 579

7.10 DESIGN OF AN UPSAMPLING FILTER

We conclude this chapter with a comparison, in the context of upsampling, of IIR and
FIR filter designs. As discussed in Chapter 4, Sections 4.6.2 and 4.9.3, integer upsampling
and oversampled D/A conversion employ an expander-by-L followed by a discrete-time
lowpass filter. Because the sampling rate at the output of the expander is L times the
rate at the input, the lowpass filter operates at a rate which is L-times the rate of the
input to the upsampler or D/A converter. As we illustrate in this example, the order
of the lowpass filter is very dependent on whether the filter is designed as an IIR or
FIR filter and also within those classes, which filter design method is chosen. While the
order of the resulting IIR filter might be significantly less than the order of the FIR filter,
the FIR filter can exploit the efficiencies of a polyphase implementation. For the IIR
designs, polyphase can be exploited for the implementation of the zeros of the transfer
function but not for the poles.

The system to be implemented is an upsampler-by-four, i.e., L = 4. As discussed
in Chapter 4, the ideal filter for 1:4 interpolation is an ideal lowpass filter with gain of 4
and cutoff frequency π/4. To approximate this filter we set the specifications as follows:8

passband edge frequency ωp = 0.22π

stopband edge frequency ωs = 0.29π

maximum passband gain = 0 dB
minimum passband gain = −1 dB
maximum stopband gain = −40 dB.

Six different filters were designed to meet these specifications: the four IIR filter designs
discussed in Section 7.3 (Butterworth, Chebyshev I, Chebyshev II, elliptic) and two FIR
filter designs (a Kaiser window design and an optimal filter designed using the Parks–
McClellan algorithm). The designs were done using the signal processing toolbox in
MATLAB. Since the FIR design program used requires passband tolerance limits that
are symmetric about unity, the specifications above were first scaled appropriately for
the FIR designs and the resulting FIR filter was then rescaled for a maximum of 0 dB
gain in the passband. (See Problem 7.3.)

The resulting filter orders for the six filters are shown in Table 7.3 and the corre-
sponding pole–zero plots are shown in Figure 7.57(a)–(f). For the two FIR designs only
the zero locations are shown in Figure 7.57. If these filters are implemented as causal

TABLE 7.3 ORDERS
OF DESIGNED FILTERS.

Filter design Order

Butterworth 18
Chebyshev I 8
Chebyshev II 8

Elliptic 5
Kaiser 63

Parks–McClellan 44

8The gain was normalized to unity in the passband. In all cases the filters can be scaled by 4 for use in
interpolation.

580 Chapter 7 Filter Design Techniques

18th-order
zero

8

(a)

9.38

(c)

(e)

(b)

(d)

(f)

Im Im

Im

Im

Im

Im

Re Re

Re Re

Re Re

8th-order
zero

z-plane

unit circle

Figure 7.57 Pole–zero plots for the six designs. (a) Butterworth filter. (b) Chebyshev I filter.
(c) Chebyshev II filter. (d) Elliptic filter. (e) Kaiser filter. (f) Parks–McClellan filter.

filters there will be a multiple-order pole at the origin to match the total number of
zeros of the transfer function.

Without exploiting available efficiencies, such as the use of a polyphase imple-
mentation, the two FIR designs require significantly more multiplications per output
sample than any of the IIR designs. In the IIR designs, the number of multiplications
per output sample will be dependent on specifically how the zeros are implemented. A
discussion of how to efficiently implement each of the six designs follows below with
a summary in Table 7.4 comparing the required number of multiplications per output

Section 7.10 Design of an Upsampling Filter 581

sample. The four IIR designs can be considered as a cascade of an FIR filter (imple-
menting the zeros of the transfer function) and an IIR filter (implementing the poles).
We first discuss the two FIR designs since efficiencies that can be exploited for those
can also be utilized with the FIR component of the IIR filters.

Parks–McClellan and Kaiser window designs: Without exploiting symmetry of the
impulse response or a polyphase implementation, the required number of multiplica-
tions per output sample is equal to the length of the filter. If a polyphase implementation
is used as discussed in Section 4.7.5, then the number of multiplications per input sample
is equal to the length of the filter. Alternatively, since both filters are symmetric, the
folded structure discussed in Section 6.5.3 (Figures 6.32 and 6.33) can be used to reduce
the number of multiplications at the input rate by approximately a factor of 2.9

Butterworth design: As is characteristic of discrete-time Butterworth filters, all
of the zeros occur at z = −1 and the poles are, of course, in complex conjugate pairs.
By implementing the zeros as a cascade of 18 1st-order terms of the form (1 + z−1) no
multiplications are required for implementing the zeros. The 18 poles require a total of
18 multiplications per output sample.

Chebyshev I design: The Chebyshev I filter has order 8 with the zeros at z = −1
and consequently the zeros can be implemented with no multiplications. The 8 poles
require 8 multiplies per output sample.

Chebyshev II design: In this design, the filter order is again 8. Since the zeros are
now distributed around the unit circle, their implementation will require some multipli-
cations. However, since all the zeros are on the unit circle, the associated FIR impulse
response will be symmetric, and folding and/or polyphase efficiencies can be exploited
for implementing the zeros.

Elliptic lter design: The elliptic filter has the lowest (order 5) of the four IIR
designs. From the pole–zero plot we note that it has all its zeros on the unit circle.
Consequently the zeros can be implemented efficiently exploiting symmetry as well as
polyphase implementation.

Table 7.4 summarizes the number of multiplications required per output sample
for each of the six designs with several different implementation structures. The direct
form implementation assumes that both the poles and zeros are implemented in direct
form, i.e., it does not take advantage of the possibility of cascade implementation of
multiple zeroes at z = −1. Exploiting a polyphase implementation but not also the sym-
metry of the impulse response, the FIR designs are slightly less efficient than the most
efficient IIR designs, although they are also the only ones that have linear phase. Ex-
ploiting both symmetry and polyphase together in implementing the Parks–McClellan
design, it and the elliptic filter are the most efficient.

9It is possible to combine both folding and polyphase efficiencies in implementing symmetric FIR
filters (see Baran and Oppenheim, 2007). The resulting number of multiplications is approximately half the
filter length and at the rate of the input samples rather than at the rate of the output samples. However, the
resulting structure is significantly more complex.

582 Chapter 7 Filter Design Techniques

TABLE 7.4 AVERAGE NUMBER OF REQUIRED
MULTIPLICATIONS PER OUTPUT SAMPLE FOR
EACH OF THE DESIGNED FILTERS.

Filter design Direct form Symmetric Polyphase

Butterworth 37 18 18
Chebyshev I 17 8 8
Chebyshev II 17 13 10.25

Elliptic 11 8 6.5
Kaiser 64 32 16

Parks–McClellan 45 23 11.25

7.11 SUMMARY

In this chapter, we have considered a variety of design techniques for both infinite-
duration and finite-duration impulse-response discrete-time filters. Our emphasis was
on the frequency-domain specification of the desired filter characteristics, since this is
most common in practice. Our objective was to give a general picture of the wide range
of possibilities available for discrete-time filter design, while also giving sufficient detail
about some of the techniques so that they may be applied directly, without further
reference to the extensive literature on discrete-time filter design. In the FIR case,
considerable detail was presented on both the window method and the Parks–McClellan
algorithmic method of filter design.

The chapter concluded with some remarks on the choice between the two classes of
digital filters. The main point of that discussion was that the choice is not always clear cut
and may depend on a multitude of factors that are often difficult to quantify or discuss in
general terms. However, it should be clear from this chapter and Chapter 6 that digital
filters are characterized by great flexibility in design and implementation. This flexibility
makes it possible to implement rather sophisticated signal-processing schemes that in
many cases would be difficult, if not impossible, to implement by analog means.

Problems

Basic Problems with Answers

7.1. Consider a causal continuous-time system with impulse response hc(t) and system function

Hc(s) = s + a

(s + a)2 + b2
.

(a) Use impulse invariance to determine H 1(z) for a discrete-time system such that
h1[n] = hc(nT).

(b) Use step invariance to determine H 2(z) for a discrete-time system such that
s2[n] = sc(nT), where

s2[n] =
n∑

k=−∞
h2[k] and sc(t) =

∫ t

−∞
hc(τ)dτ.

(c) Determine the step response s1[n] of system 1 and the impulse response h2[n] of system
2. Is it true that h2[n] = h1[n] = hc(nT)? Is it true that s1[n] = s2[n] = sc(nT)?

Chapter 7 Problems 583

7.2. A discrete-time lowpass filter is to be designed by applying the impulse invariance method
to a continuous-time Butterworth filter having magnitude-squared function

|Hc(j�)|2 = 1

1 + (�/�c)2N
.

The specifications for the discrete-time system are those of Example 7.2, i.e.,

0.89125 ≤ |H(ejω)| ≤ 1, 0 ≤ |ω| ≤ 0.2π,

|H(ejω)| ≤ 0.17783, 0.3π ≤ |ω| ≤ π.

Assume, as in that example, that aliasing will not be a problem; i.e., design the continuous-
time Butterworth filter to meet passband and stopband specifications as determined by the
desired discrete-time filter.

(a) Sketch the tolerance bounds on the magnitude of the frequency response, |Hc(j�)|,
of the continuous-time Butterworth filter such that after application of the impulse
invariance method (i.e., h[n] = Tdhc(nTd)), the resulting discrete-time filter will satisfy
the given design specifications. Do not assume that Td = 1 as in Example 7.2.

(b) Determine the integer order N and the quantity Td�c such that the continuous-time
Butterworth filter exactly meets the specifications determined in part (a) at the pass-
band edge.

(c) Note that if Td = 1, your answer in part (b) should give the values of N and �c

obtained in Example 7.2. Use this observation to determine the system function Hc(s)

for Td �= 1 and to argue that the system function H(z) which results from impulse
invariance design with Td �= 1 is the same as the result for Td = 1 given by Eq. (7.17).

7.3. We wish to use impulse invariance or the bilinear transformation to design a discrete-time
filter that meets specifications of the following form:

1 − δ1 ≤ |H(ejω)| ≤ 1 + δ1, 0 ≤ |ω| ≤ ωp,

|H(ejω)| ≤ δ2, ωs ≤ |ω| ≤ π.
(P7.3-1)

For historical reasons, most of the design formulas, tables, or charts for continuous-time
filters are normally specified with a peak gain of unity in the passband; i.e.,

1 − δ̂1 ≤ |Hc(j�)| ≤ 1, 0 ≤ |�| ≤ �p,

|Hc(�)| ≤ δ̂2, �s ≤ |�|. (P7.3-2)

Useful design charts for continuous-time filters specified in this form were given by Rabiner,
Kaiser, Herrmann, and Dolan (1974).

(a) To use such tables and charts to design discrete-time systems with a peak gain of (1+δ1),
it is necessary to convert the discrete-time specifications into specifications of the form
of Eq. (P7.3-2). This can be done by dividing the discrete-time specifications by (1+δ1).
Use this approach to obtain an expression for δ̂1 and δ̂2 in terms of δ1 and δ2.

(b) In Example 7.2, we designed a discrete-time filter with a maximum passband gain of
unity. This filter can be converted to a filter satisfying a set of specifications such as
those in Eq. (P7.3-1) by multiplying by a constant of the form (1+δ1). Find the required
value of δ1 and the corresponding value of δ2 for this example, and use Eq. (7.17) to
determine the coefficients of the system function of the new filter.

(c) Repeat part (b) for the filter in Example 7.3.

584 Chapter 7 Filter Design Techniques

7.4. The system function of a discrete-time system is

H(z) = 2

1 − e−0.2z−1
− 1

1 − e−0.4z−1
.

(a) Assume that this discrete-time filter was designed by the impulse invariance method
with Td = 2; i.e., h[n] = 2hc(2n), where hc(t) is real. Find the system function Hc(s) of
a continuous-time filter that could have been the basis for the design. Is your answer
unique? If not, find another system function Hc(s).

(b) Assume that H(z) was obtained by the bilinear transform method with Td = 2. Find
the system function Hc(s) that could have been the basis for the design. Is your answer
unique? If not, find another Hc(s).

7.5. We wish to use the Kaiser window method to design a discrete-time filter with generalized
linear phase that meets specifications of the following form:

0.95 ≤
|H(ejω)| ≤ 0.01, 0 ≤ |ω| ≤ 0.25π,

|H(ejω)| ≤ 1.05, 0.35π ≤ |ω| ≤ 0.6π,

|H(ejω)| ≤ 0.01, 0.65π ≤ |ω| ≤ π.

(a) Determine the minimum length (M + 1) of the impulse response and the value of the
Kaiser window parameter β for a filter that meets the preceding specifications.

(b) What is the delay of the filter?
(c) Determine the ideal impulse response hd [n] to which the Kaiser window should be

applied.

7.6. We wish to use the Kaiser window method to design a symmetric real-valued FIR filter with
zero phase that meets the following specifications:

0.9 < H(ejω) < 1.1, 0 ≤ |ω| ≤ 0.2π,

−0.06 < H(ejω) < 0.06, 0.3π ≤ |ω| ≤ 0.475π,

1.9 < H(ejω) < 2.1, 0.525π ≤ |ω| ≤ π.

This specification is to be met by applying the Kaiser window to the ideal real-valued
impulse response associated with the ideal frequency response Hd(ejω) given by

Hd(ejω) =

⎧⎪⎨⎪⎩
1, 0 ≤ |ω| ≤ 0.25π,

0, 0.25π ≤ |ω| ≤ 0.5π,

2, 0.5π ≤ |ω| ≤ π.

(a) What is the maximum value of δ that can be used to meet this specification? What is
the corresponding value of β? Clearly explain your reasoning.

(b) What is the maximum value of 	ω that can be used to meet the specification? What is
the corresponding value of M + 1, the length of the impulse response? Clearly explain
your reasoning.

7.7. We are interested in implementing a continuous-time LTI lowpass filter H(j�) using the
system shown in Figure 4.10 when the discrete-time system has frequency response Hd(ejω).
The sampling time T = 10−4 second and the input signal xc(t) is appropriately bandlimited
with Xc(j�) = 0 for |�| ≥ 2π(5000).

Let the specifications on |H(j�)| be

0.99 ≤ |H(j�)| ≤ 1.01, |�| ≤ 2π(1000),

|H(j�)| ≤ 0.01, |�| ≥ 2π(1100).

Determine the corresponding specifications on the discrete-time frequency responseHd(ejω).

Chapter 7 Problems 585

7.8. We wish to design an optimal (Parks–McClellan) zero-phase Type I FIR lowpass filter
with passband frequency ωp = 0.3π and stopband frequency ωs = 0.6π with equal error
weighting in the passband and stopband. The impulse response of the desired filter has
length 11; i.e., h[n] = 0 for n < −5 or n > 5. Figure P7.8 shows the frequency response
H(ejω) for two different filters. For each filter, specify how many alternations the filter has,
and state whether it satisfies the alternation theorem as the optimal filter in the minimax
sense meeting the preceding specifications.

Radian frequency (�)

0 0.3 � 0.6 � �
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
H

1(
e

j�
)

Radian frequency (�)

0 0.3 � 0.6 � �
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
2(

e
j�

)

(b)

(a)

Figure P7.8

7.9. Suppose we design a discrete-time filter using the impulse invariance technique with an ideal
continuous-time lowpass filter as a prototype. The prototype filter has a cutoff frequency
of �c = 2π(1000) rad/s, and the impulse invariance transformation uses T = 0.2 ms. What
is the cutoff frequency ωc for the resulting discrete-time filter?

7.10. We wish to design a discrete-time lowpass filter using the bilinear transformation on a
continuous-time ideal lowpass filter. Assume that the continuous-time prototype filter has
cutoff frequency �c = 2π(2000) rad/s, and we choose the bilinear transformation parameter
T = 0.4 ms. What is the cutoff frequency ωc for the resulting discrete-time filter?

586 Chapter 7 Filter Design Techniques

7.11. Suppose that we have an ideal discrete-time lowpass filter with cutoff frequency ωc = π/4.
In addition, we are told that this filter resulted from applying impulse invariance to a
continuous-time prototype lowpass filter using T = 0.1 ms. What was the cutoff frequency
�c for the prototype continuous-time filter?

7.12. An ideal discrete-time highpass filter with cutoff frequency ωc = π/2 was designed using the
bilinear transformation with T = 1 ms. What was the cutoff frequency �c for the prototype
continuous-time ideal highpass filter?

7.13. An ideal discrete-time lowpass filter with cutoff frequency ωc = 2π/5 was designed us-
ing impulse invariance from an ideal continuous-time lowpass filter with cutoff frequency
�c = 2π(4000) rad/s. What was the value of T ? Is this value unique? If not, find another
value of T consistent with the information given.

7.14. The bilinear transformation is used to design an ideal discrete-time lowpass filter with
cutoff frequency ωc = 3π/5 from an ideal continuous-time lowpass filter with cutoff fre-
quency �c = 2π(300) rad/s. Give a choice for the parameter T that is consistent with this
information. Is this choice unique? If not, give another choice that is consistent with the
information.

7.15. We wish to design an FIR lowpass filter satisfying the specifications

0.95 < H(ejω) < 1.05, 0 ≤ |ω| ≤ 0.25π,

−0.1 < H(ejω) < 0.1, 0.35π ≤ |ω| ≤ π,

by applying a window w[n] to the impulse response hd [n] for the ideal discrete-time lowpass
filter with cutoff ωc = 0.3π . Which of the windows listed in Section 7.5.1 can be used to
meet this specification? For each window that you claim will satisfy this specification, give
the minimum length M + 1 required for the filter.

7.16. We wish to design an FIR lowpass filter satisfying the specifications

0.98 < H(ejω) < 1.02, 0 ≤ |ω| ≤ 0.63π,

−0.15 < H(ejω) < 0.15, 0.65π ≤ |ω| ≤ π,

by applying a Kaiser window to the impulse response hd [n] for the ideal discrete-time
lowpass filter with cutoff ωc = 0.64π . Find the values of β and M required to satisfy this
specification.

7.17. Suppose that we wish to design a bandpass filter satisfying the following specification:

−0.02 < |H(ejω)| < 0.02, 0 ≤ |ω| ≤ 0.2π,

0.95 < |H(ejω)| < 1.05, 0.3π ≤ |ω| ≤ 0.7π,

−0.001 < |H(ejω)| < 0.001, 0.75π ≤ |ω| ≤ π.

The filter will be designed by applying impulse invariance with T = 5 ms to a prototype
continuous-time filter. State the specifications that should be used to design the prototype
continuous-time filter.

7.18. Suppose that we wish to design a highpass filter satisfying the following specification:

−0.04 < |H(ejω)| < 0.04, 0 ≤ |ω| ≤ 0.2π,

0.995 < |H(ejω)| < 1.005, 0.3π ≤ |ω| ≤ π.

The filter will be designed using the bilinear transformation and T = 2 ms with a prototype
continuous-time filter. State the specifications that should be used to design the prototype
continuous-time filter to ensure that the specifications for the discrete-time filter are met.

Chapter 7 Problems 587

7.19. We wish to design a discrete-time ideal bandpass filter that has a passband π/4 ≤ ω ≤ π/2
by applying impulse invariance to an ideal continuous-time bandpass filter with passband
2π(300) ≤ � ≤ 2π(600). Specify a choice for T that will produce the desired filter. Is your
choice of T unique?

7.20. Specify whether the following statement is true or false. Justify your answer.
Statement: If the bilinear transformation is used to transform a continuous-time all-
pass system to a discrete-time system, the resulting discrete-time system will also be
an all-pass system.

Basic Problems

7.21. An engineer is asked to evaluate the signal processing system shown in Figure P7.21-1 and
improve it if necessary. The input x[n] is obtained by sampling a continuous-time signal at
a sampling rate of 1/T = 100 Hz.

x[n] y[n]
H(e j�)

Figure P7.21-1

The goal is for H(ejω) to be a linear-phase FIR filter, and ideally it should have the following
amplitude response (so it can function as a bandlimited differentiator):

amplitude of Hid(ejω) =
{−ω/T ω < 0

ω/T ω ≥ 0

(a) For one implementation of H(ejω), referred to as H1(ejω), the designer, motivated by
the definition

d (x(t))

dt
= lim

	t→0

x(t) − x(t − 	t)

	t
,

chooses the system impulse response h1[n] so that the input–output relationship is

y[n] = x[n] − x[n − 1]
T

Plot the amplitude response of H1(ejω) and discuss how well it matches the ideal
response. You may find the following expansions helpful:

sin(θ) = θ − 1
3! θ

3 + 1
5! θ

5 − 1
7! θ

7 + · · ·

cos(θ) = 1 − 1
2! θ

2 + 1
4! θ

4 − 1
6! θ

6 + · · ·
(b) We want to cascade H1(ejω) with another linear-phase FIR filter G(ejω), to ensure

that for the combination of the two filters, the group delay is an integer number of
samples. Should the length of the impulse response g[n] be an even or an odd integer?
Explain.

(c) Another method for designing the discrete-time H filter is the method of impulse
invariance. In this method, the ideal bandlimited continuous-time impulse response,
as given in Eq. (P7.21-1), is sampled.

h(t) = �cπt cos(�ct) − π sin(�ct)

π2t2
(P7.21-1)

(In a typical application, �c might be slightly less than π/T , making h(t) the impulse
response of a differentiator which is bandlimited to |�| < π/T .) Based on this impulse

588 Chapter 7 Filter Design Techniques

response, we would have to create a new filter H2 which is also FIR and linear phase.
Therefore, the impulse response, h2[n], should preserve the odd symmetry of h(t) about
t = 0. Using the plot in Figure P7.21-2, indicate the location of samples that result if the
impulse response is sampled at 100 Hz, and an impulse response of length 9 is obtained
using a rectangular window.

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

−10,000

−5,000

0

5,000

10,000

t (seconds)

h(
t)

Figure P7.21-2

(d) Again using the plot in Figure P7.21-2, indicate the location of samples if the impulse
response h2[n] is designed to have length 8, again preserving the odd symmetry of h(t)

about t = 0.
(e) Since the desired magnitude response of H(ejω) is large near ω = π , you do not want

H2 to have a zero at ω = π . Would you use an impulse response with an even or an
odd number of samples? Explain.

7.22. In the system shown in Figure P7.22, the discrete-time system is a linear-phase FIR lowpass
filter designed by the Parks–McClellan algorithm with δ1 = 0.01, δ2 = 0.001, ωp = 0.4π ,
and ωs = 0.6π . The length of the impulse response is 28 samples. The sampling rate for the
ideal C/D and D/C converters is 1/T = 10000 samples/sec.

x[n]

T T

yc(t)xc(t) Ideal
C/D

Converter

LTI System
h[n], H(e j�)

y[n] Ideal
D/C

Converter

Figure P7.22

(a) What property should the input signal have so that the overall system behaves as an
LTI system with Yc(j�) = Heff (j�)Xc(j�)?

Chapter 7 Problems 589

(b) For the conditions found in (a), determine the approximation error specifications sat-
isfied by |Heff (j�)|. Give your answer as either an equation or a plot as a function of
�.

(c) What is the overall delay from the continuous-time input to the continuous-time output
(in seconds) of the system in Figure P7.22?

7.23. Consider a continuous-time system with system function

Hc(s) = 1
s
.

This system is called an integrator, since the output yc(t) is related to the input xc(t) by

yc(t) =
∫ t

−∞
xc(τ)dτ.

Suppose a discrete-time system is obtained by applying the bilinear transformation to Hc(s).

(a) What is the system function H(z) of the resulting discrete-time system? What is the
impulse response h[n]?

(b) If x[n] is the input and y[n] is the output of the resulting discrete-time system, write the
difference equation that is satisfied by the input and output. What problems do you
anticipate in implementing the discrete-time system using this difference equation?

(c) Obtain an expression for the frequency response H(ejω) of the system. Sketch the
magnitude and phase of the discrete-time system for 0 ≤ |ω| ≤ π . Compare them with
the magnitude and phase of the frequency response Hc(j�) of the continuous-time
integrator. Under what conditions could the discrete-time “integrator” be considered
a good approximation to the continuous-time integrator?

Now consider a continuous-time system with system function

Gc(s) = s.

This system is a differentiator; i.e., the output is the derivative of the input. Suppose a
discrete-time system is obtained by applying the bilinear transformation to Gc(s).

(d) What is the system function G(z) of the resulting discrete-time system? What is the
impulse response g[n]?

(e) Obtain an expression for the frequency response G(ejω) of the system. Sketch the
magnitude and phase of the discrete-time system for 0 ≤ |ω| ≤ π . Compare them
with the magnitude and phase of the frequency response Gc(j�) of the continuous-
time differentiator. Under what conditions could the discrete-time “differentiator” be
considered a good approximation to the continuous-time differentiator?

(f) The continuous-time integrator and differentiator are exact inverses of one another.
Is the same true of the discrete-time approximations obtained by using the bilinear
transformation?

7.24. Suppose we have an even-symmetric FIR filter h[n] of length 2L + 1, i.e.,

h[n] = 0 for |n| > L,

h[n] = h[−n].
The frequency response H(ejω), i.e., the DTFT of h[n], is plotted over −π ≤ ω ≤ π in
Figure P7.24.

590 Chapter 7 Filter Design Techniques

Normalized frequency �

−�

1.2

1

0.8

0.6

0.4

0.2

0

−0.2
−�/2 �/20 �

H
(e

j�
)

Figure P7.24

What can be inferred from Figure P7.24 about the possible range of values of L? Clearly
explain the reason(s) for your answer. Do not make any assumptions about the design
procedure that might have been used to obtain h[n].

7.25. Let hd [n] denote the impulse response of an ideal desired system with corresponding fre-
quency response Hd(ejω), and let h[n] and H(ejω) denote the impulse response and fre-
quency response, respectively, of an FIR approximation to the ideal system. Assume that
h[n] = 0 for n < 0 and n > M . We wish to choose the (M + 1) samples of the impulse
response so as to minimize the mean-square error of the frequency response defined as

ε2 = 1
2π

∫ π

−π
|Hd(ejω) − H(ejω)|2dω.

(a) Use Parseval’s relation to express the error function in terms of the sequences hd [n]
and h[n].

(b) Using the result of part (a), determine the values of h[n] for 0 ≤ n ≤ M that minimize
ε2.

(c) The FIR filter determined in part (b) could have been obtained by a windowing oper-
ation. That is, h[n] could have been obtained by multiplying the desired infinite-length
sequence hd [n] by a certain finite-length sequence w[n]. Determine the necessary win-
dow w[n] such that the optimal impulse response is h[n] = w[n]hd [n].

Advanced Problems

7.26. Impulse invariance and the bilinear transformation are two methods for designing discrete-
time filters. Both methods transform a continuous-time system functionHc(s) into a discrete-
time system function H(z). Answer the following questions by indicating which method(s)
will yield the desired result:

Chapter 7 Problems 591

(a) A minimum-phase continuous-time system has all its poles and zeros in the left-half s-
plane. If a minimum-phase continuous-time system is transformed into a discrete-time
system, which method(s) will result in a minimum-phase discrete-time system?

(b) If the continuous-time system is an all-pass system, its poles will be at locations sk in the
left-half s-plane, and its zeros will be at corresponding locations −sk in the right-half
s-plane. Which design method(s) will result in an all-pass discrete-time system?

(c) Which design method(s) will guarantee that

H(ejω)
∣∣
ω=0 = Hc(j�)

∣∣
�=0?

(d) If the continuous-time system is a bandstop filter, which method(s) will result in a
discrete-time bandstop filter?

(e) Suppose that H 1(z), H 2(z), and H(z) are transformed versions of Hc1(s), Hc2(s), and
Hc(s), respectively. Which design method(s) will guarantee that H(z) = H 1(z)H 2(z)

whenever Hc(s) = Hc1(s)Hc2(s)?
(f) Suppose that H 1(z), H 2(z), and H(z) are transformed versions of Hc1(s), Hc2(s), and

Hc(s), respectively. Which design method(s) will guarantee that H(z) = H 1(z)+H 2(z)

whenever Hc(s) = Hc1(s) + Hc2(s)?
(g) Assume that two continuous-time system functions satisfy the condition

Hc1(j�)

Hc2(j�)
=
{

e−jπ/2, � > 0,

ejπ/2, � < 0.

If H 1(z) and H 2(z) are transformed versions of Hc1(s) and Hc2(s), respectively, which
design method(s) will result in discrete-time systems such that

H 1(ejω)

H 2(ejω)
=
{

e−jπ/2, 0 < ω < π,

ejπ/2, −π < ω < 0?

(Such systems are called “90-degree phase splitters.”)

7.27. Suppose that we are given an ideal lowpass discrete-time filter with frequency response

H(ejω) =
{

1, |ω| < π/4,

0, π/4 < |ω| ≤ π.

We wish to derive new filters from this prototype by manipulations of the impulse response
h[n].
(a) Plot the frequency response H 1(ejω) for the system whose impulse response is

h1[n] = h[2n].
(b) Plot the frequency response H 2(ejω) for the system whose impulse response is

h2[n] =
{

h[n/2], n = 0, ±2, ±4, . . . ,

0, otherwise.

(c) Plot the frequency response H 3(ejω) for the system whose impulse response is
h3[n] = ejπnh[n] = (−1)nh[n].

7.28. Consider a continuous-time lowpass filter Hc(s) with passband and stopband specifications

1 − δ1 ≤ |Hc(j�)| ≤ 1 + δ1, |�| ≤ �p,

|Hc(j�)| ≤ δ2, �s ≤ |�|.
This filter is transformed to a lowpass discrete-time filter H 1(z) by the transformation

H 1(z) = Hc(s)
∣∣
s=(1−z−1)/(1+z−1)

,

592 Chapter 7 Filter Design Techniques

and the same continuous-time filter is transformed to a highpass discrete-time filter by the
transformation

H 2(z) = Hc(s)
∣∣
s=(1+z−1)/(1−z−1)

.

(a) Determine a relationship between the passband cutoff frequency �p of the continuous-
time lowpass filter and the passband cutoff frequency ωp1 of the discrete-time lowpass
filter.

(b) Determine a relationship between the passband cutoff frequency �p of the continuous-
time lowpass filter and the passband cutoff frequency ωp2 of the discrete-time highpass
filter.

(c) Determine a relationship between the passband cutoff frequency ωp1 of the discrete-
time lowpass filter and the passband cutoff frequency ωp2 of the discrete-time highpass
filter.

(d) The network in Figure P7.28 depicts an implementation of the discrete-time lowpass
filter with system function H 1(z). The coefficients A, B, C, and D are real. How should
these coefficients be modified to obtain a network that implements the discrete-time
highpass filter with system function H 2(z)?

x[n] y [n]
A 2z–1

z–1B

C 2z–1

z–1D

Figure P7.28

7.29. A discrete-time system with system function H(Z) and impulse response h[n] has frequency
response

H(ejθ) =
{

A, |θ | < θc,

0, θc < |θ | ≤ π,

where 0 < θc < π . This filter is transformed into a new filter by the transformation Z = −z2;
i.e.,

H 1(z) = H(Z)
∣∣
Z=−z2 = H(−z2).

(a) Obtain a relationship between the frequency variable θ for the original lowpass system
H(Z) and the frequency variable ω for the new system H 1(z).

(b) Sketch and carefully label the frequency response H 1(ejω) for the new filter.
(c) Obtain a relationship expressing h1[n] in terms of h[n].
(d) Assume that H(Z) can be realized by the set of difference equations

g[n] = x[n] − a1g[n − 1] − b1f [n − 2],
f [n] = a2g[n − 1] + b2f [n − 1],
y[n] = c1f [n] − c2g[n − 1],

where x[n] is the input and y[n] is the output of the system. Determine a set of difference
equations that will realize the transformed system H 1(z) = H(−z2).

Chapter 7 Problems 593

7.30. Consider designing a discrete-time filter with system function H(z) from a continuous-time
filter with rational system function Hc(s) by the transformation

H(z) = Hc(s)
∣∣
s=β[(1−z−α)/(1+z−α)],

where α is a nonzero integer and β is real.

(a) If α > 0, for what values of β does a stable, causal continuous-time filter with rational
Hc(s) always lead to a stable, causal discrete-time filter with rational H(z)?

(b) If α < 0, for what values of β does a stable, causal continuous-time filter with rational
Hc(s) always lead to a stable, causal discrete-time filter with rational H(z)?

(c) For α = 2 and β = 1, determine to what contour in the z-plane the j�-axis of the
s-plane maps.

(d) Suppose that the continuous-time filter is a stable lowpass filter with passband fre-
quency response such that

1 − δ1 ≤ |Hc(j�)| ≤ 1 + δ1 for |�| ≤ 1.

If the discrete-time system H(z) is obtained by the transformation set forth at the
beginning of this problem, with α = 2 and β = 1, determine the values of ω in the
interval |ω| ≤ π for which

1 − δ1 ≤ |H(ejω)| ≤ 1 + δ1.

7.31. Suppose that we have used the Parks–McClellan algorithm to design a causal FIR linear-
phase lowpass filter. The system function of this system is denoted H(z). The length of the
impulse response is 25 samples, i.e., h[n] = 0 for n < 0 and for n > 24, and h[0] �= 0. The
desired response and weighting function used were

Hd(ejω) =
{

1 |ω| ≤ 0.3π

0 0.4π ≤ |ω| ≤ π
W(ejω) =

{
1 |ω| ≤ 0.3π

2 0.4π ≤ |ω| ≤ π.

In each case below, determine whether the statement is true or false or that insufficient
information is given. Justify your conclusions.

(a) h[n + 12] = h[12 − n] or h[n + 12] = −h[12 − n] for −∞ < n < ∞.
(b) The system has a stable and causal inverse.
(c) We know that H(−1) = 0.
(d) The maximum weighted approximation error is the same in all approximation bands.
(e) If z0 is a zero of H(z), then 1/z0 is a pole of H(z).
(f) The system can be implemented by a network (flow graph) that has no feedback paths.
(g) The group delay is equal to 24 for 0 < ω < π .
(h) If the coefficients of the system function are quantized to 10 bits each, the system is

still optimum in the Chebyshev sense for the original desired response and weighting
function.

(i) If the coefficients of the system function are quantized to 10 bits each, the system is
still guaranteed to be a linear-phase filter.

(j) If the coefficients of the system function are quantized to 10 bits each, the system may
become unstable.

594 Chapter 7 Filter Design Techniques

7.32. You are required to design an FIR filter, h[n], with the following magnitude specifications:

• Passband edge: ωp = π/100.
• Stopband edge: ωs = π/50.
• Maximum stopband gain: δs ≤ −60 dB relative to passband.

It is suggested that you try using a Kaiser window. The Kaiser window design rules for shape
parameter β and filter length M are provided in Section 7.5.3.

(a) What values of β and M are necessary to meet the required specifications?

You show the resulting filter to your boss, and he is unsatisfied. He asks you to reduce
the computations required for the filter. You bring in a consultant who suggests that you
design the filter as a cascade of two stages: h′[n] = p[n] ∗ q[n]. To design p[n] he suggests
first designing a filter, g[n], with passband edge ω′

p = 10ωp , stopband edge ω′
s = 10ωs and

stopband gain δ′
s = δs . The filter p[n] is then obtained by expanding g[n] by a factor of 10:

p[n] =
{

g[n/10], when n/10 is an integer,
0, otherwise.

.

(b) What values of β ′ and M ′ are necessary to meet the required specifications for g[n]?
(c) Sketch P(ejω) from ω = 0 to ω = π/4. You do not need to draw the exact shape of the

frequency response; instead, you should show which regions of the frequency response
are near 0 dB, and which regions are at or below −60 dB. Label all band edges in your
sketch.

(d) What specifications should be used in designing q[n] to guarantee that h′[n] = p[n] ∗
q[n] meets or exceeds the original requirements? Specify the passband edge, ω′′

p , stop-
band edge, ω′′

s , and stopband attenuation, δ′′
s , required for q[n].

(e) What values of β ′′ and M ′′ are necessary to meet the required specifications for q[n]?
How many nonzero samples will h′[n] = q[n] ∗ p[n] have?

(f) The filter h′[n] from parts (b)–(e) is implemented by first directly convolving the input
with q[n] and then directly convolving the results with p[n]. The filter h[n] from part
(a) is implemented by directly convolving the input with h[n]. Which of these two
implementations requires fewer multiplications? Explain. Note: you should not count
multiplications by 0 as an operation.

7.33. Consider a real, bandlimited signal xa(t) whose Fourier transform Xa(j�) has the following
property:

Xa(j�) = 0 for |�| > 2π · 10000 .

That is, the signal is bandlimited to 10 kHz.
We wish to process xa(t) with a highpass analog filter whose magnitude response

satisfies the following specifications (see Figure P7.33):⎧⎨⎩0 ≤ |Ha(j�)| ≤ 0.1 for 0 ≤ |�| ≤ 2π · 4000 = �s

0.9 ≤ |Ha(j�)| ≤ 1 for �p = 2π · 8000 ≤ |�|,

where �s and �p denote the stopband and passband frequencies, respectively.

Chapter 7 Problems 595

0.1

0.9

1

Ω
0 Ωs = 8000� Ωp = 16000�

|Ha(jΩ)|

Figure P7.33

(a) Suppose the analog filter Ha(j�) is implemented by discrete-time processing, accord-
ing to the diagram shown in Figure 7.2.

The sampling frequency fs = 1
T

is 24 kHz for both the ideal C/D and D/C converters.

Determine the appropriate filter specification for |H(ejω)|, the magnitude response of
the digital filter.

(b) Using the bilinear transformation s = 1 − z−1

1 + z−1
, we want to design a digital filter whose

magnitude response specifications were found in part (a). Find the specifications of
|GHP (j�1)|, the magnitude response of the highpass analog filter that is related to the
digital filter through the bilinear transformation. Again, provide a fully labelled sketch
of the magnitude response specifications on |GHP (j�1)|.

(c) Using the frequency transformation s1 = 1
s2

, (i.e., replacing the Laplace transform

variable s by its reciprocal), design the highpass analog filter GHP (j�1) from the
lowest-order Butterworth filter, whose magnitude-squared frequency response is given
below:

|G(j�2)|2 = 1

1 + (�2/�c

)2N
.

In particular, find the lowest filter order N and its corresponding cutoff frequency �c,
such that the original filter’s passband specification (|Ha(j�p)| = 0.9) is met exactly.
In a diagram, label the salient features of the Butterworth filter magnitude response
that you have designed.

(d) Draw the pole–zero diagram of the (lowpass) Butterworth filter G(s2), and find an
expression for its transfer function.

596 Chapter 7 Filter Design Techniques

7.34. A zero-phase FIR filter h[n] has associated DTFT H(ejω), shown in Figure P7.34.

Normalized frequency �

−�

1.2

1

0.8

0.6

0.4

0.2

0

−0.2
−0.8� −0.6� −0.4� −0.2� 0 0.2� 0.4� 0.6� 0.8� �

H
(e

j�
)

Figure P7.34

The filter is known to have been designed using the Parks–McClellan (PM) algorithm. The
input parameters to the PM algorithm are known to have been:

• Passband edge: ωp = 0.4π

• Stopband edge: ωs = 0.6π

• Ideal passband gain: Gp = 1
• Ideal stopband gain: Gs = 0
• Error weighting function W(ω) = 1

The length of the impulse response h[n], is M + 1 = 2L + 1 and

h[n] = 0 for |n| > L.

The value of L is not known.
It is claimed that there are two filters, each with frequency response identical to that

shown in Figure P7.34, and each having been designed by the Parks–McClellan algorithm
with different values for the input parameter L.

• Filter 1: L = L1
• Filter 2: L = L2 > L1.

Both filters were designed using exactly the same Parks–McClellan algorithm and input
parameters, except for the value of L.

(a) What are possible values for L1?
(b) What are possible values for L2 > L1?

Chapter 7 Problems 597

(c) Are the impulse responses h1[n] and h2[n] of the two filters identical?
(d) The alternation theorem guarantees “uniqueness of the rth-order polynomial.” If your

answer to (c) is yes, explain why the alternation theorem is not violated. If your answer
is no, show how the two filters, h1[n] and h2[n], are related.

7.35. We are given an FIR bandpass filter h[n] that is zero phase, i.e., h[n] = h[−n]. Its associated
DTFT H(ejω) is shown in Figure P7.35.

Normalized frequency �

Lower
stopband

edge

Lower
passband

edge

Upper
passband

edge

Upper
stopband

edge

−�

1.2

1

0.8

0.6

0.4

0.2

0

−0.2
−0.8� −0.6� −0.4� −0.2� 0 0.2� 0.4� 0.6� 0.8� �

H
(e

j�
)

Figure P7.35

The filter is known to have been designed using the Parks–McClellan algorithm. The input
parameters to the Parks–McClellan algorithm are known to have been:

• Lower stopband edge: ω1 = 0.2π

• Lower passband edge: ω2 = 0.3π

• Upper passband edge: ω3 = 0.7π

• Upper stopband edge: ω4 = 0.8π

• Ideal passband gain: Gp = 1
• Ideal stopband gain: Gs = 0
• Error weighting function W(ω) = 1

The value of the input parameter M +1, which represents the maximum number of nonzero
impulse response values (equivalently the filter length), is not known.

It is claimed that there are two filters, each with a frequency response identical to that
shown in Figure P7.35, but having different impulse response lengths M + 1 = 2L + 1.

• Filter 1: M = M1 = 14
• Filter 2: M = M2 �= M1

598 Chapter 7 Filter Design Techniques

Both filters were designed using exactly the same Parks–McClellan algorithm and input
parameters, except for the value of M .

(a) What are possible values for M2?
(b) The alternation theorem guarantees “uniqueness of the rth-order polynomial.” Explain

why the alternation theorem is not violated.

7.36. The graphs in Figure P7.36 depict four frequency-response magnitude plots of linear-phase
FIR filters, labelled |Ai

e(e
jω)|, i = 1, 2, 3, 4. One or more of these plots may belong to

equiripple linear-phase FIR filters designed by the Parks–McClellan algorithm. The maxi-
mum approximation errors in the passband and the stopband, as well as the desired cutoff
frequencies of those bands, are also shown in the plots. Please note that the approximation
error and filter length specifications may have been chosen differently to ensure that the
cutoff frequencies are the same in each design.

0 0.4� 0.6� �
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|A
1 e(

ej
�

)|

0 0.4� 0.6� �
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|A
2 e(

ej
�

)|

0 0.4� 0.6� �
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|A
3 e(

ej
�

)|

0 0.4� 0.6� �
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|A
4 e(

ej
�

)|

� �

� �

Figure P7.36

(a) What type(s) (I, II, III, IV) of linear-phase FIR filters can |Ai
e(e

jω)| correspond to, for
i = 1, 2, 3, 4? Please note that there may be more than one linear-phase FIR filter type
corresponding to each |Ai

e(e
jω)|. If you feel this is the case, list all possible choices.

(b) How many alternations does each |Ai
e(e

jω)| exhibit, for i = 1, 2, 3, 4?

Chapter 7 Problems 599

(c) For each i, i = 1, 2, 3, 4, can |Ai
e(e

jω)| belong to an output of the Parks–McClellan
algorithm?

(d) If you claimed that a given |Ai
e(e

jω)| could correspond to an output of the Parks–
McClellan algorithm, and that it could be type I, what is the length of the impulse
response of |Ai

e(e
jω)|?

7.37. Consider the two-stage system shown in Figure P7.37 for interpolating a sequence
x[n] = xc(nT) to a sampling rate that is 15 times as high as the input sampling rate; i.e., we
desire y[n] = xc(nT /15).

y[n]x[n]
3

w[n] we[n]
5

xe[n]
H1(e j�) H2(e j�)

Figure P7.37

Assume that the input sequence x[n] = xc(nT) was obtained by sampling a band-
limited continuous-time signal whose Fourier transform satisfies the following condition:
|Xc(j�)| = 0 for |�| ≥ 2π(3600). Assume that the original sampling period was T =
1/8000.

(a) Make a sketch of the Fourier transform Xc(j�) of a “typical” bandlimited input signal
and the corresponding discrete-time Fourier transforms X(ejω) and Xe(e

jω).
(b) To implement the interpolation system, we must, of course, use nonideal filters. Use

your plot of Xe(e
jω) obtained in part (a) to determine the passband and stopband

cutoff frequencies (ωp1 and ωs1) required to preserve the original band of frequencies
essentially unmodified while significantly attenuating the images of the baseband spec-
trum. (That is, we desire that w[n] ≈ xc(nT /3).) Assuming that this can be achieved
with passband approximation error δ1 = 0.005 (for filter passband gain of 1) and stop-
band approximation error δ2 = 0.01, plot the specifications for the design of the filter
H1(ejω) for −π ≤ ω ≤ π .

(c) Assuming that w[n] = xc(nT /3), make a sketch of We(e
jω) and use it to determine the

passband and stopband cutoff frequencies ωp2 and ωs2 required for the second filter.
(d) Use the formula of Eq. (7.117) to determine the filter orders M1 and M2 for Parks–

McClellan filters that have the passband and stopband cutoff frequencies determined
in parts (b) and (c) with δ1 = 0.005 and δ2 = 0.01 for both filters.

(e) Determine how many multiplications are required to compute 15 samples of the output
for this case.

7.38. The system of Figure 7.2 is used to perform filtering of continuous-time signals with a digital
filter. The sampling rate of the C/D and D/C converters is fs = 1/T = 10, 000 samples/sec.

A Kaiser window wK [n] of length M + 1 = 23 and β = 3.395 is used to design a
linear-phase lowpass filter with frequency response Hlp(ejω). When used in the system of

Figure 7.1 so that H(ejω) = Hlp(ejω), the overall effective frequency response (from input
xa(t) to output ya(t)) meets the following specifications:

0.99 ≤ |Heff(j�)| ≤ 1.01, 0 ≤ |�| ≤ 2π(2000)

|Heff(j�)| ≤ 0.01 2π(3000) ≤ |�| ≤ 2π(5000).

600 Chapter 7 Filter Design Techniques

(a) The linear phase of the FIR filter introduces a time delay td . Find the time delay through
the system (in milliseconds).

(b) Now a highpass filter is designed with the same Kaiser window by applying it to the
ideal impulse response hd [n] whose corresponding frequency response is

Hd(ejω) =
{

0 |ω| < 0.25π

2e−jωnd 0.25π < |ω| ≤ π.

That is, a linear-phase FIR highpass filter with impulse response hhp[n] = wK [n]hd [n]
and frequency response Hhp(ejω) was obtained by multiplying hd [n] by the same
Kaiser window wK [n] that was used to design the first mentioned lowpass filter. The
resulting FIR highpass discrete-time filter meets a set of specifications of the following
form:

|Hhp(ejω)| ≤ δ1 0 ≤ |ω| ≤ ω1
G − δ2 ≤ |Hhp(ejω)| ≤ G + δ2 ω2 ≤ |ω| ≤ π

Use information from the lowpass filter specifications to determine the values of ω1,
ω2, δ1, δ2, and G.

7.39. Figure P7.39 is the ideal, desired frequency response amplitude for a bandpass filter to be
designed as a Type I FIR filter h[n], with DTFT H(ejω) that approximates Hd(ejω) and
meets the following constraints:

−δ1 ≤ H(ejω) ≤ δ1, 0 ≤ |ω| ≤ ω1

1 − δ2 ≤ H(ejω) ≤ 1 + δ2, ω2 ≤ |ω| ≤ ω3

−δ3 ≤ H(ejω) ≤ δ3, ω4 ≤ |ω| ≤ π

Hd(e j�)

1

�0−� −�4 �4−�3 �3−�1 �1
�−�2 �2 Figure P7.39

The resulting filter h[n] is to minimize the maximum weighted error and therefore must
satisfy the alternation theorem.

Determine and sketch an appropriate choice for the weighting function to use with the
Parks–McClellan algorithm.

Chapter 7 Problems 601

7.40. (a) Figure P7.40-1 shows the frequency response Ae(e
jω) of a lowpass Type I Parks–

McClellan filter based on the following specifications. Consequently it satisfies the
alternation theorem.

Passband edge: ωp = 0.45π

Stopband edge: ωs = 0.50π

Desired passband magnitude: 1
Desired stopband magnitude: 0

The weighting function used in both the passband and the stopband is W(ω) = 1.

What can you conclude about the maximum possible number of nonzero values in the
impulse response of the filter?

Normalized frequency

−1

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

−0.2

0

−0.4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

A
e(

ej
�

)

Stopband
edge

Passband
edge

Stopband
edge

Passband
edge

Figure P7.40-1

(b) Figure P7.40-2 shows another frequency response Be(e
jω) for a Type I FIR filter.

Be(e
jω) is obtained from Ae(e

jω) from part (a) as follows:

Be(e
jω) = k1

(
Ae(e

jω)
)2 + k2,

where k1 and k2 are constants. Observe that Be(e
jω) displays equiripple behavior, with

different maximum error in the passband and stopband.

Does this filter satisfy the alternation theorem with the passband and stopband edge
frequencies indicated and with passband ripple and stopband ripple indicated by the
dashed lines?

602 Chapter 7 Filter Design Techniques

Normalized frequency

−1

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

−0.2

0

−0.4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

B
e(

ej
�

)

Stopband
edge

Passband
edge

Stopband
edge

Passband
edge

Figure P7.40-2

7.41. Assume that Hc(s) has an rth-order pole at s = s0, so that Hc(s) can be expressed as

Hc(s) =
r∑

k=1

Ak

(s − s0)k
+ Gc(s),

where Gc(s) has only 1st-order poles. Assume Hc(s) is causal.

(a) Give a formula for determining the constants Ak from Hc(s).
(b) Obtain an expression for the impulse response hc(t) in terms of s0 and gc(t), the inverse

Laplace transform of Gc(s).

7.42. As discussed in Chapter 12, an ideal discrete-time Hilbert transformer is a system that in-
troduces −90 degrees (−π/2 radians) of phase shift for 0 < ω < π and +90 degrees (+π/2
radians) of phase shift for −π < ω < 0. The magnitude of the frequency response is constant
(unity) for 0 < ω < π and for −π < ω < 0. Such systems are also called ideal 90-degree
phase shifters.

(a) Give an equation for the ideal desired frequency response Hd(ejω) of an ideal discrete-
time Hilbert transformer that also includes constant (nonzero) group delay. Plot the
phase response of this system for −π < ω < π .

(b) What type(s) of FIR linear-phase systems (I, II, III, or IV) can be used to approximate
the ideal Hilbert transformer in part (a)?

(c) Suppose that we wish to use the window method to design a linear-phase approximation
to the ideal Hilbert transformer. Use Hd(ejω) given in part (a) to determine the ideal
impulse response hd [n] if the FIR system is to be such that h[n] = 0 for n < 0 and
n > M .

(d) What is the delay of the system if M = 21? Sketch the magnitude of the frequency
response of the FIR approximation for this case, assuming a rectangular window.

Chapter 7 Problems 603

(e) What is the delay of the system if M = 20? Sketch the magnitude of the frequency
response of the FIR approximation for this case, assuming a rectangular window.

7.43. The commonly used windows presented in Section 7.5.1 can all be expressed in terms of
rectangular windows. This fact can be used to obtain expressions for the Fourier transforms
of the Bartlett window and the raised-cosine family of windows, which includes the Hanning,
Hamming, and Blackman windows.

(a) Show that the (M +1)-point Bartlett window, defined by Eq. (7.60b), can be expressed
as the convolution of two smaller rectangular windows. Use this fact to show that the
Fourier transform of the (M + 1)-point Bartlett window is

WB(ejω) = e−jωM/2(2/M)

(
sin(ωM/4)

sin(ω/2)

)2
for M even,

or

WB(ejω) = e−jωM/2(2/M)

(
sin[ω(M + 1)/4]

sin(ω/2)

)(
sin[ω(M − 1)/4]

sin(ω/2)

)
for M odd.

(b) It can easily be seen that the (M+1)-point raised-cosine windows defined by Eqs. (7.60c)–
(7.60e) can all be expressed in the form

w[n] = [A + B cos(2πn/M) + C cos(4πn/M)]wR[n],
where wR[n] is an (M + 1)-point rectangular window. Use this relation to find the
Fourier transform of the general raised-cosine window.

(c) Using appropriate choices for A, B, and C and the result determined in part (b), sketch
the magnitude of the Fourier transform of the Hanning window.

7.44. Consider the following ideal frequency response for a multiband filter:

Hd(ejω) =

⎧⎪⎨⎪⎩
e−jωM/2, 0 ≤ |ω| < 0.3π,

0, 0.3π < |ω| < 0.6π,

0.5e−jωM/2, 0.6π < |ω| ≤ π.

The impulse response hd [n] is multiplied by a Kaiser window with M = 48 and β = 3.68,
resulting in a linear-phase FIR system with impulse response h[n].
(a) What is the delay of the filter?
(b) Determine the ideal desired impulse response hd [n].
(c) Determine the set of approximation error specifications that is satisfied by the FIR

filter; i.e., determine the parameters δ1, δ2, δ3, B, C, ωp1, ωs1, ωs2, and ωp2 in

B − δ1 ≤ |H(ejω)| ≤ B + δ1, 0 ≤ ω ≤ ωp1,

|H(ejω)| ≤ δ2, ωs1 ≤ ω ≤ ωs2,

C − δ3 ≤ |H(ejω)| ≤ C + δ3, ωp2 ≤ ω ≤ π.

7.45. The frequency response of a desired filter hd [n] is shown in Figure P7.45. In this problem,
we wish to design an (M + 1)-point causal linear-phase FIR filter h[n] that minimizes the
integral-squared error

ε2
d = 1

2π

∫ π

−π
|A(ejω) − Hd(ejω)|2dω,

604 Chapter 7 Filter Design Techniques

�–� –

1

Hd(e j�)

��

2
�

2
0

Figure P7.45

where the frequency response of the filter h[n] is

H(ejω) = A(ejω)e−jωM/2

and M is an even integer.

(a) Determine hd [n].
(b) What symmetry should h[n] have in the range 0 ≤ n ≤ M? Briefly explain your

reasoning.
(c) Determine h[n] in the range 0 ≤ n ≤ M .
(d) Determine an expression for the minimum integral-squared error ε2 as a function of

hd [n] and M .

7.46. Consider a type I linear-phase FIR lowpass filter with impulse response hLP [n] of length
(M + 1) and frequency response

HLP (ejω) = Ae(e
jω)e−jωM/2.

The system has the amplitude function Ae(e
jω) shown in Figure P7.46.

Ae(e j�)

1 + �1
1 – �1

�2

�s ���p– �2
Figure P7.46

This amplitude function is the optimal (in the Parks–McClellan sense) approximation to
unity in the band 0 ≤ ω ≤ ωp , where ωp = 0.27π , and the optimal approximation to zero
in the band ωs ≤ ω ≤ π , wherein ωs = 0.4π .

(a) What is the value of M?

Suppose now that a highpass filter is derived from this lowpass filter by defining

hHP [n] = (−1)n+1hLP [n] = −ejπnhLP [n].
(b) Show that the resulting frequency response is of the formHHP (ejω) = Be(e

jω)e−jωM/2.

Chapter 7 Problems 605

(c) Sketch Be(e
jω) for 0 ≤ ω ≤ π .

(d) It is asserted that for the given value of M (as found in part (a)), the resulting highpass
filter is the optimum approximation to zero in the band 0 ≤ ω ≤ 0.6π and to unity in
the band 0.73π ≤ ω ≤ π . Is this assertion correct? Justify your answer.

7.47. Design a three-point optimal (in the minimax sense) causal lowpass filter with ωs = π/2,
ωp = π/3, and K = 1. Specify the impulse response h[n] of the filter you design. Note:
cos(π/2) = 0 and cos(π/3) = 0.5.

Extension Problems

7.48. If an LTI continuous-time system has a rational system function, then its input and output
satisfy an ordinary linear differential equation with constant coefficients. A standard pro-
cedure in the simulation of such systems is to use finite-difference approximations to the
derivatives in the differential equations. In particular, since, for continuous differentiable
functions yc(t),

dyc(t)

dt
= lim

T →0

[
yc(t) − yc(t − T)

T

]
,

it seems plausible that if T is “small enough,” we should obtain a good approximation if we
replace dyc(t)/dt by [yc(t) − yc(t − T)]/T .

While this simple approach may be useful for simulating continuous-time systems, it is
not generally a useful method for designing discrete-time systems for filtering applications.
To understand the effect of approximating differential equations by difference equations, it
is helpful to consider a specific example. Assume that the system function of a continuous-
time system is

Hc(s) = A

s + c
,

where A and c are constants.

(a) Show that the input xc(t) and the output yc(t) of the system satisfy the differential
equation

dyc(t)

dt
+ cyc(t) = Axc(t).

(b) Evaluate the differential equation at t = nT , and substitute

dyc(t)

dt

∣∣∣∣
t=nT

≈ yc(nT) − yc(nT − T)

T
,

i.e., replace the first derivative by the first backward difference.
(c) Define x[n] = xc(nT) and y[n] = yc(nT). With this notation and the result of part (b),

obtain a difference equation relating x[n] and y[n], and determine the system function
H(z) = Y (z)/X (z) of the resulting discrete-time system.

(d) Show that, for this example,

H(z) = Hc(s)
∣∣
s=(1−z−1)/T

;
i.e., show that H(z) can be obtained directly from Hc(s) by the mapping

s = 1 − z−1

T
.

(It can be demonstrated that if higher-order derivatives are approximated by repeated
application of the first backward difference, then the result of part (d) holds for higher-
order systems as well.)

606 Chapter 7 Filter Design Techniques

(e) For the mapping of part (d), determine the contour in the z-plane to which the j�-
axis of the s-plane maps. Also, determine the region of the z-plane that corresponds
to the left half of the s-plane. If the continuous-time system with system function
Hc(s) is stable, will the discrete-time system obtained by first backward difference
approximation also be stable? Will the frequency response of the discrete-time system
be a faithful reproduction of the frequency response of the continuous-time system?
How will the stability and frequency response be affected by the choice of T ?

(f) Assume that the first derivative is approximated by the first forward difference; i.e.,

dyc(t)

dt

∣∣∣∣
t=nT

≈ yc(nT + T) − yc(nT)

T
.

Determine the corresponding mapping from the s-plane to the z-plane, and repeat
part (e) for this mapping.

7.49. Consider an LTI continuous-time system with rational system function Hc(s). The input
xc(t) and the output yc(t) satisfy an ordinary linear differential equation with constant coef-
ficients. One approach to simulating such systems is to use numerical techniques to integrate
the differential equation. In this problem, we demonstrate that if the trapezoidal integra-
tion formula is used, this approach is equivalent to transforming the continuous-time system
function Hc(s) to a discrete-time system function H(z) using the bilinear transformation.

To demonstrate this statement, consider the continuous-time system function

Hc(s) = A

s + c
,

where A and c are constants. The corresponding differential equation is

ẏc(t) + cyc(t) = Axc(t),

where

ẏc(t) = dyc(t)

dt
.

(a) Show that yc(nT) can be expressed in terms of ẏc(t) as

yc(nT) =
∫ nT

(nT −T)
ẏc(τ)dτ + yc(nT − T).

The definite integral in this equation represents the area beneath the function ẏc(t) for
the interval from (nT − T) to nT . Figure P7.49 shows a function ẏc(t) and a shaded
trapezoid-shaped region whose area approximates the area beneath the curve. This
approximation to the integral is known as the trapezoidal approximation. Clearly, as T

approaches zero, the approximation improves. Use the trapezoidal approximation to
obtain an expression for yc(nT) in terms of yc(nT − T), ẏc(nT), and ẏc(nT − T).

nT – T nT t

yc(nT – T)•

yc(nT)• yc(t)•

Figure P7.49

Chapter 7 Problems 607

(b) Use the differential equation to obtain an expression for ẏc(nT), and substitute this
expression into the expression obtained in part (a).

(c) Define x[n] = xc(nT) and y[n] = yc(nT). With this notation and the result of part (b),
obtain a difference equation relating x[n] and y[n], and determine the system function
H(z) = Y (z)/X (z) of the resulting discrete-time system.

(d) Show that, for this example,

H(z) = Hc(s)
∣∣
s=(2/T)[(1−z−1)/(1+z−1)];

i.e., show that H(z) can be obtained directly from Hc(s) by the bilinear transformation.
(For higher-order differential equations, repeated trapezoidal integration applied to
the highest order derivative of the output will result in the same conclusion for a general
continuous-time system with rational system function.)

7.50. In this problem, we consider a method of filter design that might be called autocorrelation
invariance. Consider a stable continuous-time system with impulse response hc(t) and sys-
tem function Hc(s). The autocorrelation function of the system impulse response is defined
as

φc(τ) =
∫ ∞
−∞

hc(t)hc(t + τ)dτ,

and for a real impulse response, it is easily shown that the Laplace transform of φc(τ) is
�c(s) = Hc(s)Hc(−s). Similarly, consider a discrete-time system with impulse response
h[n] and system function H(z). The autocorrelation function of a discrete-time system
impulse response is defined as

φ[m] =
∞∑

n=−∞
h[n]h[n + m],

and for a real impulse response, �(z) = H(z)H(z−1).
Autocorrelation invariance implies that a discrete-time filter is defined by equating

the autocorrelation function of the discrete-time system to the sampled autocorrelation
function of a continuous-time system; i.e.,

φ[m] = Tdφc(mTd), −∞ < m < ∞.

The following design procedure is proposed for autocorrelation invariance when Hc(s) is
a rational function having N 1st-order poles at sk, k = 1, 2, . . . , N , and M < N zeros:

1. Obtain a partial fraction expansion of �c(s) in the form

�c(s) =
N∑

k=1

(
Ak

s − sk
+ Bk

s + sk

)
.

2. Form the z-transform

�(z) =
N∑

k=1

(
TdAk

1 − eskTd z−1
+ TdBk

1 − e−skTd z−1

)
.

3. Find the poles and zeros of �(z), and form a minimum-phase system function H(z)

from the poles and zeros of �(z) that are inside the unit circle.

(a) Justify each step in the proposed design procedure; i.e., show that the autocorrelation
function of the resulting discrete-time system is a sampled version of the autocorrela-
tion function of the continuous-time system. To verify the procedure, it may be helpful
to try it out on the 1st-order system with impulse response

hc(t) = e−αtu(t)

608 Chapter 7 Filter Design Techniques

and corresponding system function

Hc(s) = 1
s + α

.

(b) What is the relationship between |H(ejω)|2 and |Hc(j�)|2? What types of frequency-
response functions would be appropriate for autocorrelation invariance design?

(c) Is the system function obtained in Step 3 unique? If not, describe how to obtain addi-
tional autocorrelation-invariant discrete-time systems.

7.51. Let Hlp(Z) denote the system function for a discrete-time lowpass filter. The implementa-
tions of such a system can be represented by linear signal flow graphs consisting of adders,
gains, and unit delay elements as in Figure P7.51-1. We want to implement a lowpass filter
for which the cutoff frequency can be varied by changing a single parameter. The proposed
strategy is to replace each unit delay element in a flow graph representing Hlp(Z) by the
network shown in Figure P7.51-2, where α is real and |α| < 1.

Z–1 Figure P7.51-1

z–1

z–1

–1 �

Figure P7.51-2

(a) Let H(z) denote the system function for the filter that results when the network of
Figure P7.51-2 is substituted for each unit delay branch in the network that implements
Hlp(Z). Show that H(z) and Hlp(Z) are related by a mapping of the Z-plane into the
z-plane.

(b) If H(ejω) and Hlp(ejθ) are the frequency responses of the two systems, determine the
relationship between the frequency variables ω and θ . Sketch ω as a function of θ for
α = 0.5, and −0.5, and show that H(ejω) is a lowpass filter. Also, if θp is the passband
cutoff frequency for the original lowpass filter Hlp(Z), obtain an equation for ωp , the
cutoff frequency of the new filter H(z), as a function of α and θp .

(c) Assume that the original lowpass filter has the system function

Hlp(Z) = 1

1 − 0.9Z −1
.

Draw the flow graph of an implementation of Hlp(Z), and also draw the flow graph of
the implementation of H(z) obtained by replacing the unit delay elements in the first
flow graph by the network in Figure P7.51-2. Does the resulting network correspond
to a computable difference equation?

(d) If Hlp(Z) corresponds to an FIR system implemented in direct form, would the flow
graph manipulation lead to a computable difference equation? If the FIR system
Hlp(Z) was a linear-phase system, would the resulting system H(z) also be a linear-
phase system? If the FIR system has an impulse response of length M + 1 samples
what would be the length of the impulse response of the transformed system?

Chapter 7 Problems 609

(e) To avoid the difficulties that arose in part (c), it is suggested that the network of
Figure P7.51-2 be cascaded with a unit delay element, as depicted in Figure P7.51-3.
Repeat the analysis of part (a) when the network of Figure P7.51-3 is substituted for
each unit delay element. Determine an equation that expresses θ as a function of ω,
and show that if Hlp(ejθ) is a lowpass filter, then H(ejω) is not a lowpass filter.

z–1

z–1

–1z–1 �

Figure P7.51-3

7.52. If we are given a basic filter module (a hardware or computer subroutine), it is sometimes
possible to use it repetitively to implement a new filter with sharper frequency-response
characteristics. One approach is to cascade the filter with itself two or more times, but it
can easily be shown that, while stopband errors are squared (thereby reducing them if they
are less than 1), this approach will increase the passband approximation error. Another
approach, suggested by Tukey (1977), is shown in the block diagram of Figure P7.52-1.
Tukey called this approach “twicing.”

h [n]
H(e j�)

h [n]
H(e j�)

+
–

+
x [n] w [n] y [n]

2
Figure P7.52-1

(a) Assume that the basic system has a symmetric finite-duration impulse response; i.e.,

h[n] =
{

h[−n], −L ≤ n ≤ L,

0 otherwise.

Determine whether the overall impulse response g[n] is (i) FIR and (ii) symmetric.
(b) Suppose that H(ejω) satisfies the following approximation error specifications:

(1 − δ1) ≤ H(ejω) ≤ (1 + δ1), 0 ≤ ω ≤ ωp,

−δ2 ≤ H(ejω) ≤ δ2, ωs ≤ ω ≤ π.

It can be shown that if the basic system has these specifications, the overall frequency
response G(ejω) (from x[n] to y[n]) satisfies specifications of the form

A ≤ G(ejω) ≤ B, 0 ≤ ω ≤ ωp,

C ≤ G(ejω) ≤ D, ωs ≤ ω ≤ π.

Determine A, B, C, and D in terms of δ1 and δ2. If δ1 � 1 and δ2 � 1, what are the
approximate maximum passband and stopband approximation errors for G(ejω)?

(c) As determined in part (b), Tukey’s twicing method improves the passband approxi-
mation error, but increases the stopband error. Kaiser and Hamming (1977) general-
ized the twicing method so as to improve both the passband and the stopband. They
called their approach “sharpening.” The simplest sharpening system that improves both
passband and stopband is shown in Figure P7.52-2. Assume again that the impulse re-
sponse of the basic system is as given in part (a). Repeat part (b) for the system of
Figure P7.52-2.

610 Chapter 7 Filter Design Techniques

(d) The basic system was assumed to be noncausal. If the impulse response of the basic
system is a causal linear-phase FIR system such that

h[n] =
{

h[M − n], 0 ≤ n ≤ M,

0, otherwise,

how should the systems of Figures P7.52-1 and P7.52-2 be modified? What type(s) (I,
II, III, or IV) of causal linear-phase FIR system(s) can be used? What are the lengths
of the impulse responses g[n] for the systems in Figures P7.52-1 and P7.52-2 (in terms
of L)?

h [n]
H(e j�)

h [n]
H(e j�)

+
–

+
x [n]

h [n]
H(e j�) y [n]

3

2

Figure P7.52-2

7.53. Consider the design of a lowpass linear-phase FIR filter by means of the Parks–McClellan
algorithm. Use the alternation theorem to argue that the approximation must decrease
monotonically in the “don’t care” region between the passband and the stopband approx-
imation intervals. Hint: Show that all the local maxima and minima of the trigonometric
polynomial must be in either the passband or the stopband to satisfy the alternation theo-
rem.

7.54. Figure P7.54 shows the frequency response Ae(e
jω) of a discrete-time FIR system for which

the impulse response is

he[n] =
{

he[−n], −L ≤ n ≤ L,

0, otherwise.

0.01

0.99

1.01

–0.01
�
3

Ae(e j�)

�2� �

3 Figure P7.54

(a) Show thatAe(e
jω) cannot correspond to an FIR filter generated by the Parks–McClellan

algorithm with a passband edge frequency of π/3, a stopband edge frequency of 2π/3,
and an error-weighting function of unity in the passband and stopband. Clearly explain
your reasoning. Hint: The alternation theorem states that the best approximation is
unique.

(b) Based on Figure P7.54 and the statement that Ae(e
jω) cannot correspond to an optimal

filter, what can be concluded about the value of L?

Chapter 7 Problems 611

7.55. Consider the system in Figure P7.55.

Ideal
C /D

converter

D/A
converter

H(e j�) Hr(j�)
xc(t) x [n] = xc(nT) y [n] yDA(t) yc(t)

Sampling
period

T

Sampling
period

T

Figure P7.55

1. Assume that Xc(j�) = 0 for |�| ≥ π/T and that

Hr(j�) =
{

1, |�| < π/T ,

0, |�| > π/T ,

denotes an ideal lowpass reconstruction filter.
2. The D/A converter has a built-in zero-order-hold circuit, so that

YDA(t) =
∞∑

n=−∞
y[n]h0(t − nT),

where

h0(t) =
{

1, 0 ≤ t < T ,

0, otherwise.

(We neglect quantization in the D/A converter.)
3. The second system in Figure P7.55 is a linear-phase FIR discrete-time system with

frequency response H(ejω).

We wish to design the FIR system using the Parks–McClellan algorithm to compensate for
the effects of the zero-order-hold system.

(a) The Fourier transform of the output is Yc(j�) = Heff(j�)Xc(j�). Determine an
expression for Heff(j�) in terms of H(ej�T) and T .

(b) If the linear-phase FIR system is such that h[n] = 0 for n < 0 and n > 51, and T = 10−4

s, what is the overall time delay (in ms) between xc(t) and yc(t)?
(c) Suppose that when T = 10−4 s, we want the effective frequency response to be equirip-

ple (in both the passband and the stopband) within the following tolerances:

0.99 ≤ |Heff(j�)| ≤ 1.01, |�| ≤ 2π(1000),

|Heff(j�)| ≤ 0.01, 2π(2000) ≤ |�| ≤ 2π(5000).

We want to achieve this by designing an optimum linear-phase filter (using the Parks–
McClellan algorithm) that includes compensation for the zero-order hold. Give an
equation for the ideal response Hd(ejω) that should be used. Find and sketch the
weighting function W(ω) that should be used. Sketch a “typical” frequency response
H(ejω) that might result.

(d) How would you modify your results in part (c) to include magnitude compensation for
a reconstruction filter Hr(j�) with zero gain above � = 2π(5000), but with sloping
passband?

612 Chapter 7 Filter Design Techniques

7.56. After a discrete-time signal is lowpass filtered, it is often downsampled or decimated, as
depicted in Figure P7.56-1. Linear-phase FIR filters are frequently desirable in such appli-
cations, but if the lowpass filter in the figure has a narrow transition band, an FIR system
will have a long impulse response and thus will require a large number of multiplications
and additions per output sample.

1

�p �s �

x [n]

LPF
H(e j�) v [n] y [n]

M

H(e j�)

�

= passband frequency
= stopband frequency
= transition bandwidth

�p
�s

(�s – �p)

Figure P7.56-1

In this problem, we will study the merits of a multistage implementation of the system in
Figure P7.56-1. Such implementations are particularly useful when ωs is small and the dec-
imation factor M is large. A general multistage implementation is depicted in Figure P7.56-
2. The strategy is to use a wider transition band in the lowpass filters of the earlier stages,
thereby reducing the length of the required filter impulse responses in those stages. As dec-
imation occurs, the number of signal samples is reduced, and we can progressively decrease
the widths of the transition bands of the filters that operate on the decimated signal. In this
manner, the overall number of computations required to implement the decimator may be
reduced.

x [n]
LPF1 LPF2

v1[n] w1[n]
LPFmM1

v2[n] w2[n]
M2

vm[n] y [n]
Mm

...

Figure P7.56-2

(a) If no aliasing is to occur as a result of the decimation in Figure P7.56-1, what is the
maximum allowable decimation factor M in terms of ωs?

(b) Let M = 100, ωs = π/100, and ωp = 0.9π/100 in the system of Figure P7.56-2. If
x[n] = δ[n], sketch V (ejω) and Y (ejω).

Now consider a two-stage implementation of the decimator for M = 100, as depicted
in Figure P7.56-3, where M 1 = 50, M 2 = 2, ωp1 = 0.9π/100, ωp2 = 0.9π/2, and ωs2 = π/2.
We must choose ωs1 or, equivalently, the transition band of LPF1, (ωs1 −ωp1), such that the
two-stage implementation yields the same equivalent passband and stopband frequencies as
the single-stage decimator. (We are not concerned about the detailed shape of the frequency
response in the transition band, except that both systems should have a monotonically
decreasing response in the transition band.)

Chapter 7 Problems 613

1

�p1
�s1

x [n]

LPF1
H1(e j�)

LPF 1 LPF 2

LPF2
H2(e j�)v1[n] w1[n]

50

M1 = 50
v2[n] y [n]

2

M2 = 2

H1(e j�)

�p2
�s2

H2(e j�)

Figure P7.56-3

(c) For an arbitrary ωs1 and the input x[n] = δ[n], sketch V1(ejω), W1(ejω), V2(ejω), and
Y (ejω) for the two-stage decimator of Figure P7.56-3.

(d) Find the largest value of ωs1 such that the two-stage decimator yields the same equiv-
alent passband and stopband cutoff frequencies as the single-stage system in part (b).

In addition to possessing a nonzero transition bandwidth, the lowpass filters must
differ from the ideal by passband and stopband approximation errors of δp and δs , respec-
tively. Assume that linear-phase equiripple FIR approximations are used. It follows from
Eq. (7.117) that, for optimum lowpass filters,

N ≈ −10 log10(δpδs) − 13
2.324	ω

+ 1, (P7.56-1)

where N is the length of the impulse response and 	ω = ωs −ωp is the transition band of the
lowpass filter. Equation P7.56-1 provides the basis for comparing the two implementations
of the decimator. Equation (7.76) could be used in place of Eq. (P7.56-1) to estimate the
impulse-response length if the filters are designed by the Kaiser window method.

(e) Assume that δp = 0.01 and δs = 0.001 for the lowpass filter in the single-stage im-
plementation. Compute the length N of the impulse response of the lowpass filter,
and determine the number of multiplications required to compute each sample of the
output. Take advantage of the symmetry of the impulse response of the linear-phase
FIR system. (Note that in this decimation application, only every Mth sample of the
output need be computed; i.e., the compressor commutes with the multiplications of
the FIR system.)

(f) Using the value of ωs1 found in part (d), compute the impulse response lengths N1
and N2 of LPF1 and LPF2, respectively, in the two-stage decimator of Figure P7.56-3.
Determine the total number of multiplications required to compute each sample of
the output in the two-stage decimator.

(g) If the approximation error specifications δp = 0.01 and δs = 0.001 are used for
both filters in the two-stage decimator, the overall passband ripple may be greater
than 0.01, since the passband ripples of the two stages can reinforce each other; e.g.,
(1 + δp)(1 + δp) > (1 + δp). To compensate for this, the filters in the two-stage im-
plementation can each be designed to have only one-half the passband ripple of the
single-stage implementation. Therefore, assume that δp = 0.005 and δs = 0.001 for
each filter in the two-stage decimator. Calculate the impulse response lengths N1 and
N2 of LPF1 and LPF2, respectively, and determine the total number of multiplications
required to compute each sample of the output.

614 Chapter 7 Filter Design Techniques

(h) Should we also reduce the specification on the stopband approximation error for the
filters in the two-stage decimator?

(i) Optional. The combination of M 1 = 50 and M 2 = 2 may not yield the smallest total
number of multiplications per output sample. Other integer choices for M 1 and M 2 are
possible such that M 1M 2 = 100. Determine the values of M 1 and M 2 that minimize
the number of multiplications per output sample.

7.57. In this problem, we develop a technique for designing discrete-time filters with minimum
phase. Such filters have all their poles and zeros inside (or on) the unit circle. (We will allow
zeros on the unit circle.) Let us first consider the problem of converting a type I linear-
phase FIR equiripple lowpass filter to a minimum-phase system. If H(ejω) is the frequency
response of a type I linear-phase filter, then

1. The corresponding impulse response

h[n] =
{

h[M − n], 0 ≤ n ≤ M,

0, otherwise,

is real and M is an even integer.
2. It follows from part 1 that H(ejω) = Ae(e

jω)e−jωn0 , where Ae(e
jω) is real and

n0 = M/2 is an integer.
3. The passband ripple is δ1; i.e., in the passband, Ae(e

jω) oscillates between (1 + δ1)
and (1 − δ1). (See Figure P7.57-1.)

1 + �1

1 – �1

�2

–�2
� �

Ae(e j�)

Figure P7.57-1

4. The stopband ripple is δ2; i.e., in the stopband, −δ2 ≤ Ae(e
jω) ≤ δ2, and Ae(e

jω)

oscillates between −δ2 and +δ2. (See Figure P7.57-1.)

The following technique was proposed by Herrmann and Schüssler (1970a) for converting
this linear-phase system into a minimum-phase system that has a system function Hmin(z)

and unit sample response hmin[n] (in this problem, we assume that minimum-phase systems
can have zeros on the unit circle):

Step 1. Create a new sequence

h1[n] =
{

h[n], n �= n0,

h[n0] + δ2, n = n0.

Step 2. Recognize that H 1(z) can be expressed in the form

H 1(z) = z−n0H 2(z)H 2(1/z) = z−n0H 3(z)

for some H 2(z), where H 2(z) has all its poles and zeros inside or on the unit
circle and h2[n] is real.

Step 3. Define

Hmin(z) = H 2(z)

a
.

Chapter 7 Problems 615

The denominator constant where a = (
√

1 − δ1 + δ2 + √1 + δ1 + δ2)/2 nor-
malizes the passband so that the resulting frequency response Hmin(ejω) will
oscillate about a value of unity.

(a) Show that if h1[n] is chosen as in Step 1, then H 1(ejω) can be written as

H 1(ejω) = e−jωn0H 3(ejω),

where H 3(ejω) is real and nonnegative for all values of ω.
(b) If H 3(ejω) ≥ 0, as was shown in part (a), show that there exists an H 2(z) such that

H 3(z) = H 2(z)H 2(1/z),

where H 2(z) is a minimum-phase system function and h2[n] is real (i.e., justify Step 2).
(c) Demonstrate that the new filter Hmin(ejω) is an equiripple lowpass filter (i.e., that its

magnitude characteristic is of the form shown in Figure P7.57-2) by evaluating δ′
1 and

δ′
2. What is the length of the new impulse response hmin[n]?

1 + �1'
'

'

1 – �1

�2

� �

|Hmin(e j�)|

Figure P7.57-2

(d) In parts (a), (b), and (c), we assumed that we started with a type I FIR linear-phase
filter. Will this technique work if we remove the linear-phase constraint? Will it work
if we use a type II FIR linear-phase system?

7.58. Suppose that we have a program that finds the set of coefficients a[n], n = 0, 1, . . . , L, that
minimizes

max
ω∈F

⎧⎨⎩
∣∣∣∣∣∣W(ω)

⎡⎣Hd(ejω) −
L∑

n=0

a[n] cos ωn

⎤⎦∣∣∣∣∣∣
⎫⎬⎭ ,

given L, F , W(ω), and Hd(ejω). We have shown that the solution to this optimization prob-
lem implies a noncausal FIR zero-phase system with impulse response satisfying he[n] =
he[−n]. By delaying he[n] by L samples, we obtain a causal type I FIR linear-phase system
with frequency response

H(ejω) = e−jωM/2
L∑

n=0

a[n] cos ωn =
2L∑
n=0

h[n]e−jωn,

where the impulse response is related to the coefficients a[n] by

a[n] =
{

2h[M/2 − n] for 1 ≤ n ≤ L,

h[M/2] for n = 0,

and M = 2L is the order of the system function polynomial. (The length of the impulse
response is M + 1.)

The other three types (II, III, and IV) of linear-phase FIR filters can be designed by
the available program if we make suitable modifications to the weighting function W(ω)

616 Chapter 7 Filter Design Techniques

and the desired frequency response Hd(ejω). To see how to do this, it is necessary to
manipulate the expressions for the frequency response into the standard form assumed by
the program.

(a) Assume that we wish to design a causal type II FIR linear-phase system such that
h[n] = h[M − n] for n = 0, 1, . . . , M , where M is an odd integer. Show that the
frequency response of this type of system can be expressed as

H(ejω) = e−jωM/2
(M+1)/2∑

n=1

b[n] cos ω
(
n − 1

2

)
,

and determine the relationship between the coefficients b[n] and h[n].
(b) Show that the summation

(M+1)/2∑
n=1

b[n] cos ω
(
n − 1

2

)
can be written as

cos(ω/2)

(M−1)/2∑
n=0

b̃[n] cos ωn

by obtaining an expression for b[n] for n = 1, 2, . . . , (M + 1)/2 in terms of b̃[n] for
n = 0, 1, . . . , (M − 1)/2. Hint: Note carefully that b[n] is to be expressed in terms of
b̃[n]. Also, use the trigonometric identity cos α cos β = 1

2 cos(α + β) + 1
2 cos(α − β).

(c) If we wish to use the given program to design type II systems (M odd) for a given F ,
W(ω), and Hd(ejω), show how to obtain L̃, F̃ , W̃ (ω), and H̃ d (ejω) in terms of M , F ,
W(ω), and Hd(ejω) such that if we run the program using L̃, F̃ , W̃ (ω), and H̃ d (ejω),
we may use the resulting set of coefficients to determine the impulse response of the
desired type II system.

(d) Parts (a)–(c) can be repeated for types III and IV causal linear-phase FIR systems
where h[n] = −h[M − n]. For these cases, you must show that, for type III systems (M
even), the frequency response can be expressed as

H(ejω) = e−jωM/2
M/2∑
n=1

c[n] sin ωn

= e−jωM/2 sin ω

(M−2)/2∑
n=0

c̃[n] cos ωn,

and for type IV systems (M odd),

H(ejω) = e−jωM/2
(M+1)/2∑

n=1

d[n] sin ω
(
n − 1

2

)

= e−jωM/2 sin(ω/2)

(M−1)/2∑
n=0

d̃[n] cos ωn.

As in part (b), it is necessary to express c[n] in terms of c̃[n] and d[n] in terms of d̃[n]
using the trigonometric identity sin α cos β = 1

2 sin(α + β) + 1
2 sin(α − β). McClellan

and Parks (1973) and Rabiner and Gold (1975) give more details on issues raised in
this problem.

Chapter 7 Problems 617

7.59. In this problem, we consider a method of obtaining an implementation of a variable-cutoff
linear-phase filter. Assume that we are given a zero-phase filter designed by the Parks–
McClellan method. The frequency response of this filter can be represented as

Ae(e
jθ) =

L∑
k=0

ak(cos θ)k,

and its system function can therefore be represented as

Ae(Z) =
L∑

k=0

ak

(
Z + Z−1

2

)k

,

with ejθ = Z. (We use Z for the original system and z for the system to be obtained by
transformation of the original system.)

(a) Using the preceding expression for the system function, draw a block diagram or
flow graph of an implementation of the system that utilizes multiplications by the
coefficients ak , additions, and elemental systems having system function (Z + Z−1)/2.

(b) What is the length of the impulse response of the system? The overall system can be
made causal by cascading the system with a delay of L samples. Distribute this delay
as unit delays so that all parts of the network will be causal.

(c) Suppose that we obtain a new system function from Ae(Z) by the substitution

Be(z) = Ae(Z)
∣∣
(Z+Z−1)/2=α0+α1[(z+z−1)/2].

Using the flow graph obtained in part (a), draw the flow graph of a system that im-
plements the system function Be(z). What is the length of the impulse response of this
system? Modify the network as in part (b) to make the overall system and all parts of
the network causal.

(d) If Ae(e
jθ) is the frequency response of the original filter and Be(e

jω) is the frequency
response of the transformed filter, determine the relationship between θ and ω.

(e) The frequency response of the original optimal filter is shown in Figure P7.59. For
the case α1 = 1 − α0 and 0 ≤ α0 < 1, describe how the frequency response Be(e

jω)

changes as α0 varies. Hint: Plot Ae(e
jθ) and Be(e

jω) as functions of cos θ and cos ω.
Are the resulting transformed filters also optimal in the sense of having the minimum
maximum weighted approximation errors in the transformed passband and stopband?

1 + �1

1 – �1

�2

–�2
�

Ae(e j
)

Figure P7.59

(f) Optional. Repeat part (e) for the case α1 = 1 + α0 and −1 < α0 ≤ 0.

618 Chapter 7 Filter Design Techniques

7.60. In this problem, we consider the effect of mapping continuous-time filters to discrete-time
filters by replacing derivatives in the differential equation for a continuous-time filter by
central differences to obtain a difference equation. The first central difference of a sequence
x[n] is defined as

	(1){x[n]} = x[n + 1] − x[n − 1],
and the kth central difference is defined recursively as

	(k){x[n]} = 	(1){	(k−1){x[n]}}.
For consistency, the zeroth central difference is defined as

	(0){x[n]} = x[n].
(a) If X (z) is the z-transform of x[n], determine the z-transform of 	(k){x[n]}.

The mapping of an LTI continuous-time filter to an LTI discrete-time filter is as
follows: Let the continuous-time filter with input x(t) and output y(t) be specified by a
differential equation of the form

N∑
k=0

ak
dky(t)

dtk
=

M∑
r=0

br
drx(t)

dtr
.

Then the corresponding discrete-time filter with input x[n] and output y[n] is specified by
the difference equation

N∑
k=0

ak	
(k){y[n]} =

M∑
r=0

br	
(r){x[n]}.

(b) If Hc(s) is a rational continuous-time system function and Hd(z) is the discrete-time
system function obtained by mapping the differential equation to a difference equation
as indicated in part (a), then

Hd(z) = Hc(s)
∣∣
s=m(z)

.

Determine m(z).
(c) Assume that Hc(s) approximates a continuous-time lowpass filter with a cutoff fre-

quency of � = 1; i.e.,

H(j�) ≈
{

1, |�| < 1,

0, otherwise.

This filter is mapped to a discrete-time filter using central differences as discussed in
part (a). Sketch the approximate frequency response that you would expect for the
discrete-time filter, assuming that it is stable.

7.61. Let h[n] be the optimal type I equiripple lowpass filter shown in Figure P7.61, designed
with weighting function W(ejω) and desired frequency response Hd(ejω). For simplicity,
assume that the filter is zero phase (i.e., noncausal). We will use h[n] to design five different
FIR filters as follows:

h1[n] = h[−n],
h2[n] = (−1)nh[n],
h3[n] = h[n] ∗ h[n],
h4[n] = h[n] − Kδ[n], where K is a constant,

h5[n] =
{

h[n/2] for n even,
0 otherwise.

Chapter 7 Problems 619

For each filter hi [n], determine whether hi [n] is optimal in the minimax sense. That is,
determine whether

hi [n] = min
hi [n] max

ω∈F

(
W(ejω)|Hd(ejω) − Hi(e

jω)|)
for some choices of a piecewise-constant Hd(ejω) and a piecewise-constant W(ejω), where
F is a union of disjoint closed intervals on 0 ≤ ω ≤ π . If hi [n] is optimal, determine the
corresponding Hd(ejω) and W(ejω). If hi [n] is not optimal, explain why.

H(e j�)

1 + �1

0

1 – �1

�2

�s ���p

– �2
Figure P7.61

7.62. Suppose that you have used the Parks–McClellan algorithm to design a causal FIR linear-
phase system. The system function of this system is denoted H(z). The length of the impulse
response is 25 samples, h[n] = 0 for n < 0 and for n > 24, and h[0] �= 0. For each of the
following questions, answer “true,” “false,” or “insufficient information given”:

(a) h[n + 12] = h[12 − n] or h[n + 12] = −h[12 − n] for −∞ < n < ∞.
(b) The system has a stable and causal inverse.
(c) We know that H(−1) = 0.
(d) The maximum weighted approximation error is the same in all approximation bands.
(e) The system can be implemented by a signal flow graph that has no feedback paths.
(f) The group delay is positive for 0 < ω < π .

7.63. Consider the design of a type I bandpass linear-phase FIR filter using the Parks–McClellan
algorithm. The impulse response length is M+1 = 2L+1. Recall that for type I systems, the
frequency response is of the form H(ejω) = Ae(e

jω)e−jωM/2, and the Parks–McClellan
algorithm finds the function Ae(e

jω) that minimizes the maximum value of the error func-
tion

E(ω) = W(ω)[Hd(ejω) − Ae(e
jω)], ω ∈ F,

where F is a closed subset of the interval 0 ≤ ω ≤ π, W(ω) is a weighting function, and
Hd(ejω) defines the desired frequency response in the approximation intervals F . The
tolerance scheme for a bandpass filter is shown in Figure P7.63.

(a) Give the equation for the desired response Hd(ejω) for the tolerance scheme in Fig-
ure P7.63.

620 Chapter 7 Filter Design Techniques

(b) Give the equation for the weighting function W(ω) for the tolerance scheme in Fig-
ure P7.63.

(c) What is the minimum number of alternations of the error function for the optimum
filter?

(d) What is the maximum number of alternations of the error function for the optimum
filter?

�1

–�1

–�3

�3

1

�1 �2 �3 �4 � �

1 – �2

1 + �2

|Ae(e j�)|

Figure P7.63

(e) Sketch a “typical” weighted error function E(ω) that could be the error function for
an optimum bandpass filter if M = 14. Assume the maximum number of alternations.

(f) Now suppose that M , ω1, ω2, ω3, the weighting function, and the desired function are
kept the same, but ω4 is increased, so that the transition band (ω4 − ω3) is increased.
Will the optimum filter for these new specifications necessarily have a smaller value of
the maximum approximation error than the optimum filter associated with the original
specifications? Clearly show your reasoning.

(g) In the lowpass filter case, all local minima and maxima of Ae(e
jω) must occur in the

approximation bands ω ∈ F ; they cannot occur in the “don’t care” bands. Also, in
the lowpass case, the local minima and maxima that occur in the approximation bands
must be alternations of the error. Show that this is not necessarily true in the bandpass
filter case. Specifically, use the alternation theorem to show (i) that local maxima and
minima of Ae(e

jω) are not restricted to the approximation bands and (ii) that local
maxima and minima in the approximation bands need not be alternations.

7.64. It is often desirable to transform a prototype discrete-time lowpass filter to another kind
of discrete-time frequency-selective filter. In particular, the impulse invariance approach
cannot be used to convert continuous-time highpass or bandstop filters to discrete-time
highpass or bandstop filters. Consequently, the traditional approach has been to design
a prototype lowpass discrete-time filter using either impulse invariance or the bilinear
transformation and then to use an algebraic transformation to convert the discrete-time
lowpass filter into the desired frequency-selective filter.

To see how this is done, assume that we are given a lowpass system function Hlp(Z)

that we wish to transform to a new system function H(z), which has either lowpass, highpass,
bandpass, or bandstop characteristics when it is evaluated on the unit circle. Note that we
associate the complex variable Z with the prototype lowpass filter and the complex variable
z with the transformed filter. Then, we define a mapping from the Z-plane to the z-plane

Chapter 7 Problems 621

of the form

Z−1 = G(z−1) (P7.64-1)

such that

H(z) = Hlp(Z)
∣∣
Z−1=G(z−1)

. (P7.64-2)

Instead of expressing Z as a function of z, we have assumed in Eq. (P7.64-1) that Z−1 is
expressed as a function of z−1. Thus, according to Eq. (P7.64-2), in obtaining H(z) from
Hlp(Z), we simply replace Z−1 everywhere in Hlp(Z) by the function G(z−1). This is a
convenient representation, because Hlp(Z) is normally expressed as a rational function of

Z−1.
If Hlp(Z) is the rational system function of a causal and stable system, we naturally

require that the transformed system function H(z) be a rational function of z−1 and that the
system also be causal and stable. This places the following constraints on the transformation
Z−1 = G(z−1):

1. G(z−1) must be a rational function of z−1.
2. The inside of the unit circle of the Z-plane must map to the inside of the unit circle

of the z-plane.
3. The unit circle of the Z-plane must map onto the unit circle of the z-plane.

In this problem, you will derive and characterize the algebraic transformations necessary
to convert a discrete-time lowpass filter into another lowpass filter with a different cutoff
frequency or to a discrete-time highpass filter.

(a) Let θ and ω be the frequency variables (angles) in the Z-plane and z-plane, respectively,
i.e., on the respective unit circles Z = ejθ and z = ejω. Show that, for Condition 3 to
hold, G(z−1) must be an all-pass system, i.e.,

|G(e−jω)| = 1. (P7.64-3)

(b) It is possible to show that the most general form of G(z−1) that satisfies all of the
preceding three conditions is

Z−1 = G(z−1) = ±
N∏

k=1

z−1 − αk

1 − αkz
−1

. (P7.64-4)

From our discussion of all-pass systems in Chapter 5, it should be clear that G(z−1),
as given in Eq. (P7.64-4), satisfies Eq. (P7.64-3), i.e., is an allpass system, and thus
meets Condition 3. Eq. (P7.64-4) also clearly meets Condition 1. Demonstrate that
Condition 2 is satisfied if and only if |αk | < 1.

(c) A simple 1st-order G(z−1) can be used to map a prototype lowpass filter Hlp(Z) with
cutoff θp to a new filter H(z) with cutoff ωp . Demonstrate that

G(z−1) = z−1 − α

1 − αz−1

will produce the desired mapping for some value of α. Solve for α as a function of
θp and ωp . Problem 7.51 uses this approach to design lowpass filters with adjustable
cutoff frequencies.

(d) Consider the case of a prototype lowpass filter with θp = π/2. For each of the following
choices of α, specify the resulting cutoff frequency ωp for the transformed filter:

(i) α = −0.2679.
(ii) α = 0.

(iii) α = 0.4142.

622 Chapter 7 Filter Design Techniques

(e) It is also possible to find a 1st-order all-pass system for G(z−1) such that the prototype
lowpass filter is transformed to a discrete-time highpass filter with cutoff ωp . Note
that such a transformation must map Z−1 = ejθp → z−1 = ejωp and also map
Z−1 = 1 → z−1 = −1; i.e., θ = 0 maps to ω = π . Find G(z−1) for this transformation,
and also, find an expression for α in terms of θp and ωp .

(f) Using the same prototype filter and values for α as in part (d), sketch the frequency
responses for the highpass filters resulting from the transformation you specified in
part (e).

Similar, but more complicated, transformations can be used to convert the prototype
lowpass filter Hlp(Z) into bandpass and bandstop filters. Constantinides (1970) describes
these transformations in more detail.

8

The Discrete

Fourier Transform

8.0 INTRODUCTION

In Chapters 2 and 3, we discussed the representation of sequences and LTI systems in
terms of the discrete-time Fourier and z-transforms, respectively. For finite-duration se-
quences, there is an alternative discrete-time Fourier representation, referred to as the
discrete Fourier transform (DFT). The DFT is itself a sequence rather than a function
of a continuous variable, and it corresponds to samples, equally spaced in frequency,
of the DTFT of the signal. In addition to its theoretical importance as a Fourier repre-
sentation of sequences, the DFT plays a central role in the implementation of a variety
of digital signal-processing algorithms. This is because efficient algorithms exist for the
computation of the DFT. These algorithms will be discussed in detail in Chapter 9. The
application of the DFT to spectrum analysis will be described in Chapter 10.

Although several points of view can be taken toward the derivation and inter-
pretation of the DFT representation of a finite-duration sequence, we have chosen to
base our presentation on the relationship between periodic sequences and finite-length
sequences. We begin by considering the Fourier series representation of periodic se-
quences. Although this representation is important in its own right, we are most often
interested in the application of Fourier series results to the representation of finite-
length sequences. We accomplish this by constructing a periodic sequence for which
each period is identical to the finite-length sequence. The Fourier series representation
of the periodic sequence then corresponds to the DFT of the finite-length sequence.
Thus, our approach is to define the Fourier series representation for periodic sequences
and to study the properties of such representations. Then, we repeat essentially the same
derivations, assuming that the sequence to be represented is a finite-length sequence.

623

624 Chapter 8 The Discrete Fourier Transform

This approach to the DFT emphasizes the fundamental inherent periodicity of the DFT
representation and ensures that this periodicity is not overlooked in applications of the
DFT.

8.1 REPRESENTATION OF PERIODIC SEQUENCES:
THE DISCRETE FOURIER SERIES

Consider a sequence x̃[n] that is periodic1 with period N , so that x̃[n] = x̃[n + rN] for
any integer values of n and r . As with continuous-time periodic signals, such a sequence
can be represented by a Fourier series corresponding to a sum of harmonically related
complex exponential sequences, i.e., complex exponentials with frequencies that are
integer multiples of the fundamental frequency (2π/N) associated with the periodic
sequence x̃[n]. These periodic complex exponentials are of the form

ek[n] = ej (2π/N)kn = ek[n + rN], (8.1)

where k is any integer, and the Fourier series representation then has the form2

x̃[n] = 1
N

∑
k

X̃ [k]ej (2π/N)kn. (8.2)

The Fourier series representation of a continuous-time periodic signal gener-
ally requires infinitely many harmonically related complex exponentials, whereas the
Fourier series for any discrete-time signal with period N requires only N harmoni-
cally related complex exponentials. To see this, note that the harmonically related com-
plex exponentials ek[n] in Eq. (8.1) are identical for values of k separated by N ; i.e.,
e0[n] = eN [n], e1[n] = eN+1[n], and, in general,

ek+
N [n] = ej (2π/N)(k+
N)n = ej (2π/N)knej2π
n = ej (2π/N)kn = ek[n], (8.3)

where
 is any integer. Consequently, the set of N periodic complex exponentials e0[n],
e1[n], . . . , eN−1[n] defines all the distinct periodic complex exponentials with frequen-
cies that are integer multiples of (2π/N). Thus, the Fourier series representation of a
periodic sequence x̃[n] need contain only N of these complex exponentials. For nota-
tional convenience, we choose k in the range of 0 to N − 1; hence, Eq. (8.2) has the
form

x̃[n] = 1
N

N−1∑
k=0

X̃ [k]ej (2π/N)kn. (8.4)

However, choosing k to range over any full period of X̃ [k] would be equally valid.
To obtain the sequence of Fourier series coefficients X̃ [k] from the periodic se-

quence x̃[n], we exploit the orthogonality of the set of complex exponential sequences.

1Henceforth, we will use the tilde (˜) to denote periodic sequences whenever it is important to clearly
distinguish between periodic and aperiodic sequences.

2The multiplicative constant 1/N is included in Eq. (8.2) for convenience. It could also be absorbed
into the definition of X̃ [k].

Section 8.1 Representation of Periodic Sequences: The Discrete Fourier Series 625

After multiplying both sides of Eq. (8.4) by e−j (2π/N)rn and summing from n = 0 to
n = N − 1, we obtain

N−1∑
n=0

x̃[n]e−j (2π/N)rn =
N−1∑
n=0

1
N

N−1∑
k=0

X̃ [k]ej (2π/N)(k−r)n. (8.5)

After interchanging the order of summation on the right-hand side, Eq. (8.5) becomes
N−1∑
n=0

x̃[n]e−j (2π/N)rn =
N−1∑
k=0

X̃ [k]
⎡⎣ 1

N

N−1∑
n=0

ej (2π/N)(k−r)n

⎤⎦ . (8.6)

The following identity expresses the orthogonality of the complex exponentials:

1
N

N−1∑
n=0

ej (2π/N)(k−r)n =
{

1, k − r = mN, m an integer,
0, otherwise.

(8.7)

This identity can easily be proved (see Problem 8.54), and when it is applied to the
summation in brackets in Eq. (8.6), the result is

N−1∑
n=0

x̃[n]e−j (2π/N)rn = X̃ [r]. (8.8)

Thus, the Fourier series coefficients X̃ [k] in Eq. (8.4) are obtained from x̃[n] by the
relation

X̃ [k] =
N−1∑
n=0

x̃[n]e−j (2π/N)kn. (8.9)

Note that the sequence X̃ [k] defined in Eq. (8.9) is also periodic with period N if Eq. (8.9)
is evaluated outside the range 0 ≤ k ≤ N − 1; i.e., X̃ [0] = X̃ [N], X̃ [1] = X̃ [N + 1],
and, more generally,

X̃ [k + N] =
N−1∑
n=0

x̃[n]e−j (2π/N)(k+N)n

=
⎛⎝N−1∑

n=0

x̃[n]e−j (2π/N)kn

⎞⎠ e−j2πn = X̃ [k],

for any integer k.
The Fourier series coefficients can be interpreted to be a sequence of finite length,

given by Eq. (8.9) for k = 0, . . . , (N − 1), and zero otherwise, or as a periodic sequence
defined for all k by Eq. (8.9). Clearly, both of these interpretations are acceptable, since
in Eq. (8.4) we use only the values of X̃ [k] for 0 ≤ k ≤ (N − 1). An advantage to inter-
preting the Fourier series coefficients X̃ [k] as a periodic sequence is that there is then a
duality between the time and frequency domains for the Fourier series representation
of periodic sequences. Equations (8.9) and (8.4) together are an analysis–synthesis pair
and will be referred to as the discrete Fourier series (DFS) representation of a periodic
sequence.

For convenience in notation, these equations are often written in terms of the
complex quantity

WN = e−j (2π/N). (8.10)

626 Chapter 8 The Discrete Fourier Transform

With this notation, the DFS analysis–synthesis pair is expressed as follows:

Analysis equation: X̃ [k] =
N−1∑
n=0

x̃[n]Wkn
N . (8.11)

Synthesis equation: x̃[n] = 1
N

N−1∑
k=0

X̃ [k]W−kn
N . (8.12)

In both of these equations, X̃ [k] and x̃[n] are periodic sequences. We will sometimes
find it convenient to use the notation

x̃[n] DFS←→ X̃ [k] (8.13)

to signify the relationships of Eqs. (8.11) and (8.12). The following examples illustrate
the use of those equations.

Example 8.1 DFS of a Periodic Impulse Train

We consider the periodic impulse train

x̃[n] =
∞∑

r=−∞
δ[n − rN] =

{
1, n = rN, r any integer,
0, otherwise.

(8.14)

Since x̃[n] = δ[n] for 0 ≤ n ≤ N − 1, the DFS coefficients are found, using Eq. (8.11),
to be

X̃ [k] =
N−1∑
n=0

δ[n]Wkn
N = W 0

N = 1. (8.15)

In this case, X̃ [k] = 1 for all k. Thus, substituting Eq. (8.15) into Eq. (8.12) leads to
the representation

x̃[n] =
∞∑

r=−∞
δ[n − rN] = 1

N

N−1∑
k=0

W−kn
N

= 1
N

N−1∑
k=0

ej (2π/N)kn. (8.16)

Example 8.1 produced a useful representation of a periodic impulse train in terms
of a sum of complex exponentials, wherein all the complex exponentials have the same
magnitude and phase and add to unity at integer multiples of N and to zero for all other
integers. If we look closely at Eqs. (8.11) and (8.12), we see that the two equations are
very similar, differing only in a constant multiplier and the sign of the exponents. This
duality between the periodic sequence x̃[n] and its DFS coefficients X̃ [k] is illustrated
in the following example.

Section 8.1 Representation of Periodic Sequences: The Discrete Fourier Series 627

Example 8.2 Duality in the DFS

In this example, the DFS coefficients are a periodic impulse train:

Ỹ [k] =
∞∑

r=−∞
Nδ[k − rN].

Substituting Ỹ [k] into Eq. (8.12) gives

ỹ[n] = 1
N

N−1∑
k=0

Nδ[k]W−kn
N

= W−0
N

= 1.

In this case, ỹ[n] = 1 for all n. Comparing this result with the results for x̃[n] and X̃ [k]
of Example 8.1, we see that Ỹ [k] = Nx̃[k] and ỹ[n] = X̃ [n]. In Section 8.2.3, we will
show that this example is a special case of a more general duality property.

If the sequence x̃[n] is equal to unity over only part of one period, we can also ob-
tain a closed-form expression for the DFS coefficients. This is illustrated by the following
example.

Example 8.3 The DFS of a Periodic Rectangular Pulse Train

For this example, x̃[n] is the sequence shown in Figure 8.1, whose period is N = 10.
From Eq. (8.11),

X̃ [k] =
4∑

n=0

Wkn
10 =

4∑
n=0

e−j (2π/10)kn. (8.17)

This finite sum has the closed form

X̃ [k] = 1 − W5k
10

1 − Wk
10

= e−j (4πk/10) sin(πk/2)

sin(πk/10)
. (8.18)

The magnitude and phase of the periodic sequence X̃ [k] are shown in Figure 8.2.

......

–10 –6 0 1 2 3 4 5 6 7 8 9 10

x [n]~

n

Figure 8.1 Periodic sequence with period N = 10 for which the Fourier series
representation is to be computed.

628 Chapter 8 The Discrete Fourier Transform

–1 10 2 3 4 5

5

6 7 8 9 10

(a)

15 20

......

|X [k] |
~

�

–�

(b)

... ...

X [k]�
~

�denotes indeterminate
(magnitude = 0)

k

k

Figure 8.2 Magnitude and phase of the Fourier series coefficients of the sequence
of Figure 8.1.

We have shown that any periodic sequence can be represented as a sum of complex
exponential sequences. The key results are summarized in Eqs. (8.11) and (8.12). As
we will see, these relationships are the basis for the DFT, which focuses on finite-length
sequences. Before discussing the DFT, however, we will consider some of the basic
properties of the DFS representation of periodic sequences in Section 8.2, and then, in
Section 8.3, we will show how we can use the DFS representation to obtain a DTFT
representation of periodic signals.

8.2 PROPERTIES OF THE DFS

Just as with Fourier series and Fourier and Laplace transforms for continuous-time
signals, and with discrete-time Fourier and z-transforms for nonperiodic sequences,
certain properties of the DFS are of fundamental importance to its successful use in
signal-processing problems. In this section, we summarize these important properties.
It is not surprising that many of the basic properties are analogous to properties of the
z-transform and DTFT. However, we will be careful to point out where the periodicity
of both x̃[n] and X̃ [k] results in some important distinctions. Furthermore, an exact
duality exists between the time and frequency domains in the DFS representation that
does not exist in the DTFT and z-transform representation of sequences.

Section 8.2 Properties of the DFS 629

8.2.1 Linearity

Consider two periodic sequences x̃1[n] and x̃2[n], both with period N , such that

x̃1[n] DFS←→ X̃1[k], (8.19a)

and

x̃2[n] DFS←→ X̃2[k]. (8.19b)

Then

ax̃1[n] + bx̃2[n] DFS←→ aX̃1[k] + bX̃2[k]. (8.20)

This linearity property follows immediately from the form of Eqs. (8.11) and (8.12).

8.2.2 Shift of a Sequence

If a periodic sequence x̃[n] has Fourier coefficients X̃ [k], then x̃[n − m] is a shifted
version of x̃[n], and

x̃[n − m] DFS←→ Wkm
N X̃ [k]. (8.21)

The proof of this property is considered in Problem 8.55. Note that any shift that is
greater than or equal to the period (i.e., m ≥ N) cannot be distinguished in the time
domain from a shorter shift m1 such that m = m1 + m2N , where m1 and m2 are integers
and 0 ≤ m1 ≤ N − 1. (Another way of stating this is that m1 = m modulo N or,
equivalently, m1 is the remainder when m is divided by N .) It is easily shown that with
this representation of m, Wkm

N = W
km1
N ; i.e., as it must be, the ambiguity of the shift in

the time domain is also manifest in the frequency-domain representation.
Because the sequence of Fourier series coefficients of a periodic sequence is a

periodic sequence, a similar result applies to a shift in the Fourier coefficients by an
integer
. Specifically,

W−n

N x̃[n] DFS←→ X̃ [k −
]. (8.22)

Note the difference in the sign of the exponents in Eqs. (8.21) and (8.22).

8.2.3 Duality

Because of the strong similarity between the Fourier analysis and synthesis equations
in continuous time, there is a duality between the time domain and frequency domain.
However, for the DTFT of aperiodic signals, no similar duality exists, since aperiodic
signals and their Fourier transforms are very different kinds of functions: Aperiodic
discrete-time signals are, of course, aperiodic sequences, whereas their DTFTs are al-
ways periodic functions of a continuous frequency variable.

From Eqs. (8.11) and (8.12), we see that the DFS analysis and synthesis equations
differ only in a factor of 1/N and in the sign of the exponent of WN . Furthermore, a
periodic sequence and its DFS coefficients are the same kinds of functions; they are both

630 Chapter 8 The Discrete Fourier Transform

periodic sequences. Specifically, taking account of the factor 1/N and the difference in
sign in the exponent between Eqs. (8.11) and (8.12), it follows from Eq. (8.12) that

Nx̃[−n] =
N−1∑
k=0

X̃ [k]Wkn
N (8.23)

or, interchanging the roles of n and k in Eq. (8.23),

Nx̃[−k] =
N−1∑
n=0

X̃ [n]Wnk
N . (8.24)

We see that Eq. (8.24) is similar to Eq. (8.11). In other words, the sequence of DFS
coefficients of the periodic sequence X̃ [n] is Nx̃[−k], i.e., the original periodic sequence
in reverse order and multiplied by N . This duality property is summarized as follows:
If

x̃[n] DFS←→ X̃ [k], (8.25a)

then

X̃ [n] DFS←→ Nx̃[−k]. (8.25b)

8.2.4 Symmetry Properties

As we discussed in Section 2.8, the Fourier transform of an aperiodic sequence has
a number of useful symmetry properties. The same basic properties also hold for the
DFS representation of a periodic sequence. The derivation of these properties, which is
similar in style to the derivations in Chapter 2, is left as an exercise. (See Problem 8.56.)
The resulting properties are summarized for reference as properties 9–17 in Table 8.1
in Section 8.2.6.

8.2.5 Periodic Convolution

Let x̃1[n] and x̃2[n] be two periodic sequences, each with period N and with DFS coef-
ficients denoted by X̃1[k] and X̃2[k], respectively. If we form the product

X̃3[k] = X̃1[k]X̃2[k], (8.26)

then the periodic sequence x̃3[n] with Fourier series coefficients X̃3[k] is

x̃3[n] =
N−1∑
m=0

x̃1[m]x̃2[n − m]. (8.27)

This result is not surprising, since our previous experience with transforms suggests
that multiplication of frequency-domain functions corresponds to convolution of time-
domain functions and Eq. (8.27) looks very much like a convolution sum. Equation (8.27)
involves the summation of values of the product of x̃1[m] with x̃2[n − m], which is a
time-reversed and time-shifted version of x̃2[m], just as in aperiodic discrete convo-
lution. However, the sequences in Eq. (8.27) are all periodic with period N , and the
summation is over only one period. A convolution in the form of Eq. (8.27) is referred

Section 8.2 Properties of the DFS 631

to as a periodic convolution. Just as with aperiodic convolution, periodic convolution is
commutative; i.e.,

x̃3[n] =
N−1∑
m=0

x̃2[m]x̃1[n − m]. (8.28)

To demonstrate that X̃3[k], given by Eq. (8.26), is the sequence of Fourier coeffi-
cients corresponding to x̃3[n] given by Eq. (8.27), let us first apply Eq. (8.11), the DFS
analysis equation, to Eq. (8.27) to obtain

X̃3[k] =
N−1∑
n=0

⎛⎝N−1∑
m=0

x̃1[m]x̃2[n − m]
⎞⎠Wkn

N , (8.29)

which, after we interchange the order of summation, becomes

X̃3[k] =
N−1∑
m=0

x̃1[m]
⎛⎝N−1∑

n=0

x̃2[n − m]Wkn
N

⎞⎠ . (8.30)

The inner sum on the index n is the DFS for the shifted sequence x̃2[n − m]. Therefore,
from the shifting property of Section 8.2.2, we obtain

N−1∑
n=0

x̃2[n − m]Wkn
N = Wkm

N X̃2[k],

which can be substituted into Eq. (8.30) to yield

X̃3[k] =
N−1∑
m=0

x̃1[m]Wkm
N X̃2[k] =

⎛⎝N−1∑
m=0

x̃1[m]Wkm
N

⎞⎠ X̃2[k] = X̃1[k]X̃2[k]. (8.31)

In summary,

N−1∑
m=0

x̃1[m]x̃2[n − m] DFS←→ X̃1[k]X̃2[k]. (8.32)

The periodic convolution of periodic sequences thus corresponds to multiplication of
the corresponding periodic sequences of Fourier series coefficients.

Since periodic convolutions are somewhat different from aperiodic convolutions,
it is worthwhile to consider the mechanics of evaluating Eq. (8.27). First, note that
Eq. (8.27) calls for the product of sequences x̃1[m] and x̃2[n−m] = x̃2[−(m−n)] viewed
as functions of m with n fixed. This is the same as for an aperiodic convolution, but with
the following two major differences:

1. The sum is over the finite interval 0 ≤ m ≤ N − 1.

2. The values of x̃2[n − m] in the interval 0 ≤ m ≤ N − 1 repeat periodically for m

outside of that interval.

These details are illustrated by the following example.

632 Chapter 8 The Discrete Fourier Transform

Example 8.4 Periodic Convolution

An illustration of the procedure for forming the periodic convolution of two periodic
sequences corresponding to Eq. (8.27) is given in Figure 8.3, wherein we have illus-
trated the sequences x̃2[m], x̃1[m], x̃2[−m], x̃2[1−m] = x̃2[−(m−1)], and x̃2[2 −m] =
x̃2[−(m−2)]. To evaluate x̃3[n] in Eq. (8.27) for n = 2, for example, we multiply x̃1[m]
by x̃2[2 − m] and then sum the product terms x̃1[m]x̃2[2 − m] for 0 ≤ m ≤ N − 1, ob-
taining x̃3[2]. As n changes, the sequence x̃2[n−m] shifts appropriately, and Eq. (8.27)
is evaluated for each value of 0 ≤ n ≤ N − 1. Note that as the sequence x̃2[n − m]
shifts to the right or left, values that leave the interval between the dotted lines at
one end reappear at the other end because of the periodicity. Because of the period-
icity of x̃3[n], there is no need to continue to evaluate Eq. (8.27) outside the interval
0 ≤ n ≤ N − 1.

–N N0 m

x2[m]~

–N N0 m

x2[– m]~

–N N0 m

x1[m]~

–N N0 m

x2 [1 – m] = x2[–(m – 1)]~ ~

x2 [2 – m] = x2[–(m – 2)]~ ~

–N N0 m

Figure 8.3 Procedure for forming the periodic convolution of two periodic
sequences.

Section 8.3 The Fourier Transform of Periodic Signals 633

The duality theorem in Section 8.2.3 suggests that if the roles of time and frequency
are interchanged, we will obtain a result almost identical to the previous result. That is,
the periodic sequence

x̃3[n] = x̃1[n]x̃2[n], (8.33)

where x̃1[n] and x̃2[n] are periodic sequences, each with period N , has the DFS coeffi-
cients given by

X̃3[k] = 1
N

N−1∑

=0

X̃1[
]X̃2[k −
], (8.34)

corresponding to 1/N times the periodic convolution of X̃1[k] and X̃2[k]. This result
can also be verified by substituting X̃3[k], given by Eq. (8.34), into the Fourier series
relation of Eq. (8.12) to obtain x̃3[n].

8.2.6 Summary of Properties of the DFS Representation
of Periodic Sequences

The properties of the DFS representation discussed in this section are summarized in
Table 8.1.

8.3 THE FOURIER TRANSFORM OF PERIODIC SIGNALS

As discussed in Section 2.7, uniform convergence of the Fourier transform of a sequence
requires that the sequence be absolutely summable, and mean-square convergence re-
quires that the sequence be square summable. Periodic sequences satisfy neither con-
dition. However, as we discussed briefly in Section 2.7, sequences that can be expressed
as a sum of complex exponentials can be considered to have a Fourier transform rep-
resentation in the form of Eq. (2.147), i.e., as a train of impulses. Similarly, it is often
useful to incorporate the DFS representation of periodic signals within the framework
of the discrete-time Fourier transform. This can be done by interpreting the discrete-
time Fourier transform of a periodic signal to be an impulse train in the frequency
domain with the impulse values proportional to the DFS coefficients for the sequence.
Specifically, if x̃[n] is periodic with period N and the corresponding DFS coefficients
are X̃ [k], then the Fourier transform of x̃[n] is defined to be the impulse train

X̃(ejω) =
∞∑

k=−∞

2π

N
X̃ [k]δ

(
ω − 2πk

N

)
. (8.35)

Note that X̃(ejω) has the necessary periodicity with period 2π since X̃ [k] is periodic
with period N , and the impulses are spaced at integer multiples of 2π/N , where N is an

634 Chapter 8 The Discrete Fourier Transform

TABLE 8.1 SUMMARY OF PROPERTIES OF THE DFS

Periodic Sequence (Period N) DFS Coefficients (Period N)

1. x̃[n] X̃ [k] periodic with period N

2. x̃1[n], x̃2[n] X̃1[k], X̃2[k] periodic with period N

3. ax̃1[n] + bx̃2[n] aX̃1[k] + bX̃2[k]
4. X̃ [n] Nx̃[−k]
5. x̃[n − m] Wkm

N
X̃ [k]

6. W−
n
N

x̃[n] X̃ [k −
]

7.
N−1∑
m=0

x̃1[m]x̃2[n − m] (periodic convolution) X̃1[k]X̃2[k]

8. x̃1[n]x̃2[n] 1
N

N−1∑

=0

X̃1[
]X̃2[k −
] (periodic convolution)

9. x̃∗[n] X̃
∗[−k]

10. x̃∗[−n] X̃
∗[k]

11. Re{x̃[n]} X̃e[k] = 1
2 (X̃ [k] + X̃

∗[−k])
12. jIm{x̃[n]} X̃o[k] = 1

2 (X̃ [k] − X̃
∗[−k])

13. x̃e[n] = 1
2 (x̃[n] + x̃∗[−n]) Re{X̃ [k]}

14. x̃o[n] = 1
2 (x̃[n] − x̃∗[−n]) jIm{X̃ [k]}

Properties 15–17 apply only when x[n] is real.

15. Symmetry properties for x̃[n] real.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X̃ [k] = X̃
∗[−k]

Re{X̃ [k]} = Re{X̃ [−k]}
Im{X̃ [k]} = −Im{X̃ [−k]}

|X̃ [k]| = |X̃ [−k]|
� X̃ [k] = −� X̃ [−k]

16. x̃e[n] = 1
2 (x̃[n] + x̃[−n]) Re{X̃ [k]}

17. x̃0[n] = 1
2 (x̃[n] − x̃[−n]) jIm{X̃ [k]}

integer. To show that X̃(ejω) as defined in Eq. (8.35) is a Fourier transform represen-
tation of the periodic sequence x̃[n], we substitute Eq. (8.35) into the inverse Fourier
transform Eq. (2.130); i.e.,

1
2π

∫ 2π−ε

0−ε

X̃(ejω)ejωndω = 1
2π

∫ 2π−ε

0−ε

∞∑
k=−∞

2π

N
X̃ [k]δ

(
ω − 2πk

N

)
ejωndω, (8.36)

where ε satisfies the inequality 0 < ε < (2π/N). Recall that in evaluating the inverse
Fourier transform, we can integrate over any interval of length 2π , since the integrand
X̃(ejω)ejωn is periodic with period 2π . In Eq. (8.36) the integration limits are denoted
0−ε and 2π −ε, which means that the integration is from just before ω = 0 to just before
ω = 2π . These limits are convenient, because they include the impulse at ω = 0 and

Section 8.3 The Fourier Transform of Periodic Signals 635

exclude the impulse at ω = 2π .3 Interchanging the order of integration and summation
leads to

1
2π

∫ 2π−ε

0−ε

X̃(ejω)ejωndω = 1
N

∞∑
k=−∞

X̃ [k]
∫ 2π−ε

0−ε

δ

(
ω − 2πk

N

)
ejωndω

= 1
N

N−1∑
k=0

X̃ [k]ej (2π/N)kn.

(8.37)

The final form of Eq. (8.37) results because only the impulses corresponding to
k = 0, 1, . . . , (N − 1) are included in the interval between ω = 0 − ε and ω = 2π − ε.

Comparing Eq. (8.37) and Eq. (8.12), we see that the final right-hand side of
Eq. (8.37) is exactly equal to the Fourier series representation for x̃[n], as specified by
Eq. (8.12). Consequently, the inverse Fourier transform of the impulse train in Eq. (8.35)
is the periodic signal x̃[n], as desired.

Although the Fourier transform of a periodic sequence does not converge in the
normal sense, the introduction of impulses permits us to include periodic sequences
formally within the framework of Fourier transform analysis. This approach was also
used in Chapter 2 to obtain a Fourier transform representation of other nonsummable
sequences, such as the two-sided constant sequence (Example 2.19) or the complex
exponential sequence (Example 2.20). Although the DFS representation is adequate
for most purposes, the Fourier transform representation of Eq. (8.35) sometimes leads
to simpler or more compact expressions and simplified analysis.

Example 8.5 The Fourier Transform of a Periodic
Discrete-Time Impulse Train

Consider the periodic discrete-time impulse train

p̃[n] =
∞∑

r=−∞
δ[n − rN], (8.38)

which is the same as the periodic sequence x̃[n] considered in Example 8.1. From the
results of that example, it follows that

P̃ [k] = 1, for all k. (8.39)

Therefore, the DTFT of p̃[n] is

P̃ (ejω) =
∞∑

k=−∞

2π

N
δ

(
ω − 2πk

N

)
. (8.40)

The result of Example 8.5 is the basis for a useful interpretation of the relation
between a periodic signal and a finite-length signal. Consider a finite-length signal x[n]
such that x[n] = 0 except in the interval 0 ≤ n ≤ N − 1, and consider the convolution

3The limits 0 to 2π would present a problem since the impulses at both 0 and 2π would require special
handling.

636 Chapter 8 The Discrete Fourier Transform

–N N0

......
x [n]~

N0

x [n]

n

n

Figure 8.4 Periodic sequence x̃ [n]
formed by repeating a finite-length
sequence, x [n], periodically.
Alternatively, x [n] = x̃ [n] over one
period and is zero otherwise.

of x[n] with the periodic impulse train p̃[n] of Example 8.5:

x̃[n] = x[n] ∗ p̃[n] = x[n] ∗
∞∑

r=−∞
δ[n − rN] =

∞∑
r=−∞

x[n − rN]. (8.41)

Equation (8.41) states that x̃[n] consists of a set of periodically repeated copies of the
finite-length sequence x[n]. Figure 8.4 illustrates how a periodic sequence x̃[n] can be
formed from a finite-length sequence x[n] through Eq. (8.41). The Fourier transform of
x[n] is X(ejω), and the Fourier transform of x̃[n] is

X̃(ejω) = X(ejω)P̃ (ejω)

= X(ejω)

∞∑
k=−∞

2π

N
δ

(
ω − 2πk

N

)
(8.42)

=
∞∑

k=−∞

2π

N
X(ej (2π/N)k)δ

(
ω − 2πk

N

)
.

Comparing Eq. (8.42) with Eq. (8.35), we conclude that

X̃ [k] = X(ej(2π/N)k) = X(ejω)

∣∣∣
ω=(2π/N)k

. (8.43)

In other words, the periodic sequence X̃ [k] of DFS coefficients in Eq. (8.11) has an
discrete-time interpretation as equally spaced samples of the DTFT of the finite-length
sequence obtained by extracting one period of x̃[n]; i.e.,

x[n] =
{

x̃[n], 0 ≤ n ≤ N − 1,

0, otherwise.
(8.44)

This is also consistent with Figure 8.4, where it is clear that x[n] can be obtained from
x̃[n] using Eq. (8.44). We can verify Eq. (8.43) in yet another way. Since x[n] = x̃[n] for
0 ≤ n ≤ N − 1 and x[n] = 0 otherwise,

X(ejω) =
N−1∑
n=0

x[n]e−jωn =
N−1∑
n=0

x̃[n]e−jωn. (8.45)

Comparing Eq. (8.45) and Eq. (8.11), we see again that
X̃ [k] = X(ejω)|ω=2πk/N . (8.46)

This corresponds to sampling the Fourier transform at N equally spaced frequencies
between ω = 0 and ω = 2π with a frequency spacing of 2π/N .

Section 8.3 The Fourier Transform of Periodic Signals 637

Example 8.6 Relationship Between the Fourier Series
Coefficients and the Fourier Transform of One Period

We again consider the sequence x̃[n] of Example 8.3, which is shown in Figure 8.1.
One period of x̃[n] for the sequence in Figure 8.1 is

x[n] =
{

1, 0 ≤ n ≤ 4,

0, otherwise.
(8.47)

The Fourier transform of one period of x̃[n] is given by

X(ejω) =
4∑

n=0

e−jωn = e−j2ω sin(5ω/2)

sin(ω/2)
. (8.48)

Equation (8.46) can be shown to be satisfied for this example by substituting
ω = 2πk/10 into Eq. (8.48), giving

X̃ [k] = e−j (4πk/10) sin(πk/2)

sin(πk/10)
,

which is identical to the result in Eq. (8.18). The magnitude and phase of X(ejω) are
sketched in Figure 8.5. Note that the phase is discontinuous at the frequencies where
X(ejω) = 0. That the sequences in Figures 8.2(a) and (b) correspond to samples of
Figures 8.5(a) and (b), respectively, is demonstrated in Figure 8.6, where Figures 8.2
and 8.5 have been superimposed.

0

(b)

(a)

5

2� 3� 4�� �

|X (e j�) |

2� 3� 4�� �

–�

�

�X(e j�)

Figure 8.5 Magnitude and phase of the Fourier transform of one period of the
sequence in Figure 8.1.

638 Chapter 8 The Discrete Fourier Transform

0

(b)

(a)

5

2� 3� 4�
0 10 20

10 20

� �
k

k
2� 3� 4�� �

– �

�

�X(e j�), �X [k]
~

|X(e j�)| , |X [k]|
~

...

...

...

...

Figure 8.6 Overlay of Figures 8.2 and 8.5 illustrating the DFS coefficients of a
periodic sequence as samples of the Fourier transform of one period.

8.4 SAMPLING THE FOURIER TRANSFORM

In this section, we discuss with more generality the relationship between an aperiodic
sequence with Fourier transform X(ejω) and the periodic sequence for which the DFS
coefficients correspond to samples of X(ejω) equally spaced in frequency. We will find
this relationship to be particularly important when we discuss the discrete Fourier trans-
form and its properties later in the chapter.

Consider an aperiodic sequence x[n] with Fourier transform X(ejω), and assume
that a sequence X̃ [k] is obtained by sampling X(ejω) at frequencies ωk = 2πk/N ; i.e.,

X̃ [k] = X(ejω)|ω=(2π/N)k = X(ej(2π/N)k). (8.49)

Since the Fourier transform is periodic in ω with period 2π , the resulting sequence is
periodic in k with period N . Also, since the Fourier transform is equal to the z-transform
evaluated on the unit circle, it follows that X̃ [k] can also be obtained by sampling X(z)

at N equally spaced points on the unit circle. Thus,

X̃ [k] = X(z)|z=ej (2π/N)k = X(ej(2π/N)k). (8.50)

These sampling points are depicted in Figure 8.7 for N = 8. The figure makes it clear
that the sequence of samples is periodic, since the N points are equally spaced starting
with zero angle. Therefore, the same sequence repeats as k varies outside the range
0 ≤ k ≤ N − 1 since we simply continue around the unit circle visiting the same set of
N points.

Section 8.4 Sampling the Fourier Transform 639

2�
N

z-plane
Unit
circle

Re

Im

Figure 8.7 Points on the unit circle at
which X(z) is sampled to obtain the
periodic sequence X̃ [k] (N = 8).

Note that the sequence of samples X̃ [k], being periodic with period N , could be
the sequence of DFS coefficients of a sequence x̃[n]. To obtain that sequence, we can
simply substitute X̃ [k] obtained by sampling into Eq. (8.12):

x̃[n] = 1
N

N−1∑
k=0

X̃ [k]W−kn
N . (8.51)

Since we have made no assumption about x[n] other than that the Fourier transform
exists, we can use infinite limits to indicate that the sum is

X(ejω) =
∞∑

m=−∞
x[m]e−jωm (8.52)

is over all nonzero values of x[m].
Substituting Eq. (8.52) into Eq. (8.49) and then substituting the resulting expres-

sion for X̃ [k] into Eq. (8.51) gives

x̃[n] = 1
N

N−1∑
k=0

[∞∑
m=−∞

x[m]e−j (2π/N)km

]
W−kn

N , (8.53)

which, after we interchange the order of summation, becomes

x̃[n] =
∞∑

m=−∞
x[m]
⎡⎣ 1

N

N−1∑
k=0

W
−k(n−m)
N

⎤⎦ =
∞∑

m=−∞
x[m]p̃[n − m]. (8.54)

The term in brackets in Eq. (8.54) can be seen from either Eq. (8.7) or Eq. (8.16)
to be the Fourier series representation of the periodic impulse train of Examples 8.1
and 8.2. Specifically,

p̃[n − m] = 1
N

N−1∑
k=0

W
−k(n−m)
N =

∞∑
r=−∞

δ[n − m − rN] (8.55)

and therefore,

x̃[n] = x[n] ∗
∞∑

r=−∞
δ[n − rN] =

∞∑
r=−∞

x[n − rN], (8.56)

where ∗ denotes aperiodic convolution. That is, x̃[n] is the periodic sequence that results
from the aperiodic convolution of x[n] with a periodic unit-impulse train. Thus, the

640 Chapter 8 The Discrete Fourier Transform

......

–12 0 8
N = 12

x [n] = �~ x [n – r12]
r = –�

�

0 8

x [n]

(a)

(b)

n

n

Figure 8.8 (a) Finite-length sequence x [n]. (b) Periodic sequence x̃ [n] corre-
sponding to sampling the Fourier transform of x [n] with N = 12.

periodic sequence x̃[n], corresponding to X̃ [k] obtained by sampling X(ejω), is formed
from x[n] by adding together an infinite number of shifted replicas of x[n]. The shifts
are all the positive and negative integer multiples of N , the period of the sequence
X̃ [k]. This is illustrated in Figure 8.8, where the sequence x[n] is of length 9 and the
value of N in Eq. (8.56) is N = 12. Consequently, the delayed replications of x[n] do
not overlap, and one period of the periodic sequence x̃[n] is recognizable as x[n]. This
is consistent with the discussion in Section 8.3 and Example 8.6, wherein we showed
that the Fourier series coefficients for a periodic sequence are samples of the Fourier
transform of one period. In Figure 8.9 the same sequence x[n] is used, but the value
of N is now N = 7. In this case, the replicas of x[n] overlap and one period of x̃[n] is
no longer identical to x[n]. In both cases, however, Eq. (8.49) still holds; i.e., in both
cases, the DFS coefficients of x̃[n] are samples of the Fourier transform of x[n] spaced

......

–14 –7 0
N = 7

14

x [n] = �~ x [n – r7]
r = –�

�

n

Figure 8.9 Periodic sequence x̃ [n] corresponding to sampling the Fourier trans-
form of x [n] in Figure 8.8(a) with N = 7.

Section 8.4 Sampling the Fourier Transform 641

in frequency at integer multiples of 2π/N . This discussion should be reminiscent of our
discussion of sampling in Chapter 4. The difference is that here we are sampling in the
frequency domain rather than in the time domain. However, the general outlines of the
mathematical representations are very similar.

For the example in Figure 8.8, the original sequence x[n] can be recovered from
x̃[n] by extracting one period. Equivalently, the Fourier transform X(ejω) can be re-
covered from the samples spaced in frequency by 2π/12. In contrast, in Figure 8.9,
x[n] cannot be recovered by extracting one period of x̃[n], and, equivalently, X(ejω)

cannot be recovered from its samples if the sample spacing is only 2π/7. In effect, for
the case illustrated in Figure 8.8, the Fourier transform of x[n] has been sampled at a
sufficiently small spacing (in frequency) to be able to recover it from these samples,
whereas Figure 8.9 represents a case for which the Fourier transform has been under-
sampled. The relationship between x[n] and one period of x̃[n] in the undersampled
case can be thought of as a form of aliasing in the time domain, essentially identical
to the frequency-domain aliasing (discussed in Chapter 4) that results from undersam-
pling in the time domain. Obviously, time-domain aliasing can be avoided only if x[n]
has finite length, just as frequency-domain aliasing can be avoided only for signals that
have bandlimited Fourier transforms.

This discussion highlights several important concepts that will play a central role
in the remainder of the chapter. We have seen that samples of the Fourier transform of
an aperiodic sequence x[n] can be thought of as DFS coefficients of a periodic sequence
x̃[n] obtained through summing periodic replicas of x[n]. If x[n] is finite length and we
take a sufficient number of equally spaced samples of its Fourier transform (specifically,
a number greater than or equal to the length of x[n]), then the Fourier transform is
recoverable from these samples, and, equivalently, x[n] is recoverable from the corre-
sponding periodic sequence x̃[n]. Specifically, if x[n] = 0 outside the interval n = 0,
n = N − 1, then

x[n] =
{

x̃[n], 0 ≤ n ≤ N − 1,

0, otherwise.
(8.57)

If the interval of support of x[n] is different than 0, N − 1 then Eq. (8.57) would be
appropriately modified.

A direct relationship between X(ejω) and its samples X̃ [k], i.e., an interpolation
formula for X(ejω), can be derived (see Problem 8.57). However, the essence of our
previous discussion is that to represent or to recover x[n], it is not necessary to know
X(ejω) at all frequencies if x[n] has finite length. Given a finite-length sequence x[n],
we can form a periodic sequence using Eq. (8.56), which in turn can be represented by
a DFS. Alternatively, given the sequence of Fourier coefficients X̃ [k], we can find x̃[n]
and then use Eq. (8.57) to obtain x[n]. When the Fourier series is used in this way to
represent finite-length sequences, it is called the discrete Fourier transform or DFT. In
developing, discussing, and applying the DFT, it is always important to remember that
the representation through samples of the Fourier transform is in effect a representation
of the finite-duration sequence by a periodic sequence, one period of which is the finite-
duration sequence that we wish to represent.

642 Chapter 8 The Discrete Fourier Transform

8.5 FOURIER REPRESENTATION OF FINITE-DURATION
SEQUENCES: THE DFT

In this section, we formalize the point of view suggested at the end of the previous
section. We begin by considering a finite-length sequence x[n] of length N samples such
that x[n] = 0 outside the range 0 ≤ n ≤ N − 1. In many instances, we will want to
assume that a sequence has length N , even if its length is M ≤ N . In such cases, we
simply recognize that the last (N −M) samples are zero. To each finite-length sequence
of length N, we can always associate a periodic sequence

x̃[n] =
∞∑

r=−∞
x[n − rN]. (8.58a)

The finite-length sequence x[n] can be recovered from x̃[n] through Eq. (8.57), i.e.,

x[n] =
{

x̃[n], 0 ≤ n ≤ N − 1,

0, otherwise.
(8.58b)

Recall from Section 8.4 that the DFS coefficients of x̃[n] are samples (spaced in
frequency by 2π/N) of the Fourier transform of x[n]. Since x[n] is assumed to have
finite length N , there is no overlap between the terms x[n − rN] for different values of
r . Thus, Eq. (8.58a) can alternatively be written as

x̃[n] = x[(n modulo N)]. (8.59)

For convenience, we will use the notation ((n))N to denote (n modulo N); with this
notation, Eq. (8.59) is expressed as

x̃[n] = x[((n))N]. (8.60)

Note that Eq. (8.60) is equivalent to Eq. (8.58a) only when x[n] has length less than or
equal to N . The finite-duration sequence x[n] is obtained from x̃[n] by extracting one
period, as in Eq. (8.58b).

One informal and useful way of visualizing Eq. (8.59) is to think of wrapping a plot
of the finite-duration sequence x[n] around a cylinder with a circumference equal to the
length of the sequence. As we repeatedly traverse the circumference of the cylinder, we
see the finite-length sequence periodically repeated. With this interpretation, represen-
tation of the finite-length sequence by a periodic sequence corresponds to wrapping the
sequence around the cylinder; recovering the finite-length sequence from the periodic
sequence using Eq. (8.58b) can be visualized as unwrapping the cylinder and laying it flat
so that the sequence is displayed on a linear time axis rather than a circular (modulo N)
time axis.

Section 8.5 Fourier Representation of Finite-Duration Sequences 643

As defined in Section 8.1, the sequence of DFS coefficients X̃ [k] of the periodic
sequence x̃[n] is itself a periodic sequence with period N . To maintain a duality between
the time and frequency domains, we will choose the Fourier coefficients that we associate
with a finite-duration sequence to be a finite-duration sequence corresponding to one
period of X̃ [k]. This finite-duration sequence, X [k], will be referred to as the DFT. Thus,
the DFT, X [k], is related to the DFS coefficients, X̃ [k], by

X [k] =
{

X̃ [k], 0 ≤ k ≤ N − 1,

0, otherwise,
(8.61)

and

X̃ [k] = X[(k modulo N)] = X[((k))N]. (8.62)

From Section 8.1, X̃ [k] and x̃[n] are related by

X̃ [k] =
N−1∑
n=0

x̃[n]Wkn
N , (8.63)

x̃[n] = 1
N

N−1∑
k=0

X̃ [k]W−kn
N . (8.64)

where WN = e−j (2π/N).
Since the summations in Eqs. (8.63) and (8.64) involve only the interval between

zero and (N − 1), it follows from Eqs. (8.58b) to (8.64) that

X [k] =

⎧⎪⎪⎨⎪⎪⎩
N−1∑
n=0

x[n]Wkn
N , 0 ≤ k ≤ N − 1,

0, otherwise,

(8.65)

x[n] =

⎧⎪⎪⎨⎪⎪⎩
1
N

N−1∑
k=0

X [k]W−kn
N , 0 ≤ n ≤ N − 1,

0, otherwise.

(8.66)

644 Chapter 8 The Discrete Fourier Transform

Generally, the DFT analysis and synthesis equations are written as follows:

Analysis equation: X [k] =
N−1∑
n=0

x[n]Wkn
N , 0 ≤ k ≤ N − 1, (8.67)

Synthesis equation: x[n] = 1
N

N−1∑
k=0

X [k]W−kn
N , 0 ≤ n ≤ N − 1. (8.68)

That is, the fact that X [k] = 0 for k outside the interval 0 ≤ k ≤ N −1 and that x[n] = 0
for n outside the interval 0 ≤ n ≤ N − 1 is implied, but not always stated explicitly. The
relationship between x[n] and X [k] implied by Eqs. (8.67) and (8.68) will sometimes be
denoted as

x[n] DFJ←→ X [k]. (8.69)

In recasting Eqs. (8.11) and (8.12) in the form of Eqs. (8.67) and (8.68) for finite-
duration sequences, we have not eliminated the inherent periodicity. As with the DFS,
the DFT X [k] is equal to samples of the periodic Fourier transform X(ejω), and if
Eq. (8.68) is evaluated for values of n outside the interval 0 ≤ n ≤ N − 1, the result
will not be zero, but rather a periodic extension of x[n]. The inherent periodicity is
always present. Sometimes, it causes us difficulty, and sometimes we can exploit it, but
to totally ignore it is to invite trouble. In defining the DFT representation, we are simply
recognizing that we are interested in values of x[n] only in the interval 0 ≤ n ≤ N − 1,
because x[n] is really zero outside that interval, and we are interested in values of X [k]
only in the interval 0 ≤ k ≤ N −1 because these are the only values needed in Eq. (8.68)
to reconstruct X[n].

Example 8.7 The DFT of a Rectangular Pulse

To illustrate the DFT of a finite-duration sequence, considerx[n] shown in Figure 8.10(a).
In determining the DFT, we can consider x[n] as a finite-duration sequence with any
length greater than or equal to N = 5. Considered as a sequence of length N = 5, the
periodic sequence x̃[n] whose DFS corresponds to the DFT of x[n] is shown in Fig-
ure 8.10(b). Since the sequence in Figure 8.10(b) is constant over the interval 0 ≤ n ≤ 4,
it follows that

X̃ [k] =
4∑

n=0

e−j (2πk/5)n = 1 − e−j2πk

1 − e−j (2πk/5)

=
{

5, k = 0, ±5, ±10, . . . ,

0, otherwise;

(8.70)

i.e., the only nonzero DFS coefficients X̃ [k] are at k = 0 and integer multiples of
k = 5 (all of which represent the same complex exponential frequency). The DFS
coefficients are shown in Figure 8.10(c). Also shown is the magnitude of the DTFT,
|X(ejω)|. Clearly, X̃ [k] is a sequence of samples of X(ejω) at frequencies ωk = 2πk/5.
According to Eq. (8.61), the five-point DFT of x[n] corresponds to the finite-length
sequence obtained by extracting one period of X̃ [k]. Consequently, the five-point DFT
of x[n] is shown in Figure 8.10(d).

Section 8.5 Fourier Representation of Finite-Duration Sequences 645

5
|X (e j�) |

0
0

5 101–1

......

2

1

1

3 4 6 7 8 9 11

x [n]~

x [n]

(c)

(b)

(a)

2� 4� �

5

0–1–2 5 101 2 3 4 6 7 8 9 11

X [k]

(d)

......

0 5 10 15 20

0 4 n

n

X [k]
~

k

k

Figure 8.10 Illustration of the DFT. (a) Finite-length sequence x [n]. (b) Periodic
sequence x̃ [n] formed from x [n] with period N = 5. (c) Fourier series coefficients
X̃ [k] for x̃ [n]. To emphasize that the Fourier series coefficients are samples of the
Fourier transform, |X(ejω)| is also shown. (d) DFT of x [n].

If, instead, we consider x[n] to be of length N = 10, then the underlying periodic
sequence is that shown in Figure 8.11(b), which is the periodic sequence considered
in Example 8.3. Therefore, X̃ [k] is as shown in Figures 8.2 and 8.6, and the 10-point
DFT X [k] shown in Figures 8.11(c) and 8.11(d) is one period of X̃ [k].

646 Chapter 8 The Discrete Fourier Transform

x [n]~

(b)

–10 0 4 10

|X [k]|

(c)

–10 0 10

x [n]

(a)

0

1

1

5
3.24 3.24

1.241.24

–0.4 �

–0.2 �

0.2 �

0.4 �

1

4

�X [k]

(d)

–10 0 10 k

k

n

nn

Figure 8.11 Illustration of the DFT. (a) Finite-length sequence x [n]. (b) Periodic
sequence x̃ [n] formed from x [n] with period N = 10. (c) DFT magnitude. (d) DFT
phase. (x’s indicate indeterminate values.)

The distinction between the finite-duration sequence x[n] and the periodic se-
quence x̃[n] related through Eqs. (8.57) and (8.60) may seem minor, since, by using
these equations, it is straightforward to construct one from the other. However, the
distinction becomes important in considering properties of the DFT and in considering
the effect on x[n] of modifications to X [k]. This will become evident in the next section,
where we discuss the properties of the DFT representation.

Section 8.6 Properties of the DFT 647

8.6 PROPERTIES OF THE DFT

In this section, we consider a number of properties of the DFT for finite-duration
sequences. Our discussion parallels the discussion of Section 8.2 for periodic sequences.
However, particular attention is paid to the interaction of the finite-length assumption
and the implicit periodicity of the DFT representation of finite-length sequences.

8.6.1 Linearity

If two finite-duration sequences x1[n] and x2[n] are linearly combined, i.e., if

x3[n] = ax1[n] + bx2[n], (8.71)

then the DFT of x3[n] is

X 3[k] = aX 1[k] + bX 2[k]. (8.72)

Clearly, if x1[n] has length N 1 and x2[n] has length N 2, then the maximum length of
x3[n] will be N 3 = max(N 1, N 2). Thus, in order for Eq. (8.72) to be meaningful, both
DFTs must be computed with the same length N ≥ N 3. If, for example, N 1 < N 2, then
X 1[k] is the DFT of the sequence x1[n] augmented by (N 2 − N 1) zeros. That is, the
N 2-point DFT of x1[n] is

X 1[k] =
N 1−1∑
n=0

x1[n]Wkn
N 2

, 0 ≤ k ≤ N 2 − 1, (8.73)

and the N 2-point DFT of x2[n] is

X 2[k] =
N 2−1∑
n=0

x2[n]Wkn
N 2

, 0 ≤ k ≤ N 2 − 1. (8.74)

In summary, if

x1[n] DFJ←→ X 1[k] (8.75a)

and

x2[n] DFJ←→ X 2[k], (8.75b)

648 Chapter 8 The Discrete Fourier Transform

then

ax1[n] + bx2[n] DFJ←→ aX 1[k] + bX 2[k], (8.76)

where the lengths of the sequences and their DFTs are all equal to at least the maximum
of the lengths of x1[n] and x2[n]. Of course, DFTs of greater length can be computed
by augmenting both sequences with zero-valued samples.

8.6.2 Circular Shift of a Sequence

According to Section 2.9.2 and property 2 in Table 2.2, if X(ejω) is the discrete-time
Fourier transform of x[n], then e−jωmX(ejω) is the Fourier transform of the time-shifted
sequence x[n − m]. In other words, a shift in the time domain by m points (with posi-
tive m corresponding to a time delay and negative m to a time advance) corresponds
in the frequency domain to multiplication of the Fourier transform by the linear-phase
factor e−jωm. In Section 8.2.2, we discussed the corresponding property for the DFS
coefficients of a periodic sequence; specifically, if a periodic sequence x̃[n] has Fourier
series coefficients X̃ [k], then the shifted sequence x̃[n − m] has Fourier series coeffi-
cients e−j (2πk/N)mX̃ [k]. Now we will consider the operation in the time domain that
corresponds to multiplying the DFT coefficients of a finite-length sequence x[n] by the
linear-phase factor e−j (2πk/N)m. Specifically, let x1[n] denote the finite-length sequence
for which the DFT is e−j (2πk/N)mX [k]; i.e., if

x[n] DFJ←→ X [k], (8.77)

then we are interested in x1[n] such that

x1[n] DFJ←→ X 1[k] = e−j (2πk/N)mX [k] = Wm
N X[k]. (8.78)

Since the N -point DFT represents a finite-duration sequence of length N , both x[n] and
x1[n] must be zero outside the interval 0 ≤ n ≤ N − 1, and consequently, x1[n] cannot
result from a simple time shift of x[n]. The correct result follows directly from the result
of Section 8.2.2 and the interpretation of the DFT as the Fourier series coefficients of
the periodic sequence x1[((n))N]. In particular, from Eqs. (8.59) and (8.62) it follows
that

x̃[n] = x[((n))N] DFS←→ X̃ [k] = X[((k))N], (8.79)

and similarly, we can define a periodic sequence x̃1[n] such that

x̃1[n] = x1[((n))N] DFS←→ X̃1[k] = X 1[((k))N], (8.80)

where, by assumption,

X 1[k] = e−j (2πk/N)mX [k]. (8.81)

Section 8.6 Properties of the DFT 649

Therefore, the DFS coefficients of x̃1[n] are

X̃1[k] = e−j [2π((k))N /N]mX[((k))N]. (8.82)

Note that

e−j [2π((k))N /N]m = e−j (2πk/N)m. (8.83)

That is, since e−j (2πk/N)m is periodic with period N in both k and m, we can drop the
notation ((k))N . Hence, Eq. (8.82) becomes

X̃1[k] = e−j (2πk/N)mX̃ [k], (8.84)

so that it follows from Section 8.2.2 that

x̃1[n] = x̃[n − m] = x[((n − m))N]. (8.85)

Thus, the finite-length sequence x1[n] whose DFT is given by Eq. (8.81) is

x1[n] =
{

x̃1[n] = x[((n − m))N], 0 ≤ n ≤ N − 1,

0, otherwise.
(8.86)

Equation (8.86) tells us how to construct x1[n] from x[n].

Example 8.8 Circular Shift of a Sequence

The circular shift procedure is illustrated in Figure 8.12 for m = −2; i.e., we want
to determine x1[n] = x[((n + 2))N] for N = 6, which we have shown will have
DFT X 1[k] = W−2k

6 X [k]. Specifically, from x[n], we construct the periodic sequence
x̃[n] = x[((n))6], as indicated in Figure 8.12(b). According to Eq. (8.85), we then
shift x̃[n] by 2 to the left, obtaining x̃1[n] = x̃[n + 2] as in Figure 8.12(c). Finally, using
Eq. (8.86), we extract one period of x̃1[n] to obtain x1[n], as indicated in Figure 8.12(d).

A comparison of Figures 8.12(a) and (d) indicates clearly that x1[n] does not
correspond to a linear shift of x[n], and in fact, both sequences are confined to the
interval between 0 and (N − 1). By reference to Figure 8.12, we see that x1[n] can be
formed by shifting x[n], so that as a sequence value leaves the interval 0 to (N − 1) at
one end, it enters at the other end. Another interesting point is that, for the example
shown in Figure 8.12(a), if we form x2[n] = x[((n − 4))6] by shifting the sequence by 4
to the right modulo 6, we obtain the same sequence as x1[n]. In terms of the DFT, this
results because W4k

6 = W−2k
6 or, more generally, Wmk

N
= W

−(N−m)k
N

, which implies
that an N -point circular shift in one direction by m is the same as a circular shift in the
opposite direction by N − m.

650 Chapter 8 The Discrete Fourier Transform

x [n]

0 N

......

(a)

x [n]~

0 N

(b)

......

x1[n] = x [n + 2]~ ~

0 N

(c)

x1[n] = 0 � n � N – 1
otherwise0,

x1[n],~

0 N

(d)

n

n

n

n

Figure 8.12 Circular shift of a finite-length sequence; i.e., the effect in the time
domain of multiplying the DFT of the sequence by a linear-phase factor.

In Section 8.5, we suggested the interpretation of forming the periodic sequence
x̃[n] from the finite-length sequence x[n] by displaying x[n] around the circumference
of a cylinder with a circumference of exactly N points. As we repeatedly traverse the
circumference of the cylinder, the sequence that we see is the periodic sequence x̃[n].
A linear shift of this sequence corresponds, then, to a rotation of the cylinder. In the
context of finite-length sequences and the DFT, such a shift is called a circular shift or
a rotation of the sequence within the interval 0 ≤ n ≤ N − 1.

In summary, the circular shift property of the DFT is

x[((n − m))N], 0 ≤ n ≤ N − 1
DFJ←→ e−j (2πk/N)mX [k] = Wm

N X[k]. (8.87)

8.6.3 Duality

Since the DFT is so closely associated with the DFS, we would expect the DFT to exhibit
a duality property similar to that of the DFS discussed in Section 8.2.3. In fact, from an
examination of Eqs. (8.67) and (8.68), we see that the analysis and synthesis equations
differ only in the factor 1/N and the sign of the exponent of the powers of WN .

Section 8.6 Properties of the DFT 651

The DFT duality property can be derived by exploiting the relationship between
the DFT and the DFS as in our derivation of the circular shift property. Toward this
end, consider x[n] and its DFT X [k], and construct the periodic sequences

x̃[n] = x[((n))N], (8.88a)

X̃ [k] = X [((k))N], (8.88b)

so that

x̃[n] DFS←→ X̃ [k]. (8.89)

From the duality property given in Eqs. (8.25),

X̃ [n] DFS←→ Nx̃[−k]. (8.90)

If we define the periodic sequence x̃1[n] = X̃ [n], one period of which is the finite-
length sequence x1[n] = X [n], then the DFS coefficients of x̃1[n] are X̃1[k] = Nx̃[−k].
Therefore, the DFT of x1[n] is

X 1[k] =
{

Nx̃[−k], 0 ≤ k ≤ N − 1,

0, otherwise,
(8.91)

or, equivalently,

X 1[k] =
{

Nx[((−k))N], 0 ≤ k ≤ N − 1,

0, otherwise.
(8.92)

Consequently, the duality property for the DFT can be expressed as follows: If

x[n] DFJ←→ X [k], (8.93a)

then

X [n] DFJ←→ Nx[((−k))N], 0 ≤ k ≤ N − 1. (8.93b)

The sequence Nx[((−k))N] is Nx[k] index reversed, modulo N . Index-reversing
modulo N corresponds specifically to ((−k))N = N −k for 1 ≤ k ≤ N −1 and ((−k))N =
((k))N for k = 0. As in the case of shifting modulo N , the process of index-reversing
modulo N is usually best visualized in terms of the underlying periodic sequences.

Example 8.9 The Duality Relationship for the DFT

To illustrate the duality relationship in Eqs. (8.93), let us consider the sequence x[n] of
Example 8.7. Figure 8.13(a) shows the finite-length sequence x[n], and Figures 8.13(b)
and 8.13(c) are the real and imaginary parts, respectively, of the corresponding 10-
point DFT X [k]. By simply relabeling the horizontal axis, we obtain the complex
sequence x1[n] = X [n], as shown in Figures 8.13(d) and 8.13(e). According to the
duality relation in Eqs. (8.93), the 10-point DFT of the (complex-valued) sequence
X [n] is the sequence shown in Figure 8.13(f).

652 Chapter 8 The Discrete Fourier Transform

0 1

1

2 3 4 5 6 7 8 9 10

(a)

x[n]

0 k

5

21 3 4 5 6 7 8 9 10
0 �� 2�

(b)

Re{X (e j�)}

Re{X [k] }

0
0

0
k

5

2

1 3

4 5 6 7 8 9 10
�� 2�

(c)

Im{X (e j�)}

Im{X [k] }

n

0 1

1 1 1 1 1

2 3 4 5

5

6 7 8 9 10

(d)

Re{x1 [n] } = Re{X [n] }

0

1

2

3

4 5 6 7 8 9

3.08

–3.08

0.73

–0.73
10

(e)

Im{x1 [n] } = Im{X [n] }

0 1 2 3 4 5

10

6 7 8 9 10

(f)

X1 [k] = 10x [((– k))10]

n

n

k

Figure 8.13 Illustration of duality. (a) Real finite-length sequence x [n]. (b) and
(c) Real and imaginary parts of corresponding DFT X [k]. (d) and (e) The real and
imaginary parts of the dual sequence x1[n] = X [n]. (f) The DFT of x1[n].

Section 8.6 Properties of the DFT 653

8.6.4 Symmetry Properties

Since the DFT of x[n] is identical to the DFS coefficients of the periodic sequence
x̃[n] = x[((n))N], symmetry properties associated with the DFT can be inferred from the
symmetry properties of the DFS summarized in Table 8.1 in Section 8.2.6. Specifically,
using Eqs. (8.88) together with Properties 9 and 10 in Table 8.1, we have

x∗[n] DFJ←→ X∗[((−k))N], 0 ≤ n ≤ N − 1, (8.94)

and

x∗[((−n))N] DFJ←→ X∗[k], 0 ≤ n ≤ N − 1. (8.95)

Properties 11–14 in Table 8.1 refer to the decomposition of a periodic sequence into the
sum of a conjugate-symmetric and a conjugate-antisymmetric sequence. This suggests
the decomposition of the finite-duration sequence x[n] into the two finite-duration
sequences of duration N corresponding to one period of the conjugate-symmetric and
one period of the conjugate-antisymmetric components of x̃[n]. We will denote these
components of x[n] as xep[n] and xop[n]. Thus, with

x̃[n] = x[((n))N] (8.96)

and the conjugate-symmetric part being

x̃e[n] = 1
2 {x̃[n] + x̃∗[−n]}, (8.97)

and the conjugate-antisymmetric part being

x̃o[n] = 1
2 {x̃[n] − x̃∗[−n]}, (8.98)

we define xep[n] and xop[n] as

xep[n] = x̃e[n], 0 ≤ n ≤ N − 1, (8.99)

xop[n] = x̃o[n], 0 ≤ n ≤ N − 1, (8.100)

or, equivalently,

xep[n] = 1
2 {x[((n))N] + x∗[((−n))N]}, 0 ≤ n ≤ N − 1, (8.101a)

xop[n] = 1
2 {x[((n))N] − x∗[((−n))N]}, 0 ≤ n ≤ N − 1, (8.101b)

with both xep[n] and xop[n] being finite-length sequences, i.e., both zero outside the
interval 0 ≤ n ≤ N − 1. Since ((−n))N = (N − n) and ((n))N = n for 0 ≤ n ≤ N − 1, we
can also express Eqs. (8.101) as

xep[n] = 1
2 {x[n] + x∗[N − n]}, 1 ≤ n ≤ N − 1, (8.102a)

xep[0] = Re{x[0]}, (8.102b)

xop[n] = 1
2 {x[n] − x∗[N − n]}, 1 ≤ n ≤ N − 1, (8.102c)

xop[0] = jIm{x[0]}. (8.102d)

This form of the equations is convenient, since it avoids the modulo N computation of
indices.

654 Chapter 8 The Discrete Fourier Transform

Clearly, xep[n] and xop[n] are not equivalent to xe[n] and xo[n] as defined by
Eqs. (2.149a) and (2.149b). However, it can be shown (see Problem 8.59) that

xep[n] = {xe[n] + xe[n − N]}, 0 ≤ n ≤ N − 1, (8.103)

and

xop[n] = {xo[n] + xo[n − N]}, 0 ≤ n ≤ N − 1. (8.104)

In other words, xep[n] and xop[n] can be generated by time-aliasing xe[n] and xo[n]
into the interval 0 ≤ n ≤ N − 1. The sequences xep[n] and xop[n] will be referred to
as the periodic conjugate-symmetric and periodic conjugate-antisymmetric components,
respectively, of x[n]. When xep[n] and xop[n] are real, they will be referred to as the
periodic even and periodic odd components, respectively. Note that the sequences xep[n]
and xop[n] are not periodic sequences; they are, however, finite-length sequences that
are equal to one period of the periodic sequences x̃e[n] and x̃o[n], respectively.

Equations (8.101) and (8.102) define xep[n] and xop[n] in terms of x[n]. The in-
verse relation, expressing x[n] in terms of xep[n] and xop[n], can be obtained by using
Eqs. (8.97) and (8.98) to express x̃[n] as

x̃[n] = x̃e[n] + x̃o[n]. (8.105)

Thus,

x[n] = x̃[n] = x̃e[n] + x̃o[n], 0 ≤ n ≤ N − 1. (8.106)

Combining Eqs. (8.106) with Eqs. (8.99) and (8.100), we obtain

x[n] = xep[n] + xop[n]. (8.107)

Alternatively, Eqs. (8.102), when added, also lead to Eq. (8.107). The symmetry prop-
erties of the DFT associated with properties 11–14 in Table 8.1 now follow in a straight-
forward way:

Re{x[n]} DFJ←→ X ep[k], (8.108)

jIm{x[n]} DFJ←→ Xop[k], (8.109)

xep[n] DFJ←→ Re{X [k]}, (8.110)

xop[n] DFJ←→ jIm{X [k]}. (8.111)

8.6.5 Circular Convolution

In Section 8.2.5, we showed that multiplication of the DFS coefficients of two periodic
sequences corresponds to a periodic convolution of the sequences. Here, we consider
two finite-duration sequences x1[n] and x2[n], both of length N , with DFTs X 1[k] and
X 2[k], respectively, and we wish to determine the sequence x3[n], for which the DFT
is X 3[k] = X 1[k]X 2[k]. To determine x3[n], we can apply the results of Section 8.2.5.
Specifically, x3[n] corresponds to one period of x̃3[n], which is given by Eq. (8.27). Thus,

x3[n] =
N−1∑
m=0

x̃1[m]x̃2[n − m], 0 ≤ n ≤ N − 1, (8.112)

Section 8.6 Properties of the DFT 655

or, equivalently,

x3[n] =
N−1∑
m=0

x1[((m))N]x2[((n − m))N], 0 ≤ n ≤ N − 1. (8.113)

Since ((m))N = m for 0 ≤ m ≤ N − 1, Eq. (8.113) can be written

x3[n] =
N−1∑
m=0

x1[m]x2[((n − m))N], 0 ≤ n ≤ N − 1. (8.114)

Equation (8.114) differs from a linear convolution of x1[n] and x2[n] as defined
by Eq. (2.49) in some important respects. In linear convolution, the computation of the
sequence value x3[n] involves multiplying one sequence by a time-reversed and linearly
shifted version of the other and then summing the values of the product x1[m]x2[n−m]
over all m. To obtain successive values of the sequence formed by the convolution
operation, the two sequences are successively shifted relative to each other along a
linear axis. In contrast, for the convolution defined by Eq. (8.114), the second sequence
is circularly time reversed and circularly shifted with respect to the first. For this reason,
the operation of combining two finite-length sequences according to Eq. (8.114) is called
circular convolution. More specifically, we refer to Eq. (8.114) as an N -point circular
convolution, explicitly identifying the fact that both sequences have length N (or less)
and that the sequences are shifted modulo N . Sometimes, the operation of forming a
sequence x3[n] for 0 ≤ n ≤ N − 1 using Eq. (8.114) will be denoted

x3[n] = x1[n] ©N x2[n], (8.115)

i.e., the symbol ©N denotes N -point circular convolution.
Since the DFT ofx3[n] isX 3[k] = X 1[k]X 2[k]and sinceX 1[k]X 2[k] = X 2[k]X 1[k],

it follows with no further analysis that

x3[n] = x2[n] ©N x1[n], (8.116)

or, more specifically,

x3[n] =
N−1∑
m=0

x2[m]x1[((n − m))N]. (8.117)

That is, circular convolution, like linear convolution, is a commutative operation.
Since circular convolution is really just periodic convolution, Example 8.4 and

Figure 8.3 are also illustrative of circular convolution. However, if we use the notion of
circular shifting, it is not necessary to construct the underlying periodic sequences as in
Figure 8.3. This is illustrated in the following examples.

Example 8.10 Circular Convolution with a Delayed Impulse
Sequence

An example of circular convolution is provided by the result of Section 8.6.2. Let x2[n]
be a finite-duration sequence of length N and

x1[n] = δ[n − n0], (8.118)

656 Chapter 8 The Discrete Fourier Transform

where 0 < n0 < N . Clearly, x1[n] can be considered as the finite-duration sequence

x1[n] =

⎧⎪⎨⎪⎩
0, 0 ≤ n < n0,

1, n = n0,

0, n0 < n ≤ N − 1.

(8.119)

as depicted in Figure 8.14 for n 0 = 1.
The DFT of x1[n] is

X 1[k] = W
kn0
N

. (8.120)

If we form the product

X 3[k] = W
kn0
N

X 2[k], (8.121)

we see from Section 8.6.2 that the finite-duration sequence corresponding to X 3[k]
is the sequence x2[n] rotated to the right by n0 samples in the interval 0 ≤ n ≤
N − 1. That is, the circular convolution of a sequence x2[n] with a single delayed unit
impulse results in a rotation of x2[n] in the interval 0 ≤ n ≤ N − 1. This example is
illustrated in Figure 8.14 for N = 5 and n0 = 1. Here, we show the sequences x2[m]

0 N

x2[m]

0 N

x1[m]

0 N

x2 [((0 – m))N], 0 � m � N – 1

x2 [((1 – m))N], 0 � m � N – 1

x3 [n] = x1[n] x2[n]

0 N

0 N

Ν

m

m

m

m

n

Figure 8.14 Circular convolution of a finite-length sequence x2[n] with a single
delayed impulse, x1[n] = δ[n − 1].

Section 8.6 Properties of the DFT 657

and x1[m] and then x2[((0 −m))N] and x2[((1 −m))N]. It is clear from these two cases
that the result of circular convolution of x2[n] with a single shifted unit impulse will
be to circularly shift x2[n]. The last sequence shown is x3[n], the result of the circular
convolution of x1[n] and x2[n].

Example 8.11 Circular Convolution of Two Rectangular
Pulses

As another example of circular convolution, let

x1[n] = x2[n] =
{

1, 0 ≤ n ≤ L − 1,

0, otherwise,
(8.122)

where, in Figure 8.15, L = 6. If we let N denote the DFT length, then, for N = L, the
N -point DFTs are

X 1[k] = X 2[k] =
N−1∑
n=0

Wkn
N =
{

N, k = 0,

0, otherwise.
(8.123)

If we explicitly multiply X 1[k] and X 2[k], we obtain

X 3[k] = X 1[k]X 2[k] =
{

N2, k = 0,

0, otherwise,
(8.124)

from which it follows that

x3[n] = N, 0 ≤ n ≤ N − 1. (8.125)

This result is depicted in Figure 8.15. Clearly, as the sequence x2[((n−m))N] is rotated
with respect to x1[m], the sum of products x1[m]x2[((n − m))N] will always be equal
to N .

Of course, it is possible to consider x1[n] and x2[n] as 2L-point sequences by
augmenting them with L zeros. If we then perform a 2L-point circular convolution of
the augmented sequences, we obtain the sequence in Figure 8.16, which can be seen to
be identical to the linear convolution of the finite-duration sequences x1[n] and x2[n].
This important observation will be discussed in much more detail in Section 8.7.

Note that for N = 2L, as in Figure 8.16,

X 1[k] = X 2[k] = 1 − WLk
N

1 − Wk
N

,

so the DFT of the triangular-shaped sequence x3[n] in Figure 8.16(e) is

X 3[k] =
(

1 − WLk
N

1 − Wk
N

)2

,

with N = 2L.

658 Chapter 8 The Discrete Fourier Transform

x1[n]

(a)

0 N

x2[n]

(b)

0

1

1

N

(c)

0

N

N

x3[n] = x1[n] x2[n]Ν

n

n

n

Figure 8.15 N -point circular convolution of two constant sequences of length N .

x1[n]

n

(a)

0 L N

1

x2[n]

(b)

0 L N

1

n

(c)

0 L N

1

n

Figure 8.16 2L-point circular convolution of two constant sequences of length L.

Section 8.6 Properties of the DFT 659

(d)

20 L N

1

x2[((2 – n))N], 0 � n � N – 1

(e)

0 L

L

N

x3[n] = x1[n] x2[n]Ν

n

n

Figure 8.16 (continued)

The circular convolution property is represented as

x1[n] ©N x2[n] DFJ←→ X 1[k]X 2[k]. (8.126)

In view of the duality of the DFT relations, it is not surprising that the DFT of a product of
two N -point sequences is the circular convolution of their respective DFTs. Specifically,
if x3[n] = x1[n]x2[n], then

X 3[k] = 1
N

N−1∑

=0

X 1[
]X 2[((k −
))N] (8.127)

or

x1[n]x2[n] DFJ←→ 1
N

X 1[k] ©N X 2[k]. (8.128)

8.6.6 Summary of Properties of the DFT

The properties of the DFT that we discussed in Section 8.6 are summarized in Table 8.2.
Note that for all of the properties, the expressions given specify x[n] for 0 ≤ n ≤ N − 1
and X [k] for 0 ≤ k ≤ N − 1. Both x[n] and X [k] are equal to zero outside those ranges.

660 Chapter 8 The Discrete Fourier Transform

TABLE 8.2 SUMMARY OF PROPERTIES OF THE DFT

Finite-Length Sequence (Length N) N -point DFT (Length N)

1. x[n] X [k]
2. x1[n], x2[n] X 1[k], X 2[k]
3. ax1[n] + bx2[n] aX 1[k] + bX 2[k]
4. X [n] Nx[((−k))N]
5. x[((n − m))N] Wkm

N
X [k]

6. W−
n
N

x[n] X[((k −
))N]

7.
N−1∑
m=0

x1[m]x2[((n − m))N] X 1[k]X 2[k]

8. x1[n]x2[n] 1
N

N−1∑

=0

X 1[
]X 2[((k −
))N]

9. x∗[n] X∗[((−k))N]
10. x∗[((−n))N] X∗[k]
11. Re{x[n]} X ep[k] = 1

2
{X [((k))N] + X∗[((−k))N]}

12. jIm{x[n]} X op[k] = 1
2
{X [((k))N] − X∗[((−k))N]}

13. xep[n] = 1
2
{x[n] + x∗[((−n))N]} Re{X [k]}

14. xop[n] = 1
2
{x[n] − x∗[((−n))N]} jIm{X [k]}

Properties 15–17 apply only when x[n] is real.

15. Symmetry properties

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X [k] = X∗[((−k))N]

Re{X [k]} = Re{X[((−k))N]}
Im{X [k]} = −Im{X[((−k))N]}

|X [k]| = |X[((−k))N]|
� {X [k]} = −� {X[((−k))N]}

16. xep[n] = 1
2
{x[n] + x[((−n))N]} Re{X [k]}

17. xop[n] = 1
2
{x[n] − x[((−n))N]} jIm{X [k]}

8.7 COMPUTING LINEAR CONVOLUTION USING
THE DFT

We will show in Chapter 9 that efficient algorithms are available for computing the
DFT of a finite-duration sequence. These are known collectively as FFT algorithms.
Because these algorithms are available, it is computationally efficient to implement a
convolution of two sequences by the following procedure:

(a) Compute the N -point DFTs X 1[k] and X 2[k] of the two sequences x1[n] and x2[n],
respectively.

(b) Compute the product X 3[k] = X 1[k]X 2[k] for 0 ≤ k ≤ N − 1.

(c) Compute the sequence x3[n] = x1[n] ©N x2[n] as the inverse DFT of X 3[k].

Section 8.7 Linear Convolution Using the DFT 661

In many DSP applications, we are interested in implementing a linear convolution of
two sequences; i.e., we wish to implement an LTI system. This is certainly true, for
example, in filtering a sequence such as a speech waveform or a radar signal or in
computing the autocorrelation function of such signals. As we saw in Section 8.6.5,
the multiplication of DFTs corresponds to a circular convolution of the sequences. To
obtain a linear convolution, we must ensure that circular convolution has the effect of
linear convolution. The discussion at the end of Example 8.11 hints at how this might
be done. We now present a more detailed analysis.

8.7.1 Linear Convolution of Two Finite-Length
Sequences

Consider a sequence x1[n] whose length is L points and a sequence x2[n] whose length
is P points, and suppose that we wish to combine these two sequences by linear convo-
lution to obtain a third sequence

x3[n] =
∞∑

m=−∞
x1[m]x2[n − m]. (8.129)

Figure 8.17(a) shows a typical sequence x1[m] and Figure 8.17(b) shows a typical se-
quence x2[n − m] for the three cases n = −1, for 0 ≤ n ≤ L − 1, and n = L + P − 1.
Clearly, the product x1[m]x2[n−m] is zero for all m whenever n < 0 and n > L+P − 2;
i.e., x3[n] �= 0 for 0 ≤ n ≤ L + P − 2. Therefore, (L + P − 1) is the maximum length of
the sequence x3[n] resulting from the linear convolution of a sequence of length L with
a sequence of length P .

8.7.2 Circular Convolution as Linear Convolution with
Aliasing

As Examples 8.10 and 8.11 show, whether a circular convolution corresponding to the
product of two N -point DFTs is the same as the linear convolution of the corresponding
finite-length sequences depends on the length of the DFT in relation to the length
of the finite-length sequences. An extremely useful interpretation of the relationship
between circular convolution and linear convolution is in terms of time aliasing. Since
this interpretation is so important and useful in understanding circular convolution, we
will develop it in several ways.

In Section 8.4, we observed that if the Fourier transform X(ejω) of a sequence
x[n] is sampled at frequencies ωk = 2πk/N , then the resulting sequence corresponds to
the DFS coefficients of the periodic sequence

x̃[n] =
∞∑

r=−∞
x[n − rN]. (8.130)

662 Chapter 8 The Discrete Fourier Transform

(a)

x1[m]

0 L

x2 [–1 – m]

0–1–P L

x2 [n – m]

0
n – P + 1

Ln

(b)

x2 [L + P –1 – m]

0
L + P – 1

L

m

m

m

m

Figure 8.17 Example of linear convolution of two finite-length sequences show-
ing that the result is such that x3[n] = 0 for n ≤ −1 and for n ≥ L + P − 1.
(a) Finite-length sequence x1[m]. (b) x2[n − m] for several values of n.

From our discussion of the DFT, it follows that the finite-length sequence

X [k] =
{

X(ej(2πk/N)), 0 ≤ k ≤ N − 1,

0, otherwise,
(8.131)

is the DFT of one period of x̃[n], as given by Eq. (8.130); i.e.,

xp[n] =
{

x̃[n], 0 ≤ n ≤ N − 1,

0, otherwise.
(8.132)

Obviously, if x[n] has length less than or equal to N , no time aliasing occurs and
xp[n] = x[n]. However, if the length of x[n] is greater than N , xp[n] may not be equal
to x[n] for some or all values of n. We will henceforth use the subscript p to denote

Section 8.7 Linear Convolution Using the DFT 663

that a sequence is one period of a periodic sequence resulting from an inverse DFT of a
sampled Fourier transform. The subscript can be dropped if it is clear that time aliasing
is avoided.

The sequence x3[n] in Eq. (8.129) has Fourier transform

X 3(e
jω) = X 1(e

jω)X 2(e
jω). (8.133)

If we define a DFT

X 3[k] = X 3(e
j (2πk/N)), 0 ≤ k ≤ N − 1, (8.134)

then it is clear from Eqs. (8.133) and (8.134) that, also

X 3[k] = X 1(e
j (2πk/N))X 2(e

j (2πk/N)), 0 ≤ k ≤ N − 1, (8.135)

and therefore,

X 3[k] = X 1[k]X 2[k]. (8.136)

That is, the sequence resulting as the inverse DFT of X 3[k] is

x3p[n] =

⎧⎪⎨⎪⎩
∞∑

r=−∞
x3[n − rN], 0 ≤ n ≤ N − 1,

0, otherwise,

(8.137)

and from Eq. (8.136), it follows that

x3p[n] = x1[n] ©N x2[n]. (8.138)

Thus, the circular convolution of two finite-length sequences is equivalent to linear
convolution of the two sequences, followed by time aliasing according to Eq. (8.137).

Note that if N is greater than or equal to either L or P , X 1[k] and X 2[k] represent
x1[n] and x2[n] exactly, but x3p[n] = x3[n] for all n only if N is greater than or equal
to the length of the sequence x3[n]. As we showed in Section 8.7.1, if x1[n] has length
L and x2[n] has length P , then x3[n] has maximum length (L + P − 1). Therefore, the
circular convolution corresponding to X 1[k]X 2[k] is identical to the linear convolution
corresponding to X 1(e

jω)X 2(e
jω) if N , the length of the DFTs, satisfies N ≥ L+P − 1.

Example 8.12 Circular Convolution as Linear Convolution
with Aliasing

The results of Example 8.11 are easily understood in light of the interpretation just
discussed. Note that x1[n] and x2[n] are identical constant sequences of length L =
P = 6, as shown in Figure 8.18(a). The linear convolution of x1[n] and x2[n] is of length
L+P −1 = 11 and has the triangular shape shown in Figure 8.18(b). In Figures 8.18(c)
and (d) are shown two of the shifted versions x3[n − rN] in Eq. (8.137), x3[n − N]
and x3[n + N] for N = 6. The N -point circular convolution of x1[n] and x2[n] can be
formed by using Eq. (8.137). This is shown in Figure 8.18(e) for N = L = 6 and in
Figure 8.18(f) for N = 2L = 12. Note that for N = L = 6, only x3[n] and x3[n + N]
contribute to the result. For N = 2L = 12, only x3[n] contributes to the result. Since
the length of the linear convolution is (2L − 1), the result of the circular convolution
for N = 2L is identical to the result of linear convolution for all 0 ≤ n ≤ N − 1. In

664 Chapter 8 The Discrete Fourier Transform

fact, this would be true for N = 2L − 1 = 11 as well.

0

1

L = P

 x1[n] = x2[n],
L = P = 6

 x3[n – N],
N = L = 6

(a)

0 2L – 1

x3[n] = x1[n] * x2[n]

(b)

0

L

L

N – 1

(e)

0

(f)

0 N

L

L

L

(c)

 x3[n + N],
N = L = 6

0–N

(d)

 x1[n] Ν x2[n],
N = L = 6

 x1[n] Ν x2[n],
N = 2L

n

n

n

n

n

n

Figure 8.18 Illustration that circular convolution is equivalent to linear convolu-
tion followed by aliasing. (a) The sequences x1[n] and x2[n] to be convolved. (b) The
linear convolution of x1[n] and x2[n]. (c) x3[n − N] for N = 6. (d) x3[n + N] for
N = 6. (e) x1[n] ©6 x2[n], which is equal to the sum of (b), (c), and (d) in the
interval 0 ≤ n ≤ 5. (f) x1[n] ©12 x2[n].

Section 8.7 Linear Convolution Using the DFT 665

(a)

x1[n]

1

2

L

(b)

x2[n]1

7

P

(c)

P L
L + P – 1

0

0

0

 x3[n] = x1[n] * x2[n]

n

n

n

Figure 8.19 An example of linear convolution of two finite-length sequences.

As Example 8.12 points out, time aliasing in the circular convolution of two finite-
length sequences can be avoided if N ≥ L + P − 1. Also, it is clear that if N = L = P ,
all of the sequence values of the circular convolution may be different from those of
the linear convolution. However, if P < L, some of the sequence values in an L-point
circular convolution will be equal to the corresponding sequence values of the linear
convolution. The time-aliasing interpretation is useful for showing this.

Consider two finite-duration sequences x1[n] and x2[n], with x1[n] of length L and
x2[n] of length P , where P < L, as indicated in Figures 8.19(a) and 8.19(b), respectively.
Let us first consider the L-point circular convolution of x1[n] and x2[n] and inquire as
to which sequence values in the circular convolution are identical to values that would
be obtained from a linear convolution and which are not. The linear convolution of
x1[n] with x2[n] will be a finite-length sequence of length (L + P − 1), as indicated in
Figure 8.19(c). To determine the L-point circular convolution, we use Eqs. (8.137) and
(8.138) so that

x3p[n] =

⎧⎪⎨⎪⎩x1[n] ©L x2[n] =
∞∑

r=−∞
x3[n − rL], 0 ≤ n ≤ L − 1,

0, otherwise.

(8.139)

Figure 8.20(a) shows the term in Eq. (8.139) for r = 0, and Figures 8.20(b) and 8.20(c)
show the terms for r = −1 and r = +1, respectively. From Figure 8.20, it should be
clear that in the interval 0 ≤ n ≤ L − 1, x3p[n] is influenced only by x3[n] and x3[n + L].

x3[n]

(a)

L + P – 1
0

x3p[n] = x3[n] + x3[n + L], 0 � n � L – 1

x3[n + L]

x3[n – L]

(b)

P – 2
0–L

P – 1

(c)

0 L

L

(d)

0 L

n

n

n

n

Figure 8.20 Interpretation of circular convolution as linear convolution followed
by aliasing for the circular convolution of the two sequences x1[n] and x2[n] in
Figure 8.19.

666

Section 8.7 Linear Convolution Using the DFT 667

In general, whenever P < L, only the term x3[n + L] will alias into the interval
0 ≤ n ≤ L−1. More specifically, when these terms are summed, the last (P −1) points of
x3[n+L], which extend from n = 0 to n = P −2, will be added to the first (P −1) points
of x3[n], and the last (P −1) points of x3[n], extending from n = L to n = L+P −2, will
contribute only to the next period of the underlying periodic result x̃3[n]. Then, x3p[n]
is formed by extracting the portion for 0 ≤ n ≤ L − 1. Since the last (P − 1) points of
x3[n + L] and the last (P − 1) points of x3[n] are identical, we can alternatively view
the process of forming the circular convolution x3p[n] through linear convolution plus
aliasing, as taking the (P − 1) values of x3[n] from n = L to n = L + P − 2 and adding
them to the first (P − 1) values of x3[n]. This process is illustrated in Figure 8.21 for
the case P = 4 and L = 8. Figure 8.21(a) shows the linear convolution x3[n], with the
points for n ≥ L denoted by open symbols. Note that only (P − 1) points for n ≥ L

are nonzero. Figure 8.21(b) shows the formation of x3p[n] by “wrapping x3[n] around
on itself.” The first (P − 1) points are corrupted by the time aliasing, and the remaining
points from n = P − 1 to n = L − 1 (i.e., the last L − P + 1 points) are not corrupted;
that is, they are identical to what would be obtained with a linear convolution.

From this discussion, it should be clear that if the circular convolution is of suffi-
cient length relative to the lengths of the sequences x1[n] and x2[n], then aliasing with
nonzero values can be avoided, in which case the circular convolution and linear con-
volution will be identical. Specifically, if, for the case just considered, x3[n] is replicated
with period N ≥ L + P − 1, then no nonzero overlap will occur. Figures 8.21(c) and
8.21(d) illustrate this case, again for P = 4 and L = 8, with N = 11.

8.7.3 Implementing Linear Time-Invariant Systems Using
the DFT

The previous discussion focused on ways of obtaining a linear convolution from a cir-
cular convolution. Since LTI systems can be implemented by convolution, this implies
that circular convolution (implemented by the procedure suggested at the beginning of
Section 8.7) can be used to implement these systems. To see how this can be done, let
us first consider an L-point input sequence x[n] and a P -point impulse response h[n].
The linear convolution of these two sequences, which will be denoted by y[n], has finite
duration with length (L+P −1). Consequently, as discussed in Section 8.7.2, for the cir-
cular convolution and linear convolution to be identical, the circular convolution must
have a length of at least (L + P − 1) points. The circular convolution can be achieved
by multiplying the DFTs of x[n] and h[n]. Since we want the product to represent the
DFT of the linear convolution of x[n] and h[n], which has length (L+P − 1), the DFTs
that we compute must also be of at least that length, i.e., both x[n] and h[n] must be
augmented with sequence values of zero amplitude. This process is often referred to as
zero-padding.

This procedure permits the computation of the linear convolution of two finite-
length sequences using the DFT; i.e., the output of an FIR system whose input also has
finite length can be computed with the DFT. In many applications, such as filtering a
speech waveform, the input signal is of indefinite duration. Theoretically, while we might
be able to store the entire waveform and then implement the procedure just discussed
using a DFT for a large number of points, such a DFT might be impractical to compute.

668 Chapter 8 The Discrete Fourier Transform

0 L
L + P – 1

2L

x3[n]

(a)

0 N

x3[n]

(c)

0 N

(d)

0 L
P – 1

(b)

 x3p[n] = x1[n] x2[n],
N = L + P – 1

N

 x3p[n] = x1[n] x2[n],
N = L

N

n

n

n

n

Figure 8.21 Illustration of how the
result of a circular convolution “wraps
around.” (a) and (b) N = L, so the
aliased “tail” overlaps the first (P − 1)
points. (c) and (d) N = (L + P − 1), so
no overlap occurs.

Another consideration is that for this method of filtering, no filtered samples can be
computed until all the input samples have been collected. Generally, we would like to
avoid such a large delay in processing. The solution to both of these problems is to use
block convolution, in which the signal to be filtered is segmented into sections of length
L. Each section can then be convolved with the finite-length impulse response and the

Section 8.7 Linear Convolution Using the DFT 669

0
P – 1

h [n]

0
2L

L 3L
x [n]

n

n

Figure 8.22 Finite-length impulse response h[n] and indefinite-length signal x [n]
to be filtered.

filtered sections fitted together in an appropriate way. The linear filtering of each block
can then be implemented using the DFT.

To illustrate the procedure and to develop the procedure for fitting the filtered
sections together, consider the impulse response h[n] of length P and the signal x[n]
depicted in Figure 8.22. Henceforth, we will assume that x[n] = 0 for n < 0 and that the
length of x[n] is much greater than P . The sequence x[n] can be represented as a sum
of shifted nonoverlapping finite-length segments of length L; i.e.,

x[n] =
∞∑

r=0

xr [n − rL], (8.140)

where

xr [n] =
{

x[n + rL], 0 ≤ n ≤ L − 1,

0, otherwise.
(8.141)

Figure 8.23(a) illustrates this segmentation for x[n] in Figure 8.22. Note that within each
segment xr [n], the first sample is at n = 0; however, the zeroth sample of xr [n] is the rLth

sample of the sequence x[n]. This is shown in Figure 8.23(a) by plotting the segments
in their shifted positions but with the redefined time origin indicated.

Because convolution is an LTI operation, it follows from Eq. (8.140) that

y[n] = x[n] ∗ h[n] =
∞∑

r=0

yr [n − rL], (8.142)

where

yr [n] = xr [n] ∗ h[n]. (8.143)

Since the sequences xr [n] have only L nonzero points and h[n] is of length P , each of
the terms yr [n] = xr [n] ∗ h[n] has length (L + P − 1). Thus, the linear convolution
xr [n] ∗ h[n] can be obtained by the procedure described earlier using N -point DFTs,
wherein N ≥ L + P − 1. Since the beginning of each input section is separated from
its neighbors by L points and each filtered section has length (L + P − 1), the nonzero
points in the filtered sections will overlap by (P − 1) points, and these overlap samples

670 Chapter 8 The Discrete Fourier Transform

0

L

L

L

x0 [n]

0

y0 [n]

0

x2 [n]

L + P – 2

L

0

x1 [n]

0

y1 [n]

0
0

y2 [n]

(a)

(b)

n

n

n

n

n

n
Figure 8.23 (a) Decomposition of x [n]
in Figure 8.22 into nonoverlapping
sections of length L. (b) Result of
convolving each section with h[n].

must be added in carrying out the sum required by Eq. (8.142). This is illustrated in
Figure 8.23(b), which illustrates the filtered sections, yr [n] = xr [n] ∗ h[n]. Just as the
input waveform is reconstructed by adding the delayed waveforms in Figure 8.23(a),
the filtered result x[n] ∗ h[n] is constructed by adding the delayed filtered sections
depicted in Figure 8.23(b). This procedure for constructing the filtered output from
filtered sections is often referred to as the overlap–add method, because the filtered
sections are overlapped and added to construct the output. The overlapping occurs
because the linear convolution of each section with the impulse response is, in general,
longer than the length of the section. The overlap–add method of block convolution is
not tied to the DFT and circular convolution. Clearly, all that is required is that the
smaller convolutions be computed and the results combined appropriately.

Section 8.7 Linear Convolution Using the DFT 671

An alternative block convolution procedure, commonly called the overlap–save
method, corresponds to implementing an L-point circular convolution of a P -point
impulse response h[n] with an L-point segment xr [n] and identifying the part of the
circular convolution that corresponds to a linear convolution. The resulting output
segments are then “patched together” to form the output. Specifically, we showed that
if an L-point sequence is circularly convolved with a P -point sequence (P < L), then
the first (P − 1) points of the result are incorrect due to time aliasing, whereas the
remaining points are identical to those that would be obtained had we implemented a
linear convolution. Therefore, we can divide x[n] into sections of length L so that each
input section overlaps the preceding section by (P − 1) points. That is, we define the
sections as

xr [n] = x[n + r(L − P + 1) − P + 1], 0 ≤ n ≤ L − 1, (8.144)

wherein, as before, we have defined the time origin for each section to be at the beginning
of that section rather than at the origin of x[n]. This method of sectioning is depicted in
Figure 8.24(a). The circular convolution of each section with h[n] is denoted yrp[n], the
extra subscript p indicating that yrp[n] is the result of a circular convolution in which
time aliasing has occurred. These sequences are depicted in Figure 8.24(b). The portion
of each output section in the region 0 ≤ n ≤ P − 2 is the part that must be discarded.
The remaining samples from successive sections are then abutted to construct the final
filtered output. That is,

y[n] =
∞∑

r=0

yr [n − r(L − P + 1) + P − 1], (8.145)

where

yr [n] =
{

yrp[n], P − 1 ≤ n ≤ L − 1,

0, otherwise.
(8.146)

This procedure is called the overlap–save method because the input segments overlap,
so that each succeeding input section consists of (L − P + 1) new points and (P − 1)
points saved from the previous section.

The utility of the overlap–add and the overlap–save methods of block convolution
may not be immediately apparent. In Chapter 9, we consider highly efficient algorithms
for computing the DFT. These algorithms, collectively called the FFT, are so efficient
that, for FIR impulse responses of even modest length (on the order of 25 or 30), it
may be more efficient to carry out block convolution using the DFT than to implement
the linear convolution directly. The length P at which the DFT method becomes more
efficient is, of course, dependent on the hardware and software available to implement
the computations. (See Stockham, 1966, and Helms, 1967.)

x0[n] L – (P – 1)

L – 1

0

x1[n]

0

x2[n]

L – 1

0

L – 1

L – 1

y0p[n]
L – 1

0

y1p[n]

y2p[n]

0

L – 1

0

(a)

(b)

n

n

n

n

n

n

Figure 8.24 (a) Decomposition of x [n] in Figure 8.22 into overlapping sections
of length L. (b) Result of convolving each section with h[n]. The portions of each
filtered section to be discarded in forming the linear convolution are indicated.

672

Section 8.8 The Discrete Cosine Transform (DCT) 673

8.8 THE DISCRETE COSINE TRANSFORM (DCT)

The DFT is perhaps the most common example of a general class of finite-length trans-
form representations of the form

A[k] =
N−1∑
n=0

x[n]φ∗
k [n], (8.147)

x[n] = 1
N

N−1∑
k=0

A[k]φk[n], (8.148)

where the sequences φk[n], referred to as the basis sequences, are orthogonal to one
another; i.e.,

1
N

N−1∑
n=0

φk[n]φ∗
m[n] =

{
1, m = k,

0, m �= k.
(8.149)

In the case of the DFT, the basis sequences are the complex periodic sequences ej2πkn/N ,
and the sequence A[k] is, in general, complex even if the sequence x[n] is real. It is natural
to inquire as to whether there exist sets of real-valued basis sequences that would yield
a real-valued transform sequence A[k] when x[n] is real. This has led to the definition
of a number of other orthogonal transform representations, such as Haar transforms,
Hadamard transforms (see Elliott and Rao, 1982), and Hartley transforms (Bracewell,
1983, 1984, 1989). (The definition and properties of the Hartley transform are explored
in Problem 8.68.) Another orthogonal transform for real sequences is the discrete cosine
transform (DCT). (See Ahmed, Natarajan and Rao, 1974 and Rao and Yip, 1990.) The
DCT is closely related to the DFT and has become especially useful and important in a
number of signal-processing applications, particularly speech and image compression.
In this section, we conclude our discussion of the DFT by introducing the DCT and
showing its relationship to the DFT.

8.8.1 Definitions of the DCT

The DCT is a transform in the form of Eqs. (8.147) and (8.148) with basis sequences
φk[n] that are cosines. Since cosines are both periodic and have even symmetry, the
extension of x[n] outside the range 0 ≤ n ≤ (N − 1) in the synthesis Eq. (8.148) will
be both periodic and symmetric. In other words, just as the DFT involves an implicit
assumption of periodicity, the DCT involves implicit assumptions of both periodicity
and even symmetry.

In the development of the DFT, we represented finite-length sequences by first
forming periodic sequences from which the finite-length sequence can be uniquely re-
covered and then using an expansion in terms of periodic complex exponentials. In a
similar style, the DCT corresponds to forming a periodic, symmetric sequence from
a finite-length sequence in such a way that the original finite-length sequence can be
uniquely recovered. Because there are many ways to do this, there are many definitions
of the DCT. In Figure 8.25, we show 17 samples for each of four examples of symmet-
ric periodic extensions of a four-point sequence. The original finite-length sequence is
shown in each subfigure as the samples with solid dots. These sequences are all periodic

674 Chapter 8 The Discrete Fourier Transform

(a)

6

x1[n]

120

1

4 4

3 3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

2

(b)

5 8 160

(c)

8
16

–4

–2

–3

–1

–4

–2

–3

–1

0

(d)

108

16

n n

n n0

~
x2[n]~

x3[n]~
x4[n]~

Figure 8.25 Four ways to extend a four-point sequence x [n] both periodically and
symmetrically. The finite-length sequence x [n] is plotted with solid dots. (a) Type-1
periodic extension for DCT-1. (b) Type-2 periodic extension for DCT-2. (c) Type-3
periodic extension for DCT-3. (d) Type-4 periodic extension for DCT-4.

(with period 16 or less) and also have even symmetry. In each case, the finite-length
sequence is easily extracted as the first four points of one period. For convenience,
we denote the periodic sequences obtained by replicating with period 16 each of the
four subsequences in Figure 8.25(a), (b), (c), and (d) as x̃1[n], x̃2[n], x̃3[n], and x̃4[n],
respectively. We note that x̃1[n] has period (2N − 2) = 6 and has even symmetry about
both n = 0 and n = (N − 1) = 3. The sequence x̃2[n] has period 2N = 8 and has
even symmetry about the “half sample” points n = − 1

2 and 7
2 . The sequence x̃3[n] has

period 4N = 16 and has even symmetry about n = 0 and n = 8. The sequence x̃4[n]
also has period 4N = 16 and even symmetry about the “half sample” points n = − 1

2
and n = (2N − 1

2) = 15
2 .

The four different cases shown in Figure 8.25 illustrate the periodicity that is
implicit in the four common forms of the DCT, which are referred to as DCT-1, DCT-2,
DCT-3, and DCT-4 respectively. It can be shown (see Martucci, 1994) that there are
four more ways to create an even periodic sequence from x[n]. This implies four other
possible DCT representations. Furthermore, it is also possible to create eight odd-
symmetric periodic real sequences from x[n], leading to eight different versions of
the discrete sine transform (DST), wherein the basis sequences in the orthonormal
representation are sine functions. These transforms make up a family of 16 orthonormal
transforms for real sequences. Of these, the DCT-1 and DCT-2 representations are the
most used, and we shall focus on them in the remainder of our discussion.

Section 8.8 The Discrete Cosine Transform (DCT) 675

8.8.2 Definition of the DCT-1 and DCT-2

All of the periodic extensions leading to different forms of the DCT can be thought of
as a sum of shifted copies of the N -point sequences ±x[n] and ±x[−n]. The differences
between the extensions for the DCT-1 and DCT-2 depend on whether the endpoints
overlap with shifted versions of themselves and, if so, which of the endpoints overlap.
For the DCT-1, x[n] is first modified at the endpoints and then extended to have period
2N − 2. The resulting periodic sequence is

x̃1[n] = xα[((n))2N−2] + xα[((−n))2N−2], (8.150)

where xα[n] is the modified sequence xα[n] = α[n]x[n], with

α[n] =
{

1
2 , n = 0 and N − 1,

1, 1 ≤ n ≤ N − 2.
(8.151)

The weighting of the endpoints compensates for the doubling that occurs when the two
terms in Eq. (8.150) overlap at n = 0, n = (N − 1), and at the corresponding points
spaced from these by integer multiples of (2N − 2). With this weighting, it is easily
verified that x[n] = x̃1[n] for n = 0, 1, . . . , N − 1. The resulting periodic sequence x̃1[n]
has even periodic symmetry about the points n = 0 and n = N −1, 2N −2, etc., which we
refer to as Type-1 periodic symmetry. Figure 8.25 (a) is an example of Type-1 symmetry
where N = 4 and the periodic sequence x̃1[n] has period 2N − 2 = 6. The DCT-1 is
defined by the transform pair

X c1[k] = 2
N−1∑
n=0

α[n]x[n] cos
(

πkn

N − 1

)
, 0 ≤ k ≤ N − 1, (8.152)

x[n] = 1
N − 1

N−1∑
k=0

α[k]X c1[k] cos
(

πkn

N − 1

)
, 0 ≤ n ≤ N − 1, (8.153)

where α[n] is defined in Eq. (8.151).
For the DCT-2, x[n] is extended to have period 2N , and the periodic sequence is

given by

x̃2[n] = x[((n))2N] + x[((−n − 1))2N], (8.154)

Because the endpoints do not overlap, no modification of them is required to ensure
that x[n] = x̃2[n] for n = 0, 1, . . . , N − 1. In this case, which we call Type-2 periodic
symmetry, the periodic sequence x̃2[n] has even periodic symmetry about the “half
sample” points −1/2, N − 1/2, 2N − 1/2, etc. This is illustrated by Figure 8.25(b) for
N = 4 and period 2N = 8. The DCT-2 is defined by the transform pair

X c2[k] = 2
N−1∑
n=0

x[n] cos
(

πk(2n + 1)

2N

)
, 0 ≤ k ≤ N − 1, (8.155)

x[n] = 1
N

N−1∑
k=0

β[k]X c2[k] cos
(

πk(2n + 1)

2N

)
, 0 ≤ n ≤ N − 1, (8.156)

676 Chapter 8 The Discrete Fourier Transform

where the inverse DCT-2 involves the weighting function

β[k] =
{

1
2 , k = 0
1, 1 ≤ k ≤ N − 1.

(8.157)

In many treatments, the DCT definitions include normalization factors that make the
transforms unitary.4 For example, the DCT-2 form is often defined as

X̃
c2[k] =

√
2
N

β̃[k]
N−1∑
n=0

x[n] cos
(

πk(2n + 1)

2N

)
, 0 ≤ k ≤ N − 1, (8.158)

x[n] =
√

2
N

N−1∑
k=0

β̃[k]X̃c2[k] cos
(

πk(2n + 1)

2N

)
, 0 ≤ n ≤ N − 1, (8.159)

where

β̃[k] =
{

1√
2
, k = 0,

1, k = 1, 2, . . . , N − 1.
(8.160)

Comparing these equations with Eqs. (8.155) and (8.156), we see that the multiplicative
factors 2, 1/N , and β[k] have been redistributed between the direct and inverse trans-
forms. (A similar normalization can be applied to define a normalized version of the
DCT-1.) While this normalization creates a unitary transform representation, the defi-
nitions in Eqs. (8.152) and (8.153) and Eqs. (8.155) and (8.156) are simpler to relate to
the DFT as we have defined it in this chapter. Therefore, in the following discussions, we
use our definitions rather than the normalized definitions that are found, for example,
in Rao and Yip (1990) and many other texts.

Although we normally evaluate the DCT only for 0 ≤ k ≤ N −1, nothing prevents
our evaluating the DCT equations outside that interval, as illustrated in Figure 8.26,
wherein the DCT values for 0 ≤ k ≤ N − 1 are shown as solid dots. These figures
illustrate that the DCTs also are even periodic sequences. However, the symmetry of
the transform sequence is not always the same as the symmetry of the implicit periodic
input sequence. While x̃1[n] and the extension of X c1[k] both have Type-1 symmetry
with the same period, we see from a comparison of Figures 8.25(c) and 8.26(b) that the
extended X c2[k] has the same symmetry as x̃3[n] rather than x̃2[n]. Furthermore, Xc2[n]
extends with period 4N while x̃2[n] has period 2N .

Since the DCTs are orthogonal transform representations, they have properties
similar in form to those of the DFT. These properties are elaborated on in some detail
in Ahmed, Natarajan and Rao (1974) and Rao and Yip (1990).

8.8.3 Relationship between the DFT and the DCT-1

As might be expected, there is a close relationship between the DFT and the various
classes of the DCT of a finite-length sequence. To develop this relationship, we note that,

4The DCT would be a unitary transform if it is orthonormal and also has the property that
N−1∑
n=0

(x[n])2 =
N−1∑
k=0

(X c2[k])2.

Section 8.8 The Discrete Cosine Transform (DCT) 677

(a)

0 6 12

15

(b)

0
8

10 16 kk

–20

20
Xc1[k] Xc2[k]

Figure 8.26 DCT-1 and DCT-2 for the four-point sequence used in Figure 8.25.
(a) DCT-1. (b) DCT-2.

since, for the DCT-1, x̃1[n] is constructed from x1[n] through Eqs. (8.150) and (8.151),
one period of the periodic sequence x̃1[n] defines the finite-length sequence

x1[n] = xα[((n))2N−2] + xα[((−n))2N−2] = x̃1[n], n = 0, 1, . . . , 2N − 3, (8.161)
where xα[n] = α[n]x[n] is the N -point real sequence with endpoints divided by 2. From
Eq. (8.161), it follows that the (2N −2)-point DFT of the (2N −2)-point sequence x1[n]
is

X 1[k] = Xα[k] + X∗
α[k] = 2Re{Xα[k]}, k = 0, 1, . . . , 2N − 3, (8.162)

where Xα[k] is the (2N − 2)-point DFT of the N -point sequence α[n]x[n]; i.e., α[n]x[n]
is padded with (N − 2) zero samples. Using the definition of the (2N − 2)-point DFT of
the padded sequence, we obtain for k = 0, 1 . . . , N − 1,

X 1[k] = 2Re{Xα[k]} = 2
N−1∑
n=0

α[n]x[n] cos
(

2πkn

2N − 2

)
= X c1[k]. (8.163)

Therefore, the DCT-1 of an N -point sequence is identical to the first N points of X1[k],
the (2N − 2)-point DFT of the symmetrically extended sequence x1[n], and it is also
identical to twice the real part of the first N points of Xα[k], the (2N − 2)-point DFT of
the weighted sequence xα[n].

Since, as discussed in Chapter 9, fast computational algorithms exist for the DFT,
they can be used to compute the DFTs Xα[k] or X 1[k] in Eq. (8.163), thus providing
a convenient and readily available fast computation of the DCT-1. Since the definition
of the DCT-1 involves only real-valued coefficients, there are also efficient algorithms
for computing the DCT-1 of real sequences more directly without requiring the use
of complex multiplications and additions. (See Ahmed, Natarajan and Rao, 1974 and
Chen and Fralick, 1977.)

The inverse DCT-1 can also be computed using the inverse DFT. It is only nec-
essary to use Eq. (8.163) to construct X 1[k] from X c1[k] and then compute the inverse
(2N − 2)-point DFT. Specifically,

X 1[k] =
{

X c1[k], k = 0, . . . , N − 1,

X c1[2N − 2 − k], k = N, . . . , 2N − 3,
(8.164)

678 Chapter 8 The Discrete Fourier Transform

and, using the definition of the (2N − 2)-point inverse DFT, we can compute the sym-
metrically extended sequence

x1[n] = 1
2N − 2

2N−3∑
k=0

X 1[k]ej2πkn/(2N−2), n = 0, 1, . . . , 2N − 3, (8.165)

from which we can obtain x[n] by extracting the first N points, i.e., x[n] = x1[n] for
n = 0, 1, . . . , N − 1. By substitution of Eq. (8.164) into Eq. (8.165), it also follows that
the inverse DCT-1 relation can be expressed in terms of X c1[k] and cosine functions, as
in Eq. (8.153). This is suggested as an exercise in Problem 8.71.

8.8.4 Relationship between the DFT and the DCT-2

It is also possible to express the DCT-2 of a finite-length sequence x[n] in terms of the
DFT. To develop this relationship, observe that one period of the periodic sequence
x̃2[n] defines the 2N -point sequence

x2[n] = x[((n))2N] + x[((−n − 1))2N] = x̃2[n], n = 0, 1, . . . , 2N − 1, (8.166)

where x[n] is the original N -point real sequence. From Eq. (8.166), it follows that the
2N -point DFT of the 2N -point sequence x2[n] is

X 2[k] = X [k] + X∗[k]ej2πk/(2N), k = 0, 1, . . . , 2N − 1, (8.167)

where X [k] is the 2N -point DFT of the N -point sequence x[n]; i.e., in this case, x[n] is
padded with N zero samples. From Eq. (8.167), we obtain

X 2[k] = X [k] + X∗[k]ej2πk/(2N)

= ejπk/(2N)
(
X [k]e−jπk/(2N) + X∗[k]ejπk/(2N)

)
(8.168)

= ejπk/(2N)2Re
{
X [k]e−jπk/(2N)

}
.

From the definition of the 2N -point DFT of the padded sequence, it follows that

Re
{
X [k]e−jπk/(2N)

}
=

N−1∑
n=0

x[n] cos
(

πk(2n + 1)

2N

)
. (8.169)

Therefore, using Eqs. (8.155), (8.167), and (8.169), we can express X c2[k] in terms of
X [k], the 2N -point DFT of the N -point sequence x[n], as

X c2[k] = 2Re
{
X [k]e−jπk/(2N)

}
, k = 0, 1, . . . , N − 1, (8.170)

or in terms of the 2N -point DFT of the 2N -point symmetrically extended sequence
x2[n] defined by Eq. (8.166) as

X c2[k] = e−jπk/(2N)X 2[k], k = 0, 1, . . . , N − 1, (8.171)

and equivalently,

X 2[k] = ejπk/(2N)X c2[k], k = 0, 1, . . . , N − 1. (8.172)

As in the case of the DCT-1, fast algorithms can be used to compute the 2N -point
DFTs X[k] and X2[k] in Eqs. (8.170) and (8.171), respectively. Makhoul (1980) discusses
other ways that the DFT can be used to compute the DCT-2. (See also Problem 8.72.) In
addition, special fast algorithms for the computation of the DCT-2 have been developed
(Rao and Yip, 1990).

Section 8.8 The Discrete Cosine Transform (DCT) 679

The inverse DCT-2 can also be computed using the inverse DFT. The procedure
utilizes Eq. (8.172) together with a symmetry property of the DCT-2. Specifically, it is
easily verified by direct substitution into Eq. (8.155) that

X c2[2N − k] = −X c2[k], k = 0, 1, . . . , 2N − 1, (8.173)

from which it follows that

X 2[k] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X c2[0], k = 0,

ejπk/(2N)X c2[k], k = 1, . . . , N − 1,

0, k = N,

−ejπk/(2N)X c2[2N − k], k = N + 1, N + 2, . . . , 2N − 1.

(8.174)

Using the inverse DFT, we can compute the symmetrically extended sequence

x2[n] = 1
2N

2N−1∑
k=0

X 2[k]ej2πkn/(2N), n = 0, 1, . . . , 2N − 1, (8.175)

from which we can obtainx[n] = x2[n] forn = 0, 1, . . . , N−1. By substituting Eq. (8.174)
into Eq. (8.175), we can easily show that the inverse DCT-2 relation is that given by
Eq. (8.156). (See Problem 8.73.)

8.8.5 Energy Compaction Property of the DCT-2

The DCT-2 is used in many data compression applications in preference to the DFT
because of a property that is frequently referred to as “energy compaction.” Specifically,
the DCT-2 of a finite-length sequence often has its coefficients more highly concentrated
at low indices than the DFT does. The importance of this flows from Parseval’s theorem,
which, for the DCT-1, is

N−1∑
n=0

α[n]|x[n]|2 = 1
2N − 2

N−1∑
k=0

α[k]|X c1[k]|2, (8.176)

and, for the DCT-2, is

N−1∑
n=0

|x[n]|2 = 1
N

N−1∑
k=0

β[k]|X c2[k]|2, (8.177)

where β[k] is defined in Eq. (8.157). The DCT can be said to be concentrated in the
low indices of the DCT if the remaining DCT coefficients can be set to zero without
a significant impact on the energy of the signal. We illustrate the energy compaction
property in the following example.

680 Chapter 8 The Discrete Fourier Transform

Example 8.13 Energy Compaction in the DCT-2

Consider a test input of the form

x[n] = an cos(ω0n + φ), n = 0, 1, . . . , N − 1. (8.178)

Such a signal is illustrated in Figure 8.27 for a = .9, ω0 = 0.1π , φ = 0, and N = 32.

n
0 5 10 15 20 25 30

–1

–0.5

0

0.5

1
x

[n
]

Figure 8.27 Test signal for comparing DFT and DCT.

The real and imaginary parts of the 32-point DFT of the 32-point sequence in
Figure 8.27 are shown in Figures 8.28(a) and (b), respectively, and the DCT-2 of the
sequence is shown in Figure 8.28(c). In the case of the DFT, the real and imaginary
parts are shown for k = 0, 1, . . . , 16. Since the signal is real, X[0] and X[16] are real.
The remaining values are complex and conjugate symmetric. Thus, the 32 real numbers
shown in Figures 8.28(a) and (b) completely specify the 32-point DFT. In the case of
the DCT-2, we show all 32 of the real DCT-2 values. Clearly, the DCT-2 values are
highly concentrated at low indices, so Parseval’s theorem suggests that the energy
of the sequence is more concentrated in the DCT-2 representation than in the DFT
representation.

This energy concentration property can be quantified by truncating the two
representations and comparing the mean-squared approximation error for the two
representations when both use the same number of real coefficient values. To do this,
we define

xdft
m [n] = 1

N

N−1∑
k=0

Tm[k]X [k]ej2πkn/N , n = 0, 1, . . . , N − 1, (8.179)

where, in this case, X [k] is the N -point DFT of x[n] and

Tm[k] =

⎧⎪⎨⎪⎩
1, 0 ≤ k ≤ (N − 1 − m)/2,

0, (N + 1 − m)/2 ≤ k ≤ (N − 1 + m)/2,

1, (N + 1 + m)/2 ≤ k ≤ N − 1.

If m = 1, the term X[N/2] is removed. If m = 3, then the terms X[N/2] and X[N/2−1]
and its corresponding complex conjugate X[N/2 + 1] are removed, and so forth; i.e.,
xdft
m [n] for m = 1, 3, 5, . . . , N − 1 is the sequence that is synthesized by symmetrically

omitting m DFT coefficients.5 With the exception of the DFT value, X[N/2], which is

5For simplicity, we assume that N is an even integer.

Section 8.8 The Discrete Cosine Transform (DCT) 681

real, each omitted complex DFT value and its corresponding complex conjugate actu-
ally corresponds to omitting two real numbers. For example, m = 5 would correspond
to setting the coefficients X[14], X[15], X[16], X[17], and X[18] to zero in synthesizing
xdft

5 [n] from the 32-point DFT shown in Figures 8.28(a) and (b).
Likewise, we can truncate the DCT-2 representation, obtaining

xdct
m [n] = 1

N

N−1−m∑
k=0

β[k]X c2[k] cos
(

πk(2n + 1)

2N

)
, 0 ≤ n ≤ N − 1. (8.180)

In this case, if m = 5, we omit the DCT-2 coefficients X c2[27], . . . , X c2[31] in the
synthesis of xdct

m [n] from the DCT-2 shown in Figure 8.28(c). Since these coefficients
are very small, xdct

5 [n] should differ only slightly from x[n].

Transform index k

Transform index k

Transform index k

0 5 10 15

(c)

20 25 30
–10

0

10

20

(b)

0 2 4 6 8 10 12 14 16
–10

–5

0

5

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

Re
{X

[k
]}

Im
{X

[k
]}

X
c2

[k
]

Figure 8.28 (a) Real part of 32-point DFT; (b) Imaginary part of 32-point DFT;
(c) 32-point DCT-2 of the test signal plotted in Figure 8.27.

682 Chapter 8 The Discrete Fourier Transform

To show how the approximation errors depend on m for the DFT and the DCT-2,
we define

Edft[m] = 1
N

N−1∑
n=0

|x[n] − xdft
m [n]|2

and

Edct[m] = 1
N

N−1∑
n=0

|x[n] − xdct
m [n]|2

to be the mean-squared approximation errors for the truncated DFT and DCT, re-
spectively. These errors are plotted in Figure 8.29, with Edft[m] indicated with ◦ and
Edct[m] shown with •. For the special cases m = 0 (no truncation) and m = N −1 (only
the DC value is retained), the DFT truncation function is T 0[k] = 1 for 0 ≤ k ≤ N − 1
and TN−1[k] = 0 for 1 ≤ k ≤ N − 1 and TN−1[0] = 1. In these cases, both represen-
tations give the same error. For values 1 ≤ m ≤ 30, the DFT error grows steadily as m

increases, whereas the DCT error remains very small—up to about m = 25—implying
that the 32 numbers of the sequence x[n] can be represented with slight error by only
seven DCT-2 coefficients.

Number of coefficients set to zero
0 5

DCT truncation error
DFT truncation error

10 15 20 25 30
0

0.1

0.3

0.2

0.4

0.5

m
s

er
ro

r

Figure 8.29 Comparison of truncation errors for DFT and DCT-2.

The signal in Example 8.13 is a low frequency exponentially decaying signal with
zero phase. We have chosen this example very carefully to emphasize the energy com-
paction property. Not every choice of x[n] will give such dramatic results. Highpass
signals and even some signals of the form of Eq. (8.178) with different parameters do
not show this dramatic difference. Nevertheless, in many cases of interest in data com-
pression, the DCT-2 provides a distinct advantage over the DFT. It can be shown (Rao
and Yip, 1990) that the DCT-2 is nearly optimum in the sense of minimum mean-squared
truncation error for sequences with exponential correlation functions.

8.8.6 Applications of the DCT

The major application of the DCT-2 is in signal compression, where it is a key part of
many standardized algorithms. (See Jayant and Noll, 1984, Pau, 1995, Rao and Hwang,

Section 8.9 Summary 683

1996, Taubman and Marcellin, 2002, Bosi and Goldberg, 2003 and Spanias, Painter and
Atti, 2007.) In this application, the blocks of the signal are represented by their cosine
transforms. The popularity of the DCT in signal compression is mainly as a result of
its energy concentration property, which we demonstrated by a simple example in the
previous section.

The DCT representations, being orthogonal transforms like the DFT, have many
properties similar to those of the DFT that make them very flexible for manipulating
the signals that they represent. One of the most important properties of the DFT is
that periodic convolution of two finite-length sequences corresponds to multiplication
of their corresponding DFTs. We have seen in Section 8.7 that it is possible to exploit
this property to compute linear convolutions by doing only DFT computations. In the
case of the DCT, the corresponding result is that multiplication of DCTs corresponds
to periodic convolution of the underlying symmetrically extended sequences. However,
there are additional complications. For example, the periodic convolution of two Type-2
symmetric periodic sequences is not a Type-2 sequence, but rather, a Type-1 sequence.
Alternatively, periodic convolution of a Type-1 sequence with a Type-2 sequence of the
same implied period is a Type-2 sequence. Thus, a mixture of DCTs is required to ef-
fect periodic symmetric convolution by inverse transformation of the product of DCTs.
There are many more ways to do this, because we have many different DCT definitions
from which to choose. Each different combination would correspond to periodic convo-
lution of a pair of symmetrically extended finite sequences. Martucci (1994) provides a
complete discussion of the use of DCT and DST transforms in implementing symmetric
periodic convolution.

Multiplication of DCTs corresponds to a special type of periodic convolution that
has some features that may be useful in some applications. As we have seen for the DFT,
periodic convolution is characterized by end effects, or “wrap around” effects. Indeed,
even linear convolution of two finite-length sequences has end effects as the impulse
response engages and disengages from the input. The end effects of periodic symmetric
convolution are different from ordinary convolution and from periodic convolution as
implemented by multiplying DFTs. The symmetric extension creates symmetry at the
endpoints. The “smooth” boundaries that this implies often mitigate the end effects
encountered in convolving finite-length sequences. One area in which symmetric con-
volution is particularly useful is image filtering, where objectionable edge effects are
perceived as blocking artifacts. In such representations, the DCT may be superior to
the DFT or even ordinary linear convolution. In doing periodic symmetric convolution
by multiplication of DCTs, we can force the same result as ordinary convolution by
extending the sequences with a sufficient number of zero samples placed at both the
beginning and the end of each sequence.

8.9 SUMMARY

In this chapter, we have discussed discrete Fourier representations of finite-length se-
quences. Most of our discussion focused on the discrete Fourier transform (DFT), which
is based on the DFS representation of periodic sequences. By defining a periodic se-
quence for which each period is identical to the finite-length sequence, the DFT becomes

684 Chapter 8 The Discrete Fourier Transform

identical to one period of the DFS coefficients. Because of the importance of this un-
derlying periodicity, we first examined the properties of DFS representations and then
interpreted those properties in terms of finite-length sequences. An important result is
that the DFT values are equal to samples of the z-transform at equally spaced points
on the unit circle. This leads to the notion of time aliasing in the interpretation of DFT
properties, a concept we used extensively in the study of circular convolution and its
relation to linear convolution. We then used the results of this study to show how the
DFT could be employed to implement the linear convolution of a finite-length impulse
response with an indefinitely long input signal.

The chapter concluded with an introduction to the DCT. It was shown that the
DCT and DFT are closely related and that they share an implicit assumption of peri-
odicity. The energy compaction property, which is the main reason for the popularity of
the DCT in data compression, was demonstrated with an example.

Problems

Basic Problems with Answers

8.1. Suppose xc(t) is a periodic continuous-time signal with period 1 ms and for which the
Fourier series is

xc(t) =
9∑

k=−9

ake
j (2000πkt).

The Fourier series coefficients ak are zero for |k| > 9. xc(t) is sampled with a sample spacing
T = 1

6 × 10−3 s to form x[n]. That is,

x[n] = xc

(n

6000

)
.

(a) Is x[n] periodic and, if so, with what period?
(b) Is the sampling rate above the Nyquist rate? That is, is T sufficiently small to avoid

aliasing?
(c) Find the DFS coefficients of x[n] in terms of ak .

8.2. Suppose x̃[n] is a periodic sequence with period N . Then x̃[n] is also periodic with period 3N .
Let X̃ [k] denote the DFS coefficients of x̃[n] considered as a periodic sequence with period
N, and let X̃3[k] denote the DFS coefficients of x̃[n] considered as a periodic sequence with
period 3N .

(a) Express X̃3[k] in terms of X̃ [k].
(b) By explicitly calculating X̃ [k] and X̃3[k], verify your result in part (a) when x̃[n] is as

given in Figure P8.2.

–2 –1 0 1 2 3 4 5 6 7

1

2 2 2 2 2

1 1 1 1

x [n], N = 2~

n Figure P8.2

Chapter 8 Problems 685

8.3. Figure P8.3 shows three periodic sequences x̃1[n] through x̃3[n]. These sequences can be
expressed in a Fourier series as

x̃[n] = 1
N

N−1∑
k=0

X̃ [k]ej (2π/N)kn.

(a) For which sequences can the time origin be chosen such that all the X̃ [k] are real?
(b) For which sequences can the time origin be chosen such that all the X̃ [k] (except for

k an integer multiple of N) are imaginary?
(c) For which sequences does X̃ [k] = 0 for k = ±2, ±4, ±6?

......

......

......

n

n

n

x1[n]~

x2[n]~

x3[n]~

Figure P8.3

8.4. Consider the sequence x[n] given by x[n] = αnu[n]. Assume |α| < 1. A periodic sequence
x̃[n] is constructed from x[n] in the following way:

x̃[n] =
∞∑

r=−∞
x[n + rN].

(a) Determine the Fourier transform X(ejω) of x[n].
(b) Determine the DFS coefficients X̃ [k] for the sequence x̃[n].
(c) How is X̃ [k] related to X(ejω)?

8.5. Compute the DFT of each of the following finite-length sequences considered to be of
length N (where N is even):

(a) x[n] = δ[n],
(b) x[n] = δ[n − n0], 0 ≤ n0 ≤ N − 1,

(c) x[n] =
{

1, n even, 0 ≤ n ≤ N − 1,

0, n odd, 0 ≤ n ≤ N − 1,

(d) x[n] =
{

1, 0 ≤ n ≤ N/2 − 1,

0, N/2 ≤ n ≤ N − 1,

686 Chapter 8 The Discrete Fourier Transform

(e) x[n] =
{

an, 0 ≤ n ≤ N − 1,

0, otherwise.

8.6. Consider the complex sequence

x[n] =
{

ejω0n, 0 ≤ n ≤ N − 1,

0, otherwise.

(a) Find the Fourier transform X(ejω) of x[n].
(b) Find the N -point DFT X [k] of the finite-length sequence x[n].
(c) Find the DFT of x[n] for the case ω0 = 2πk0/N, where k0 is an integer.

8.7. Consider the finite-length sequence x[n] in Figure P8.7. Let X(z) be the z-transform of x[n].
If we sample X(z) at z = ej (2π/4)k, k = 0, 1, 2, 3, we obtain

X 1[k] = X(z)
∣∣
z=ej (2π/4)k , k = 0, 1, 2, 3.

Sketch the sequence x1[n] obtained as the inverse DFT of X 1[k].

–3 –2 –1 0 1

1

2 3 4 5 6 7 8 9 n Figure P8.7

8.8. Let X(ejω) denote the Fourier transform of the sequence x[n] = (0.5)nu[n]. Let y[n] denote
a finite-duration sequence of length 10; i.e., y[n] = 0, n < 0, and y[n] = 0, n ≥ 10. The 10-
point DFT of y[n], denoted by Y [k], corresponds to 10 equally spaced samples of X(ejω);
i.e., Y [k] = X(ej2πk/10). Determine y[n].

8.9. Consider a 20-point finite-duration sequence x[n] such that x[n] = 0 outside 0 ≤ n ≤ 19,
and let X(ejω) represent the discrete-time Fourier transform of x[n].
(a) If it is desired to evaluate X(ejω) at ω = 4π/5 by computing one M-point DFT,

determine the smallest possible M, and develop a method to obtain X(ejω) at ω = 4π/5
using the smallest M .

(b) If it is desired to evaluate X(ejω) at ω = 10π/27 by computing one L-point DFT,
determine the smallest possible L, and develop a method to obtain X(ej10π/27) using
the smallest L.

8.10. The two eight-point sequences x1[n] and x2[n] shown in Figure P8.10 have DFTs X 1[k] and
X 2[k], respectively. Determine the relationship between X 1[k] and X 2[k].

0

d

1

e

2 3 4 5

a

6

b

7

c

8 n

x2[n]

0 1

a

b

c

2 3 4 5

e

d

6 7 8 n

x1[n]

Figure P8.10

Chapter 8 Problems 687

8.11. Figure P8.11 shows two finite-length sequences x1[n] and x2[n]. Sketch their six-point cir-
cular convolution.

1

1

2
3

4
5

6

0 2 3 4 5 n

x1[n]

1

1

0 2 n

x2[n]

Figure P8.11

8.12. Suppose we have two four-point sequences x[n] and h[n] as follows:

x[n] = cos
(πn

2

)
, n = 0, 1, 2, 3,

h[n] = 2n, n = 0, 1, 2, 3.

(a) Calculate the four-point DFT X [k].
(b) Calculate the four-point DFT H [k].
(c) Calculate y[n] = x[n]©4 h[n] by doing the circular convolution directly.
(d) Calculate y[n] of part (c) by multiplying the DFTs of x[n] and h[n] and performing an

inverse DFT.

8.13. Consider the finite-length sequence x[n] in Figure P8.13. The five-point DFT of x[n] is
denoted by X [k]. Plot the sequence y[n] whose DFT is

Y [k] = W−2k
5 X [k].

n–2 –1 0 1

1 1

2

2 2

3 4 5 6 7 Figure P8.13

8.14. Two finite-length signals, x1[n] and x2[n], are sketched in Figure P8.14. Assume that x1[n]
and x2[n] are zero outside of the region shown in the figure. Let x3[n] be the eight-point
circular convolution of x1[n] with x2[n]; i.e., x3[n] = x1[n]©8 x2[n]. Determine x3[2].

. . .109876543210–1. . .

. . .109876543

3

2

2

2 2 2

1

1

1 1 1 1 1

0–1. . .

x1[n]

x2[n]

Figure P8.14

688 Chapter 8 The Discrete Fourier Transform

8.15. Figure P8.15-1 shows two sequences x1[n] and x2[n]. The value of x2[n] at time n = 3 is
not known, but is shown as a variable a. Figure P8.15-2 shows y[n], the four-point circular
convolution of x1[n] and x2[n]. Based on the graph of y[n], can you specify a uniquely? If
so, what is a? If not, give two possible values of a that would yield the sequence y[n] as
shown.

x1[n]

–1 0 1

1 1

2

2

3 4 5

x2[n]a

–1 0 1

1

2 3 4 5 Figure P8.15-1

y [n]

–1
–1 –1

0

1

1 1

2

3 4 5

Figure P8.15-2

8.16. Figure P8.16-1 shows a six-point discrete-time sequence x[n]. Assume that x[n] = 0 outside
the interval shown. The value of x[4] is not known and is represented as b. Note that the
sample shown for b in the figure is not necessarily to scale. Let X(ejω) be the DTFT of x[n]
and X 1[k] be samples of X(ejω) every π/2; i.e.,

X 1[k] = X(ejω)|ω=(π/2)k, 0 ≤ k ≤ 3.

The four-point sequence x1[n] that results from taking the four-point inverse DFT of X 1[k]
is shown in Figure P8.16-2. Based on this figure, can you determine b uniquely? If so, give
the value for b.

x [n]
b

–1 0 1

1 1

2

2 2

3 4 5 6 7 Figure P8.16-1

x1[n]

–1 0 1

4

1

2

2 2

3 4 5 Figure P8.16-2

Chapter 8 Problems 689

8.17. Figure P8.17 shows two finite-length sequences x1[n] and x2[n]. What is the smallest N such
that the N -point circular convolution of x1[n] and x2[n] are equal to the linear convolution
of these sequences, i.e., such that x1[n] ©N x2[n] = x1[n] ∗ x2[n]?

x1[n]

x2[n]

–1
–1

–2

0

1

1

2

3

3 4 5

–1
–1

0 1

1

2

2

3

4

5 6 7

Figure P8.17

8.18. Figure P8.18-1 shows a sequence x[n] for which the value of x[3] is an unknown constant c.
The sample with amplitude c is not necessarily drawn to scale. Let

X 1[k] = X [k]ej2π3k/5,

where X [k] is the five-point DFT of x[n]. The sequence x1[n] plotted in Figure P8.18-2 is
the inverse DFT of X 1[k]. What is the value of c?

x [n]

c

0–1
–1

2

2

1

1

3 4 5 6

Figure P8.18-1

x1[n]

–1
–1

0 1

1

2

2 2

4 5

3

Figure P8.18-2

8.19. Two finite-length sequences x[n] and x1[n] are shown in Figure P8.19. The DFTs of these
sequences, X [k] and X 1[k], respectively, are related by the equation

X 1[k] = X [k]e−j (2πkm/6),

where m is an unknown constant. Can you determine a value of m consistent with Fig-
ure P8.19? Is your choice of m unique? If so, justify your answer. If not, find another choice
of m consistent with the information given.

690 Chapter 8 The Discrete Fourier Transform

x[n]

–1
–1–1

0

1

1

2

2

3

3

4

5 6 7

x1[n]

–1
–1–1

0 1

1

2

2

3

3

54 6 7

Figure P8.19

8.20. Two finite-length sequences x[n] and x1[n] are shown in Figure P8.20. The N -point DFTs
of these sequences, X [k] and X 1[k], respectively, are related by the equation

X 1[k] = X [k]ej2πk2/N ,

where N is an unknown constant. Can you determine a value of N consistent with Fig-
ure P8.20? Is your choice for N unique? If so, justify your answer. If not, find another
choice of N consistent with the information given.

–1
–1

–1

0

1

1 1

2 3 4 5 6 7

x [n]

x1[n]

0 1

1 1

2 3

4

5 6 7

Figure P8.20

Basic Problems

8.21. (a) Figure P8.21-1 shows two periodic sequences, x̃1[n] and x̃2[n], with period N = 7. Find
a sequence ỹ1[n] whose DFS is equal to the product of the DFS of x̃1[n] and the DFS
of x̃2[n], i.e.,

Ỹ 1[k] = X̃1[k]X̃2[k].

Chapter 8 Problems 691

6
5

4 3
2

1 0
... ...

–7 –5 –3 –1

6
5

4 3
1 0

0 2 4

2

61 3 5

x1[n]~

1... ...

–7 –5 –3 –1

1 1

0 2 4 61 3 5

x2[n]~

n

n Figure P8.21-1

(b) Figure P8.21-2 shows a periodic sequence x̃3[n] with period N = 7. Find a sequence
ỹ2[n] whose DFS is equal to the product of the DFS of x̃1[n] and the DFS of x̃3[n], i.e.,

Ỹ 2[k] = X̃1[k]X̃3[k].

... ...

–7 –5 –3 –1 0 2 4 61

1

3 5

x3[n]~

n Figure P8.21-2

8.22. Consider an N -point sequence x[n], i.e.,

x[n] = 0 for n > N − 1 and n < 0.

The discrete-time Fourier transform of x[n] is X(ejω), and the N -point DFT of x[n] is X[k].

If Re {X[k]} = 0 for k = 0, 1, . . . , N − 1, can we conclude that Re
{
X(ejω)

}
= 0 for −π ≤

ω ≤ π? If your answer is yes, explicitly show why. If not, give a simple counterexample.

8.23. Consider the real finite-length sequence x[n] shown in Figure P8.23.

–2 –1 0 1

4

2

1

3

2 3 4 5 6 n

x [n]

Figure P8.23

(a) Sketch the finite-length sequence y[n] whose six-point DFT is

Y [k] = W5k
6 X [k],

where X [k] is the six-point DFT of x[n].
(b) Sketch the finite-length sequence w[n] whose six-point DFT is

W [k] = Im{X [k]}.
(c) Sketch the finite-length sequence q[n] whose three-point DFT is

Q[k] = X [2k + 1], k = 0, 1, 2.

692 Chapter 8 The Discrete Fourier Transform

8.24. Figure P8.24 shows a finite-length sequence x[n]. Sketch the sequences

x1[n] = x[((n − 2))4], 0 ≤ n ≤ 3,

and

x2[n] = x[((−n))4], 0 ≤ n ≤ 3.

0

6

1

5

2

4

3

3

x [n]

n Figure P8.24

8.25. Consider the signal x[n] = δ[n − 4] + 2δ[n − 5] + δ[n − 6].
(a) Find X(ejω) the discrete-time Fourier transform of x[n]. Write expressions for the

magnitude and phase of X(ejω), and sketch these functions.
(b) Find all values of N for which the N -point DFT is a set of real numbers.
(c) Can you find a three-point causal signal x1[n] (i.e., x1[n] = 0 for n < 0 and n > 2) for

which the three-point DFT of x1[n] is:

X1[k] = |X[k]| k = 0, 1, 2

where X[k] is the three-point DFT of x[n]?
8.26. We have shown that the DFT X[k] of a finite-length sequence x[n] is identical to samples of

the DTFT X(ejω) of that sequence at frequencies ωk = (2π/N)k; i.e., X[k] = X(ej (2π/N)k)

for k = 0, 1, . . . , N −1. Now consider a sequence y[n] = e−j (π/N)nx[n] whose DFT is Y [k].
(a) Determine the relationship between the DFT Y [k] and the DTFT X(ejω).
(b) The result of part (a) shows that Y [k] is a differently sampled version of X(ejω). What

are the frequencies at which X(ejω) is sampled?
(c) Given the modified DFT Y [k], how would you recover the original sequence x[n]?

8.27. The 10-point DFT of a 10-point sequence g[n] is

G[k] = 10 δ[k] .

Find G(ejω), the DTFT of g[n].
8.28. Consider the six-point sequence

x[n] = 6δ[n] + 5δ[n − 1] + 4δ[n − 2] + 3δ[n − 3] + 2δ[n − 4] + δ[n − 5]
shown in Figure P8.28.

−3 −1−2 0 1 2 3 4 65 7 8 n

6
5

4
3

2
1

x[n]

Figure P8.28

Chapter 8 Problems 693

(a) Determine X[k], the six-point DFT of x[n]. Express your answer in terms of
W6 = e−j2π/6.

(b) Plot the sequence w[n], n = 0, 1, . . . , 5, that is obtained by computing the inverse
six-point DFT of W [k] = W−2k

6 X[k].
(c) Use any convenient method to evaluate the six-point circular convolution of x[n] with

the sequence h[n] = δ[n] + δ[n − 1] + δ[n − 2]. Sketch the result.
(d) If we convolve the given x[n] with the given h[n] by N -point circular convolution, how

should N be chosen so that the result of the circular convolution is identical to the
result of linear convolution? That is, choose N so that

yp[n] = x[n] ©N h[n] =
N−1∑
m=0

x[m]h[((n − m))N]

= x[n] ∗ h[n] =
∞∑

m=−∞
x[m]h[n − m] for 0 ≤ n ≤ N − 1.

(e) In certain applications, such as multicarrier communication systems (see Starr et al,
1999), the linear convolution of a finite-length signal x[n] of length L samples with a
shorter finite-length impulse response h[n] is required to be identical (over 0 ≤ n ≤
L − 1) to what would have been obtained by L-point circular convolution of x[n] with
h[n]. This can be achieved by augmenting the sequence x[n] appropriately. Starting
with the graph of Figure P8.28, where L = 6, add samples to the given sequence x[n]
to produce a new sequence x1[n] such that with the sequence h[n] given in part (c), the
ordinary convolution y1[n] = x1[n] ∗ h[n] satisfies the equation

y1[n] = x1[n] ∗ h[n] =
∞∑

m=−∞
x1[m]h[n − m]

= yp[n] = x[n] ©L h[n] =
5∑

m=0

x[m]h[((n − m))6] for 0 ≤ n ≤ 5.

(f) Generalize the result of part (e) for the case where h[n] is nonzero for 0 ≤ n ≤ M

and x[n] is nonzero for 0 ≤ n ≤ L − 1, where M < L; i.e., show how to construct a
sequence x1[n] from x[n] such that the linear convolution x1[n] ∗ h[n] is equal to the
circular convolution x[n] ©L h[n] for 0 ≤ n ≤ L − 1.

8.29. Consider the real five-point sequence

x[n] = δ[n] + δ[n − 1] + δ[n − 2] − δ[n − 3] + δ[n − 4].
The deterministic autocorrelation of this sequence is the inverse DTFT of

C(ejω) = X(ejω)X∗(ejω) = |X(ejω)|2,

where X∗(ejω) is the complex conjugate of X(ejω). For the given x[n], the autocorrelation
can be found to be

c[n] = x[n] ∗ x[−n].

(a) Plot the sequence c[n]. Observe that c[−n] = c[n] for all n.
(b) Now assume that we compute the seven-point DFT (N = 5) of the sequence x[n]. Call

this DFT X5[k]. Then, we compute the inverse DFT of C5[k] = X5[k]X∗
5 [k]. Plot the

resulting sequence c5[n]. How is c5[n] related to c[n] from part (a)?

694 Chapter 8 The Discrete Fourier Transform

(c) Now assume that we compute the 10-point DFT (N = 10) of the sequence x[n]. Call
this DFT X10[k]. Then, we compute the inverse DFT of C10[k] = X10[k]X∗

10[k]. Plot
the resulting sequence c10[n].

(d) Now suppose that we use X10[k] to form D10[k] = W5k
10 C10[k] = W5k

10 X10[k]X∗
10[k],

where W10 = e−j (2π/10). Then, we compute the inverse DFT of D10[k]. Plot the re-
sulting sequence d10[n].

8.30. Consider two sequences x[n] and h[n], and let y[n] denote their ordinary (linear) convolu-
tion, y[n] = x[n] ∗ h[n]. Assume that x[n] is zero outside the interval 21 ≤ n ≤ 31, and h[n]
is zero outside the interval 18 ≤ n ≤ 31.

(a) The signal y[n] will be zero outside of an interval N1 ≤ n ≤ N2. Determine numerical
values for N1 and N2.

(b) Now suppose that we compute the 32-point DFTs of

x1[n] =
{

0 n = 0, 1, . . . , 20
x[n] n = 21, 22, . . . , 31

and

h1[n] =
{

0 n = 0, 1, . . . , 17
h[n] n = 18, 19, . . . , 31

(i.e., the zero samples at the beginning of each sequence are included). Then, we form
the product Y1[k] = X1[k]H1[k]. If we define y1[n] to be the 32-point inverse DFT of
Y1[k], how is y1[n] related to the ordinary convolution y[n]? That is, give an equation
that expresses y1[n] in terms of y[n] for 0 ≤ n ≤ 31.

(c) Suppose that you are free to choose the DFT length (N) in part (b) so that the se-
quences are also zero-padded at their ends. What is the minimum value of N so that
y1[n] = y[n] for 0 ≤ n ≤ N − 1?

8.31. Consider the sequence x[n] = 2δ[n] + δ[n − 1] − δ[n − 2].
(a) Determine the DTFT X(ejω) of x[n] and the DTFT Y (ejω) of the sequence y[n] =

x[−n].
(b) Using your results from part (a) find an expression for

W(ejω) = X(ejω)Y (ejω).

(c) Using the result of part (b) make a plot of w[n] = x[n] ∗ y[n].
(d) Now plot the sequence yp[n] = x[((−n))4] as a function of n for 0 ≤ n ≤ 3.
(e) Now use any convenient method to evaluate the four-point circular convolution of x[n]

with yp[n]. Call your answer wp[n] and plot it.
(f) If we convolve x[n] with yp[n] = x[((−n))N], how should N be chosen to avoid time-

domain aliasing?

8.32. Consider a finite-duration sequence x[n] of length P such that x[n] = 0 for n < 0 and n ≥ P .
We want to compute samples of the Fourier transform at the N equally spaced frequencies

ωk = 2πk

N
, k = 0, 1, . . . , N − 1.

Determine and justify procedures for computing the N samples of the Fourier transform
using only one N -point DFT for the following two cases:

(a) N > P .
(b) N < P .

Chapter 8 Problems 695

8.33. An FIR filter has a 10-point impulse response, i.e.,

h[n] = 0 for n < 0 and for n > 9.

Given that the 10-point DFT of h[n] is given by

H [k] = 1
5
δ[k − 1] + 1

3
δ[k − 7],

find H(ejω), the DTFT of h[n].
8.34. Suppose that x1[n] and x2[n] are two finite-length sequences of length N , i.e., x1[n] =

x2[n] = 0 outside 0 ≤ n ≤ N − 1. Denote the z-transform of x1[n] by X1(z), and denote the
N -point DFT of x2[n] by X2[k]. The two transforms X1(z) and X2[k] are related by:

X2[k] = X1(z)

∣∣∣∣
z= 1

2
e−j 2πk

N

, k = 0, 1, . . . , N − 1

Determine the relationship between x1[n] and x2[n].

Advanced Problems

8.35. Figure P8.35-1 illustrates a six-point discrete-time sequence x[n]. Assume that x[n] is zero
outside the interval shown.

70 1 2 3 4 5 6−1

x[n]

11

22
b

0
n

Figure P8.35-1

The value of x[4] is not known and is represented as b. The sample in the figure is
not shown to scale. Let X(ejω) be the DTFT of x[n] and X1[k] be samples of X(ejω) at
ωk = 2πk/4, i.e.,

X1[k] = X(ejω)|
ω= πk

2
, 0 ≤ k ≤ 3.

The four-point sequence x1[n] that results from taking the four-point inverse DFT of X1[k]
is shown in Figure P8.35-2. Based on the figure can you determine b uniquely? If so, give
the value of b.

696 Chapter 8 The Discrete Fourier Transform

−1 0 1 2 3 4 5

x1[n]

22

1

4

n
Figure P8.35-2

8.36. (a) X(ejω) is the DTFT of the discrete-time signal

x[n] = (1/2)nu[n].

Find a length-5 sequence g[n] whose five-point DFT G[k] is identical to samples of the
DTFT of x[n] at ωk = 2πk/5, i.e.,

g[n] = 0 for n < 0, n > 4

and

G[k] = X(ej2πk/5) for k = 0, 1, . . . , 4.

(b) Let w[n] be a sequence that is strictly nonzero for 0 ≤ n ≤ 9 and zero elsewhere, i.e.,

w[n] �= 0, 0 ≤ n ≤ 9

w[n] = 0 otherwise

Determine a choice for w[n] such that its DTFT W(ejω) is equal to X(ejω) at the
frequencies ω = 2πk/5, k = 0, 1, . . . , 4, i.e.,

W(ej2πk/5) = X(ej2πk/5) for k = 0, 1, . . . , 4.

8.37. A discrete-time LTI filter S is to be implemented using the overlap–save method. In the
overlap–save method, the input is divided into overlapping blocks, as opposed to the
overlap–add method where the input blocks are nonoverlapping. For this implementa-
tion, the input signal x[n] will be divided into overlapping 256-point blocks xr [n]. Adjacent
blocks will overlap by 255 points so that they differ by only one sample. This is represented
by Eq. (P8.37-1) which is a relation between xr [n] and x[n],

xr [n] =
{

x[n + r] 0 ≤ n ≤ 255
0 otherwise,

(P8.37-1)

where r ranges over all integers and we obtain a different block xr [n] for each value of r .

Chapter 8 Problems 697

Each block is processed by computing the 256-point DFT of xr [n], multiplying the result
with H [k] given in Eq. (P8.37-2), and computing the 256-point inverse DFT of the product.

H [k] =
⎧⎨⎩

1 0 ≤ k ≤ 31
0 32 ≤ k ≤ 224
1 225 ≤ k ≤ 255

(P8.37-2)

One sample from each block computation (in this case only a single sample per block) is
then “saved” as part of the overall output.

(a) Is S an ideal frequency-selective filter? Justify your answer.
(b) Is the impulse response of S real valued? Justify your answer.
(c) Determine the impulse response of S.

8.38. x[n] is a real-valued finite-length sequence of length 512, i.e.,

x[n] = 0 n < 0, n ≥ 512

and has been stored in a 512-point data memory. It is known that X[k] the 512-point DFT
of x[n] has the property

X[k] = 0 250 ≤ k ≤ 262.

In storing the data, one data point at most may have been corrupted. Specifically, if s[n]
denotes the stored data, s[n] = x[n] except possibly at one unknown memory location n0. To
test and possibly correct the data, you are able to examine S[k], the 512-point DFT of s[n].
(a) Specify whether, by examining S[k], it is possible and if so, how, to detect whether an

error has been made in one data point, i.e., whether or not s[n] = x[n] for all n.

In parts (b) and (c), assume that you know for sure that one data point has been corrupted,
i.e., that s[n] = x[n] except at n = n0.

(b) In this part, assume the value of n0 is unknown. Specify a procedure for determining
from S[k] the value of n0.

(c) In this part, assume that you know the value of n0. Specify a procedure for determining
x[n0] from S[k].

8.39. In the system shown in the Figure P8.39, x1[n] and x2[n] are both causal, 32-point sequences,
i.e., they are both zero outside the interval 0 ≤ n ≤ 31. y[n] denotes the linear convolution
of x1[n] and x2[n], i.e., y[n] = x1[n] ∗ x2[n].

2
x3[n]

N-point
Circular

Convolution

2

x5[n] = x3[n] N� x4[n]

x4[n]

x1[n]

x2[n]

Figure P8.39

(a) Determine the values of N for which all the values of y[n] can be completely recovered
from x5[n].

(b) Specify explicitly how to recover y[n] from x5[n] for the smallest value of N which you
determined in part (a).

698 Chapter 8 The Discrete Fourier Transform

8.40. Three real-valued seven-point sequences (x1[n], x2[n], and x3[n]) are shown in Figure P8.40.
For each of these sequences, specify whether the seven-point DFT can be written in the form

Xi [k] = Ai [k]e−j (2πk/7)kαi k = 0, 1, . . . , 6

where Ai [k] is real-valued and 2αi is an integer. Include a brief explanation. For each
sequence which can be written in this form, specify all corresponding values of αi for
0 ≤ αi < 7.

x1[n](a)

(b)

6541 2 30
n

6541 2 30
n

6541 2 30
n

(b)

(a)

x2[n](a)

(b) (b) (b) (b) (b)

x3[n](a)

(b) (b)

Figure P8.40

8.41. Suppose x[n] is the eight-point complex-valued sequence with real part xr [n] and imagi-
nary part xi [n] shown in Figure P8.41 (i.e., x[n] = xr [n]+ jxi [n]). Let y[n] be the four-point
complex-valued sequence such that Y [k], the four-point DFT of y[n], is equal to the odd-
indexed values of X[k], the eight-point DFT of x[n] (the odd-indexed values of X[k] are
those for which k = 1, 3, 5, 7).

Chapter 8 Problems 699

(2)

(1)

65410 32 7

65410 32 7

n

(−1) (−1)

(3)

(−3)

n

(−1)

(3)

xr[n]

xi[n]

Figure P8.41

Determine the numerical values of yr [n] and yi [n], and the real and imaginary parts of y[n].
8.42. x[n] is a finite-length sequence of length 1024, i.e.,

x[n] = 0 for n < 0, n > 1023.

The autocorrelation of x[n] is defined as

cxx [m] =
∞∑

n=−∞
x[n]x[n + m],

and XN [k] is defined as the N -point DFT of x[n], with N ≥ 1024.

We are interested in computing cxx [m]. A proposed procedure begins by first computing
the N -point inverse DFT of |XN [k]|2 to obtain an N -point sequence gN [n], i.e.,

gN [n] = N -point IDFT
{
|XN [k]|2

}
.

(a) Determine the minimum value of N so that cxx [m] can be obtained from gN [n]. Also
specify how you would obtain cxx [m] from gN [n].

(b) Determine the minimum value of N so that cxx [m] for |m| ≤ 10 can be obtained from
gN [n]. Also specify how you would obtain these values from gN [n].

700 Chapter 8 The Discrete Fourier Transform

8.43. In Figure P8.43, x[n] is a finite-length sequence of length 1024. The sequence R[k] is obtained
by taking the 1024-point DFT of x[n] and compressing the result by 2.

512-point
IDFT

x[n] R[k]

r[n]

2
Y[k]

2
X[k]1024-point

DFT

y[n]1024-point
IDFT

Figure P8.43

(a) Choose the most accurate statement for r[n], the 512-point inverse DFT of R[k]. Justify
your choice in a few concise sentences.

(i) r[n] = x[n], 0 ≤ n ≤ 511

(ii) r[n] = x[2n], 0 ≤ n ≤ 511

(iii) r[n] = x[n] + x[n + 512], 0 ≤ n ≤ 511

(iv) r[n] = x[n] + x[−n + 512], 0 ≤ n ≤ 511

(v) r[n] = x[n] + x[1023 − n], 0 ≤ n ≤ 511

In all cases r[n] = 0 outside 0 ≤ n ≤ 511.

(b) The sequence Y [k] is obtained by expanding R[k] by 2. Choose the most accurate state-
ment for y[n], the 1024-point inverse DFT of Y [k]. Justify your choice in a few concise
sentences.

(i) y[n] =
{

1
2 (x[n] + x[n + 512]) , 0 ≤ n ≤ 511
1
2 (x[n] + x[n − 512]) , 512 ≤ n ≤ 1023

(ii) y[n] =
{

x[n], 0 ≤ n ≤ 511
x[n − 512], 512 ≤ n ≤ 1023

(iii) y[n] =
{

x[n], n even
0, n odd

(iv) y[n] =
{

x[2n], 0 ≤ n ≤ 511
x[2(n − 512)], 512 ≤ n ≤ 1023

(v) y[n] = 1
2 (x[n] + x[1023 − n]) , 0 ≤ n ≤ 1023

In all cases y[n] = 0 outside 0 ≤ n ≤ 1023.

Chapter 8 Problems 701

8.44. Figure P8.44 shows two finite-length sequences x1[n] and x2[n] of length 7. Xi(e
jω) denotes

the DTFT of xi [n], and Xi [k] denotes the seven-point DFT of xi [n].

0
2

43
61 5

−1

1 1 1

4 4

1 1

x1[n]

0 2 4 6
1 3 5

−1−1−1 −1 −1−1

x2[n]

n n

Figure P8.44

For each of the sequences x1[n] and x2[n], indicate whether each one of the following
properties holds:

(a) Xi(e
jω) can be written in the form

Xi(e
jω) = Ai(ω)ejαiω, for ω ∈ (−π, π),

where Ai(ω) is real and αi is a constant.
(b) Xi [k] can be written in the form

Xi [k] = Bi [k]ejβik,

where Bi [k] is real and βi is a constant.

8.45. The sequence x[n] is a 128-point sequence (i.e., x[n] = 0 for n < 0 and for n > 127), and
x[n] has at least one nonzero sample. The DTFT of x[n] is denoted X(ejω). What is the
largest integer M such that it is possible for X(ej2πk/M) to be zero for all integer values of
k? Construct an example for the maximal M that you have found.

8.46. Each part of this problem may be solved independently. All parts use the signal x[n] given by

x[n] = 3δ[n] − δ[n − 1] + 2δ[n − 3] + δ[n − 4] − δ[n − 6].

(a) Let X
(
ejω
)

be the DTFT of x[n]. Define

R[k] = X
(
ejω
)∣∣∣

ω= 2πk
4

, 0 ≤ k ≤ 3

Plot the signal r[n] which is the four-point inverse DFT of R[k].
(b) Let X[k] be the eight-point DFT of x[n], and let H [k] be the eight-point DFT of the

impulse response h[n] given by

h[n] = δ[n] − δ[n − 4].
Define Y [k] = X[k]H [k] for 0 ≤ k ≤ 7. Plot y[n], the eight-point DFT of Y [k].

702 Chapter 8 The Discrete Fourier Transform

8.47. Consider a time-limited continuous-time signal xc(t) whose duration is 100 ms. Assume
that this signal has a bandlimited Fourier transform such that Xc(j�) = 0 for |�| ≥
2π(10, 000) rad/s; i.e., assume that aliasing is negligible. We want to compute samples of
Xc(j�) with 5 Hz spacing over the interval 0 ≤ � ≤ 2π(10, 000). This can be done with a
4000-point DFT. Specifically, we want to obtain a 4000-point sequence x[n] for which the
4000-point DFT is related to Xc(j�) by:

X[k] = αXc(j2π · 5 · k), k = 0, 1, . . . , 1999, (P8.47-1)

where α is a known scale factor. The following method is proposed to obtain a 4000-point
sequence whose DFT gives the desired samples of Xc(j�). First, xc(t) is sampled with a
sampling period of T = 50μs. Next, the resulting 2000-point sequence is used to form the
sequence x̂[n] as follows:

x̂[n] =
⎧⎨⎩

xc(nT), 0 ≤ n ≤ 1999,

xc((n − 2000)T), 2000 ≤ n ≤ 3999,

0, otherwise.
(P8.47-2)

Finally, the 4000-point DFT X̂[k] of this sequence is computed. For this method, determine
how X̂[k] is related to Xc(j�). Indicate this relationship in a sketch for a “typical” Fourier
transform Xc(j�). Explicitly state whether or not X̂[k] is the desired result, i.e., whether
X̂[k] equals X[k] as specified in Eq. (P8.47-1).

8.48. x[n] is a real-valued finite length sequence of length 1024, i.e.,

x[n] = 0 n < 0, n ≥ 1023.

Only the following samples of the 1024-point DFT of x[n] are known

X[k] k = 0, 16, 16 × 2, 16 × 3, ..., 16 × (64 − 1)

Also, we observe s[n] which is a corrupted version of x[n], with first 64 points corrupted, i.e.,
s[n] = x[n] for n ≥ 64, and s[n] �= x[n], for 0 ≤ n ≤ 63. Describe a procedure to recover the
first 64 samples of x[n] using only 1024-point DFT and IDFT blocks, multipliers, and adders.

8.49. The deterministic crosscorrelation function between two real sequences is defined as

cxy [n] =
∞∑

m=−∞
y[m]x[n + m] =

∞∑
m=−∞

y[−m]x[n − m] = y[−n] ∗ x[n] − ∞ < n < ∞

(a) Show that the DTFT of cxy [n] is Cxy(ejω) = X(ejω)Y ∗(ejω).

(b) Suppose that x[n] = 0 for n < 0 and n > 99 and y[n] = 0 for n < 0 and n > 49. The
corresponding crosscorrelation function cxy [n] will be nonzero only in a finite-length
interval N1 ≤ n ≤ N2. What are N1 and N2?

(c) Suppose that we wish to compute values of cxy [n] in the interval 0 ≤ n ≤ 20 using the
following procedure:

(i) Compute X[k], the N -point DFT of x[n]
(ii) Compute Y [k], the N -point DFT of y[n]

(iii) Compute C[k] = X[k]Y ∗[k] for 0 ≤ k ≤ N − 1
(iv) Compute c[n], the inverse DFT of C[k]
What is the minimum value of N such that c[n] = cxy [n], 0 ≤ n ≤ 20? Explain your
reasoning.

Chapter 8 Problems 703

8.50. The DFT of a finite-duration sequence corresponds to samples of its z-transform on the
unit circle. For example, the DFT of a 10-point sequence x[n] corresponds to samples of
X(z) at the 10 equally spaced points indicated in Figure P8.50-1. We wish to find the equally
spaced samples of X(z) on the contour shown in Figure P8.50-2; i.e., we wish to obtain

X(z)
∣∣
z=0.5ej [(2πk/10)+(π/10)] .

Show how to modify x[n] to obtain a sequence x1[n] such that the DFT of x1[n] corresponds
to the desired samples of X(z).

2�

10

�e

�m

RadiansUnit
circle

z-plane

Figure P8.50-1

2�

10

2�

20
�e

�m

radius =

Circle with
1
2

z-plane

Figure P8.50-2

8.51. Let w[n] denote the linear convolution of x[n] and y[n]. Let g[n] denote the 40-point circular
convolution of x[n] and y[n]:

w[n] = x[n] ∗ y[n] =
∞∑

k=−∞
x[k]y[n − k],

g[n] = x[n]©40 y[n] =
39∑

k=0

x[k]y[((n − k))40].

(a) Determine the values of n for which w[n] can be nonzero.
(b) Determine the values of n for which w[n] can be obtained from g[n]. Explicitly specify

at what index values n in g[n] these values of w[n] appear.

8.52. Let x[n] = 0, n < 0, n > 7, be a real eight-point sequence, and let X [k] be its eight-point
DFT.

(a) Evaluate ⎛⎝1
8

7∑
k=0

X [k]ej (2π/8)kn

⎞⎠∣∣∣∣∣∣
n=9

in terms of x[n].

704 Chapter 8 The Discrete Fourier Transform

(b) Let v[n] = 0, n < 0, n > 7, be an eight-point sequence, and let V [k] be its eight-point
DFT.
If V [k] = X(z) at z = 2 exp(j (2πk + π)/8) for k = 0, . . . , 7, where X(z) is the z-
transform of x[n], express v[n] in terms of x[n].

(c) Let w[n] = 0, n < 0, n > 3, be a four-point sequence, and let W [k] be its four-point
DFT.
If W [k] = X [k] + X[k + 4], express w[n] in terms of x[n].

(d) Let y[n] = 0, n < 0, n > 7, be an eight-point sequence, and let Y [k] be its eight-point
DFT.
If

Y [k] =
{

2X [k], k = 0, 2, 4, 6,

0, k = 1, 3, 5, 7,

express y[n] in terms of x[n].
8.53. Read each part of this problem carefully to note the differences among parts.

(a) Consider the signal

x[n] =
{

1 + cos(πn/4) − 0.5 cos(3πn/4), 0 ≤ n ≤ 7,

0, otherwise,

which can be represented by the IDFT equation as

x[n] =

⎧⎪⎨⎪⎩
1
8

7∑
k=0

X 8[k]ej (2πk/8)n, 0 ≤ n ≤ 7,

0, otherwise,

where X 8[k] is the eight-point DFT of x[n]. Plot X 8[k] for 0 ≤ k ≤ 7.
(b) Determine V16[k], the 16-point DFT of the 16-point sequence

v[n] =
{

1 + cos(πn/4) − 0.5 cos(3πn/4), 0 ≤ n ≤ 15,

0, otherwise.

Plot V16[k] for 0 ≤ k ≤ 15.
(c) Finally, consider |X 16[k]|, the magnitude of the 16-point DFT of the eight-point se-

quence

x[n] =
{

1 + cos(πn/4) − 0.5 cos(3πn/4), 0 ≤ n ≤ 7,

0, otherwise.

Plot |X 16[k]| for 0 ≤ k ≤ 15 without explicitly evaluating the DFT expression. You will
not be able to find all values of |X 16[k]| by inspection as in parts (a) and (b), but you
should be able to find some of the values exactly. Plot all the values you know exactly
with a solid circle, and plot estimates of the other values with an open circle.

Chapter 8 Problems 705

Extension Problems

8.54. In deriving the DFS analysis Eq. (8.11), we used the identity of Eq. (8.7). To verify this
identity, we will consider the two conditions k − r = mN and k − r �= mN separately.

(a) For k − r = mN , show that ej (2π/N)(k−r)n = 1 and, from this, that

1
N

N−1∑
n=0

ej (2π/N)(k−r)n = 1 for k − r = mN. (P8.54-1)

(b) Since k and r are both integers in Eq. (8.7), we can make the substitution k − r =

and consider the summation

1
N

N−1∑
n=0

ej (2π/N)
n = 1
N

N−1∑
n=0

[ej (2π/N)
]n. (P8.54-2)

Because this is the sum of a finite number of terms in a geometric series, it can be
expressed in closed form as

1
N

N−1∑
n=0

[ej (2π/N)
]n = 1
N

1 − ej (2π/N)
N

1 − ej (2π/N)

. (P8.54-3)

For what values of
 is the right-hand side of Eq. (P8.54-3) equation indeterminate?
That is, are the numerator and denominator both zero?

(c) From the result in part (b), show that if k − r �= mN , then

1
N

N−1∑
n=0

ej (2π/N)(k−r)n = 0. (P8.54-4)

8.55. In Section 8.2, we stated the property that if

x̃1[n] = x̃[n − m],
then

X̃1[k] = Wkm
N X̃ [k],

where X̃ [k] and X̃1[k] are the DFS coefficients of x̃[n] and x̃1[n], respectively. In this prob-
lem, we consider the proof of that property.

(a) Using Eq. (8.11) together with an appropriate substitution of variables, show that X̃1[k]
can be expressed as

X̃1[k] = Wkm
N

N−1−m∑
r=−m

x̃[r]Wkr
N . (P8.55-1)

(b) The summation in Eq. (P8.55-1) can be rewritten as

N−1−m∑
r=−m

x̃[r]Wkr
N =

−1∑
r=−m

x̃[r]Wkr
N +

N−1−m∑
r=0

x̃[r]Wkr
N . (P8.55-2)

Using the fact that x̃[r] and Wkr
N

are both periodic, show that

−1∑
r=−m

x̃[r]Wkr
N =

N−1∑
r=N−m

x̃[r]Wkr
N . (P8.55-3)

706 Chapter 8 The Discrete Fourier Transform

(c) From your results in parts (a) and (b), show that

X̃1[k] = Wkm
N

N−1∑
r=0

x̃[r]Wkr
N = Wkm

N X̃ [k].

8.56. (a) Table 8.1 lists a number of symmetry properties of the DFS for periodic sequences,
several of which we repeat here. Prove that each of these properties is true. In carrying
out your proofs, you may use the definition of the DFS and any previous property in
the list. (For example, in proving property 3, you may use properties 1 and 2.)

Sequence DFS

1. x̃∗[n] X̃
∗[−k]

2. x̃∗[−n] X̃
∗[k]

3. Re{x̃[n]} X̃e[k]
4. jIm{x̃[n]} X̃o[k]

(b) From the properties proved in part (a), show that for a real periodic sequence x̃[n],
the following symmetry properties of the DFS hold:

1. Re{X̃ [k]} = Re{X̃ [−k]}
2. Im{X̃ [k]} = −Im{X̃ [−k]}
3. |X̃ [k]| = |X̃ [−k]|
4. � X̃ [k] = −� X̃ [−k]

8.57. We stated in Section 8.4 that a direct relationship between X(ejω) and X̃ [k] can be derived,
where X̃ [k] is the DFS coefficients of a periodic sequence and X(ejω) is the Fourier trans-
form of one period. Since X̃ [k] corresponds to samples of X(ejω), the relationship then
corresponds to an interpolation formula.

One approach to obtaining the desired relationship is to rely on the discussion of
Section 8.4, the relationship of Eq. (8.54), and the modulation property of Section 2.9.7.
The procedure is as follows:

1. With X̃ [k] denoting the DFS coefficients of x̃[n], express the Fourier transform
X̃(ejω) of x̃[n] as an impulse train; i.e., scaled and shifted impulse functions S(ω).

2. From Eq. (8.57), x[n] can be expressed as x[n] = x̃[n]w[n], where w[n] is an appro-
priate finite-length window.

3. Since x[n] = x̃[n]w[n], from Section 2.9.7, X(ejω) can be expressed as the (periodic)
convolution of X̃(ejω) and W(ejω).

By carrying out the details in this procedure, show that X(ejω) can be expressed as

X(ejω) = 1
N

∑
k

X̃ [k] sin[(ωN − 2πk)/2]
sin{[ω − (2πk/N)]/2} e−j [(N−1)/2](ω−2πk/N).

Specify explicitly the limits on the summation.

8.58. Let X [k] denote the N -point DFT of the N -point sequence x[n].
(a) Show that if

x[n] = −x[N − 1 − n],
then X [0] = 0. Consider separately the cases of N even and N odd.

(b) Show that if N is even and if

x[n] = x[N − 1 − n],
then X [N/2] = 0.

Chapter 8 Problems 707

8.59. In Section 2.8, the conjugate-symmetric and conjugate-antisymmetric components of a se-
quence x[n] were defined, respectively, as

xe[n] = 1
2
(x[n] + x∗[−n]),

xo[n] = 1
2
(x[n] − x∗[−n]).

In Section 8.6.4, we found it convenient to define respectively the periodic conjugate-
symmetric and periodic conjugate-antisymmetric components of a sequence of finite dura-
tion N as

xep[n] = 1
2 {x[((n))N] + x∗[((−n))N]}, 0 ≤ n ≤ N − 1,

xop[n] = 1
2 {x[((n))N] − x∗[((−n))N]}, 0 ≤ n ≤ N − 1.

(a) Show that xep[n] can be related to xe[n] and that xop[n] can be related to xo[n] by the
relations

xep[n] = (xe[n] + xe[n − N]) , 0 ≤ n ≤ N − 1,

xop[n] = (xo[n] + xo[n − N]) , 0 ≤ n ≤ N − 1.

(b) x[n] is considered to be a sequence of length N , and in general, xe[n] cannot be re-
covered from xep[n], and xo[n] cannot be recovered from xop[n]. Show that with x[n]
considered as a sequence of length N , but with x[n] = 0, n > N/2, xe[n] can be ob-
tained from xep[n], and xo[n] can be obtained from xop[n].

8.60. Show from Eqs. (8.65) and (8.66) that with x[n] as an N -point sequence and X [k] as its
N -point DFT,

N−1∑
n=0

|x[n]|2 = 1
N

N−1∑
k=0

|X [k]|2.

This equation is commonly referred to as Parseval’s relation for the DFT.

8.61. x[n] is a real-valued, nonnegative, finite-length sequence of length N ; i.e., x[n] is real and
nonnegative for 0 ≤ n ≤ N − 1 and is zero otherwise. The N -point DFT of x[n] is X [k],
and the Fourier transform of x[n] is X(ejω).

Determine whether each of the following statements is true or false. For each state-
ment, if you indicate that it is true, clearly show your reasoning. If you state that it is false,
construct a counterexample.

(a) If X(ejω) is expressible in the form

X(ejω) = B(ω)ejαω,

where B(ω) is real and α is a real constant, then X [k] can be expressed in the form

X [k] = A[k]ejγ k,

where A[k] is real and γ is a real constant.
(b) If X [k] is expressible in the form

X [k] = A[k]ejγ k,

where A[k] is real and γ is a real constant, then X(ejω) can be expressed in the form

X(ejω) = B(ω)ejαω,

where B(ω) is real and α is a real constant.

708 Chapter 8 The Discrete Fourier Transform

8.62. x[n] and y[n] are two real-valued, positive, finite-length sequences of length 256; i.e.,

x[n] > 0, 0 ≤ n ≤ 255,

y[n] > 0, 0 ≤ n ≤ 255,

x[n] = y[n] = 0, otherwise.

r[n] denotes the linear convolution of x[n] and y[n]. R(ejω) denotes the Fourier transform
of r[n]. Rs [k] denotes 128 equally spaced samples of R(ejω); i.e.,

Rs [k] = R(ejω)

∣∣∣
ω=2πk/128

, k = 0, 1, . . . , 127.

Given x[n] and y[n], we want to obtain Rs [k] as efficiently as possible. The only modules
available are those shown in Figure P8.62. The costs associated with each module are as
follows:

Modules I and II are free.
Module III costs 10 units.
Module IV costs 50 units.
Module V costs 100 units.

s [n]
I

� s [n + 128r]
r = – �

�

(a)

Module I

s2[n]

s1[n]

III

�

w [n] =

s1[m]s2[n – m]
m = 0

127

(c)

Module III

s [n]
II

 s [n], 0 � n � 127
0, otherwise

(b)

Module II

s2[n]

s1[n]

IV

� s1[m]s2[n – m]
m = 0

255

(d)

Module IV

s [n]
V

� s [n]e–j(2�/128)nk

n = 0

127

(e)

Module V

S [k] =

Figure P8.62

By appropriately connecting one or several of each module, construct a system for
which the inputs are x[n] and y[n] and the output is Rs [k]. The important considerations
are (a) whether the system works and (b) how efficient it is. The lower the total cost, the
more efficient the system is.

Chapter 8 Problems 709

8.63. y[n] is the output of a stable LTI system with system function H(z) = 1/(z − bz−1), where
b is a known constant. We would like to recover the input signal x[n] by operating on y[n].

The following procedure is proposed for recovering part of x[n] from the data y[n]:
1. Using y[n], 0 ≤ n ≤ N − 1, calculate Y [k], the N-point DFT of y[n].
2. Form

V [k] = (W−k
N

− bWk
N)Y [k].

3. Calculate the inverse DFT of V [k] to obtain v[n].
For which values of the index n in the range n = 0, 1, . . . , N−1 are we guaranteed that

x[n] = v[n]?

8.64. A modified discrete Fourier transform (MDFT) was proposed (Vernet, 1971) that computes
samples of the z-transform on the unit circle offset from those computed by the DFT. In
particular, with XM [k] denoting the MDFT of x(n),

XM [k] = X(z)

∣∣∣∣
z=ej [2πk/N+π/N]

, k = 0, 1, 2, . . . , N − 1.

Assume that N is even.

(a) The N -point MDFT of a sequence x[n] corresponds to the N -point DFT of a sequence
xM [n], which is easily constructed from x[n]. Determine xM [n] in terms of x[n].

(b) If x[n] is real, not all the points in the DFT are independent, since the DFT is conjugate
symmetric; i.e., X [k] = X∗[((−k))N] for 0 ≤ k ≤ N − 1. Similarly, if x[n] is real, not
all the points in the MDFT are independent. Determine, for x[n] real, the relationship
between points in XM [k].

(c) (i) Let R[k] = XM [2k]; that is, R[k] contains the even-numbered points in XM [k].
From your answer in part (b), show that XM [k] can be recovered from R[k].

(ii) R[k] can be considered to be the N/2-point MDFT of an N/2-point sequence r[n].
Determine a simple expression relating r[n] directly to x[n].

According to parts (b) and (c), the N -point MDFT of a real sequence x[n] can be com-
puted by forming r[n] from x[n] and then computing the N/2-point MDFT of r[n].
The next two parts are directed at showing that the MDFT can be used to implement
a linear convolution.

(d) Consider three sequences x1[n], x2[n], and x3[n], all of length N . Let X1M [k], X2M [k],
and X3M [k], respectively, denote the MDFTs of the three sequences. If

X3M [k] = X1M [k]X2M [k],

express x3[n] in terms of x1[n] and x2[n]. Your expression must be of the form of a
single summation over a “combination” of x1[n] and x2[n] in the same style as (but not
identical to) a circular convolution.

(e) It is convenient to refer to the result in part (d) as a modified circular convolution. If the
sequences x1[n] and x2[n] are both zero for n ≥ N/2, show that the modified circular
convolution of x1[n] and x2[n] is identical to the linear convolution of x1[n] and x2[n].

710 Chapter 8 The Discrete Fourier Transform

8.65. In some applications in coding theory, it is necessary to compute a 63-point circular con-
volution of two 63-point sequences x[n] and h[n]. Suppose that the only computational
devices available are multipliers, adders, and processors that compute N -point DFTs, with
N restricted to be a power of 2.

(a) It is possible to compute the 63-point circular convolution of x[n] and h[n] using a num-
ber of 64-point DFTs, inverse DFTs, and the overlap–add method. How many DFTs
are needed? Hint: Consider each of the 63-point sequences as the sum of a 32-point
sequence and 31-point sequence.

(b) Specify an algorithm that computes the 63-point circular convolution of x[n] and h[n]
using two 128-point DFTs and one 128-point inverse DFT.

(c) We could also compute the 63-point circular convolution of x[n] and h[n] by computing
their linear convolution in the time domain and then aliasing the results. In terms of
multiplications, which of these three methods is most efficient? Which is least efficient?
(Assume that one complex multiplication requires four real multiplications and that
x[n] and h[n] are real.)

8.66. We want to filter a very long sequence with an FIR filter whose impulse response is 50 sam-
ples long. We wish to implement this filter with a DFT using the overlap–save technique.
The procedure is as follows:

1. The input sections must be overlapped by V samples.
2. From the output of each section, we must extract M samples such that when these

samples from each section are abutted, the resulting sequence is the desired filtered
output.

Assume that the input segments are 100 samples long and that the size of the DFT is
128 (= 27) points. Assume further that the output sequence from the circular convolution
is indexed from point 0 to point 127.

(a) Determine V .
(b) Determine M .
(c) Determine the index of the beginning and the end of the M points extracted; i.e., deter-

mine which of the 128 points from the circular convolution are extracted to be abutted
with the result from the previous section.

8.67. A problem that often arises in practice is one in which a distorted signal y[n] is the output
that results when a desired signal x[n] has been filtered by an LTI system. We wish to re-
cover the original signal x[n] by processing y[n]. In theory, x[n] can be recovered from y[n]
by passing y[n] through an inverse filter having a system function equal to the reciprocal of
the system function of the distorting filter.

Suppose that the distortion is caused by an FIR filter with impulse response

h[n] = δ[n] − 0.5δ[n − n0],

where n0 is a positive integer, i.e., the distortion of x[n] takes the form of an echo at delay n0.

(a) Determine the z-transform H(z) and the N -point DFT H [k] of the impulse response
h[n]. Assume that N = 4n0.

(b) Let Hi(z) denote the system function of the inverse filter, and let hi [n] be the corre-
sponding impulse response. Determine hi [n]. Is this an FIR or an IIR filter? What is
the duration of hi [n]?

Chapter 8 Problems 711

(c) Suppose that we use an FIR filter of length N in an attempt to implement the inverse
filter, and let the N -point DFT of the FIR filter be

G[k] = 1/H [k], k = 0, 1, . . . , N − 1.

What is the impulse response g[n] of the FIR filter?
(d) It might appear that the FIR filter with DFT G[k] = 1/H [k] implements the inverse

filter perfectly. After all, one might argue that the FIR distorting filter has an N -point
DFT H [k] and the FIR filter in cascade has an N -point DFT G[k] = 1/H [k], and since
G[k]H [k] = 1 for all k, we have implemented an all-pass, nondistorting filter. Briefly
explain the fallacy in this argument.

(e) Perform the convolution of g[n] with h[n], and thus determine how well the FIR filter
with N -point DFT G[k] = 1/H [k] implements the inverse filter.

8.68. A sequence x[n] of length N has a discrete Hartley transform (DHT) defined as

XH [k] =
N−1∑
n=0

x[n]HN [nk], k = 0, 1, . . . , N − 1, (P8.68-1)

where

HN [a] = CN [a] + SN [a],
with

CN [a] = cos(2πa/N), SN [a] = sin(2πa/N).

Originally proposed by R.V.L. Hartley in 1942 for the continuous-time case, the Hartley
transform has properties that make it useful and attractive in the discrete-time case as well
(Bracewell, 1983, 1984). Specifically, from Eq. (P8.68-1), it is apparent that the DHT of a
real sequence is also a real sequence. In addition, the DHT has a convolution property, and
fast algorithms exist for its computation.

In complete analogy with the DFT, the DHT has an implicit periodicity that must be
acknowledged in its use. That is, if we consider x[n] to be a finite-length sequence such that
x[n] = 0 for n < 0 and n > N − 1, then we can form a periodic sequence

x̃[n] =
∞∑

r=−∞
x[n + rN]

such that x[n] is simply one period of x̃[n]. The periodic sequence x̃[n] can be represented
by a discrete Hartley series (DHS), which in turn can be interpreted as the DHT by focusing
attention on only one period of the periodic sequence.

(a) The DHS analysis equation is defined by

X̃H [k] =
N−1∑
n=0

x̃[n]HN [nk]. (P8.68-2)

Show that the DHS coefficients form a sequence that is also periodic with period N ; i.e.,

X̃H [k] = X̃H [k + N] for all k.

712 Chapter 8 The Discrete Fourier Transform

(b) It can also be shown that the sequences HN [nk] are orthogonal; i.e.,

N−1∑
k=0

HN [nk]HN [mk] =
{

N, ((n))N = ((m))N ,

0, otherwise.

Using this property and the DHS analysis formula of Eq. (P8.68-2), show that the DHS
synthesis formula is

x̃[n] = 1
N

N−1∑
k=0

X̃H [k]HN [nk]. (P8.68-3)

Note that the DHT is simply one period of the DHS coefficients, and likewise, the DHT
synthesis (inverse) equation is identical to the DHS synthesis Eq. (P8.68-3), except that we
simply extract one period of x̃[n]; i.e., the DHT synthesis expression is

x[n] = 1
N

N−1∑
k=0

XH [k]HN [nk], n = 0, 1, . . . , N − 1. (P8.68-4)

With Eqs. (P8.68-1) and (P8.68-4) as definitions of the analysis and synthesis relations,
respectively, for the DHT, we may now proceed to derive the useful properties of this
representation of a finite-length discrete-time signal.

(c) Verify that HN [a] = HN [a + N], and verify the following useful property of HN [a]:
HN [a + b] = HN [a]CN [b] + HN [−a]SN [b]

= HN [b]CN [a] + HN [−b]SN [a].
(d) Consider a circularly shifted sequence

x1[n] =
{

x̃[n − n0] = x[((n − n0))N], n = 0, 1, . . . , N − 1,

0, otherwise.
(P8.68-5)

In other words, x1[n] is the sequence that is obtained by extracting one period from
the shifted periodic sequence x̃[n − n0]. Using the identity verified in part (c), show
that the DHS coefficients for the shifted periodic sequence are

x̃[n − n0] DHS←→ X̃H [k]CN [n0k] + X̃H [−k]SN [n0k]. (P8.68-6)

From this, we conclude that the DHT of the finite-length circularly shifted sequence
x[((n − n0))N] is

x[((n − n0))N] DHJ←→ XH [k]CN [n0k] + XH [((−k))N]SN [n0k]. (P8.68-7)

(e) Suppose that x3[n] is the N -point circular convolution of two N -point sequences x1[n]
and x2[n]; i.e.,

x3[n] = x1[n] ©N x2[n]

=
N−1∑
m=0

x1[m]x2[((n − m))N], n = 0, 1, . . . , N − 1.
(P8.68-8)

Chapter 8 Problems 713

By applying the DHT to both sides of Eq. (P8.68-8) and using Eq. (P8.68-7), show that

XH3[k] = 1
2 XH1[k](XH2[k] + XH2[((−k))N])
+ 1

2 XH1[((−k))N](XH2[k] − XH2[((−k))N])
(P8.68-9)

for k = 0, 1, . . . , N − 1. This is the desired convolution property.

Note that a linear convolution can be computed using the DHT in the same way
that the DFT can be used to compute a linear convolution. While computing XH3[k] from
XH1[k] and XH2[k] requires the same amount of computation as computing X 3[k] from
X 1[k] and X 2[k], the computation of the DHT requires only half the number of real mul-
tiplications required to compute the DFT.

(f) Suppose that we wish to compute the DHT of an N -point sequence x[n] and we have
available the means to compute the N -point DFT. Describe a technique for obtaining
XH [k] from X [k] for k = 0, 1, . . . , N − 1.

(g) Suppose that we wish to compute the DFT of an N -point sequence x[n] and we have
available the means to compute the N -point DHT. Describe a technique for obtaining
X [k] from XH [k] for k = 0, 1, . . . , N − 1.

8.69. Let x[n] be an N -point sequence such that x[n] = 0 for n < 0 and for n > N − 1. Let x̂[n]
be the 2N -point sequence obtained by repeating x[n]; i.e.,

x̂[n] =
⎧⎨⎩

x[n], 0 ≤ n ≤ N − 1,

x[n − N], N ≤ n ≤ 2N − 1,

0, otherwise.

Consider the implementation of a discrete-time filter shown in Figure P8.69. This
system has an impulse response h[n] that is 2N points long; i.e., h[n] = 0 for n < 0 and for
n > 2N − 1.

(a) In Figure P8.69-1, what is X̂[k], the 2N -point DFT of x̂[n], in terms of X [k], the N -point
DFT of x[n]?

(b) The system shown in Figure P8.69-1 can be implemented using only N -point DFTs as
indicated in Figure P8.69-2 for appropriate choices for System A and System B. Spec-
ify System A and System B so that ŷ[n] in Figure P8.69-1 and y[n] in Figure P8.69-2
are equal for 0 ≤ n ≤ 2N − 1. Note that h[n] and y[n] in Figure P8.69-2 are 2N-point
sequences and w[n] and g[n] are N -point sequences.

2N-point
DFT

2N-point
IDFT

2N-point
DFT

x [n] X [k] y [n]

h [n] Figure P8.69-1

714 Chapter 8 The Discrete Fourier Transform

N-point
DFT

N-point
IDFT

N-point
DFT

System A

x [n] X [k]
System B

N-point sequences

2N-point sequences

w [n] y [n]

h [n]

g [n]

Figure P8.69-2

8.70. In this problem, you will examine the use of the DFT to implement the filtering necessary
for the discrete-time interpolation, or upsampling, of a signal. Assume that the discrete-time
signal x[n] was obtained by sampling a continuous-time signal xc(t) with a sampling period
T . Moreover, the continuous-time signal is appropriately bandlimited; i.e., Xc(j�) = 0 for
|�| ≥ 2π/T . For this problem, we will assume that x[n] has length N ; i.e., x[n] = 0 for
n < 0 or n > N − 1, where N is even. It is not strictly possible to have a signal that is both
perfectly bandlimited and of finite duration, but this is often assumed in practical systems
processing finite-length signals which have very little energy outside the band |�| ≤ 2π/T .

We wish to implement a 1:4 interpolation, i.e., increase the sampling rate by a factor
of 4. As seen in Figure 4.23, we can perform this sampling rate conversion using a sampling
rate expander followed by an appropriate lowpass filter. In this chapter, we have seen that
the lowpass filter could be implemented using the DFT if the filter is an FIR impulse re-
sponse. For this problem, assume that this filter has an impulse response h[n] that is N + 1
points long. Figure P8.70-1 depicts such a system, where H [k] is the 4N -point DFT of the
impulse response of the lowpass filter. Note that both v[n] and y[n] are 4N -point sequences.

y[n]Y[k]

4N-point
DFTv [n]x [n] V [k]

4 H[k] 4N-point
IDFT

Figure P8.70-1

(a) Specify the DFT H [k] such that the system in Figure P8.70-1 implements the desired
upsampling system. Think carefully about the phase of the values of H [k].

(b) It is also possible to upsample x[n] using the system in Figure P8.70-2. Specify System
A in the middle box so that the 4N -point signal y2[n] in this figure is the same as y[n]
in Figure P8.70-2. Note that System A may consist of more than one operation.

Chapter 8 Problems 715

(c) Is there a reason that the implementation in Figure P8.70-2 might be preferable to
Figure P8.70-1?

y2[n]Y2[k]

N-point
DFT

x [n] X [k]

4N-point
IDFT

System
A

Figure P8.70-2

8.71. Derive Eq. (8.153) using Eqs. (8.164) and (8.165).

8.72. Consider the following procedure

(a) Form the sequence v[n] = x2[2n] where x2[n] is given by Eq. (8.166). This yields

v[n] = x[2n] n = 0, 1, . . . , N/2 − 1

v[N − 1 − n] = x[2n + 1], n = 0, 1, . . . , N/2 − 1.

(b) Compute V [k], the N -point DFT of v[n].
Demonstrate that the following is true:

X c2[k] = 2Re{e−j2πk/(4N)V [k]}, k = 0, 1, . . . , N − 1,

= 2
N−1∑
n=0

v[n]cos
[

πk(4n + 1)

2N

]
, k = 0, 1, . . . , N − 1,

= 2
N−1∑
n=0

x[n]cos
[

πk(2n + 1)

2N

]
, k = 0, 1, . . . , N − 1.

Note that this algorithm uses N -point rather than 2N -point DFTs as required in
Eq. (8.167). In addition, since v[n] is a real sequence, we can exploit even and odd
symmetries to do the computation of V [k] in one N/4-point complex DFT.

8.73. Derive Eq. (8.156) using Eqs. (8.174) and (8.157).

8.74. (a) Use Parseval’s theorem for the DFT to derive a relationship between
∑
k

|X c1[k]|2

and
∑
n

|x[n]|2.

(b) Use Parseval’s theorem for the DFT to derive a relationship between
∑
k

|X c2[k]|2

and
∑
n

|x[n]|2.

9
Computation

of the Discrete

Fourier Transform

9.0 INTRODUCTION

The discrete Fourier transform (DFT) plays an important role in the analysis, design,
and implementation of discrete-time signal-processing algorithms and systems because
the basic properties of the discrete-time Fourier transform and discrete Fourier trans-
form, discussed in Chapters 2 and 8, respectively, make it particularly convenient to
analyze and design systems in the Fourier domain. It is equally important that efficient
algorithms exist for explicitly computing the DFT. As a result, the DFT is an important
component in many practical applications of discrete-time systems.

In this chapter, we discuss several methods for computing values of the DFT.
The major focus of the chapter is a particularly efficient class of algorithms for the
digital computation of the N-point DFT. Collectively, these efficient algorithms, which
are discussed in Sections 9.2, 9.3, and 9.5, are called FFT algorithms. To achieve the
highest efficiency, the FFT algorithms must compute all N values of the DFT. When
we require values of the DFT at only a few frequencies in the range 0 ≤ ω < 2π,

other algorithms may be more efficient and flexible, even though they are less efficient
than the FFT algorithms for computation of all the values of the DFT. Examples of
such algorithms are the Goertzel algorithm, discussed in Section 9.1.2, and the chirp
transform algorithm, discussed in Section 9.6.2.

There are many ways to measure the complexity and efficiency of an implementa-
tion or algorithm, and a final assessment depends on both the available implementation
technology and the intended application. We will use the number of arithmetic mul-
tiplications and additions as a measure of computational complexity. This measure is
simple to apply, and the number of multiplications and additions is directly related to

716

Section 9.0 Introduction 717

the computational speed when algorithms are implemented on general-purpose digi-
tal computers or special-purpose processors. However, other measures are sometimes
more appropriate. For example, in custom VLSI implementations, the area of the chip
and power requirements are important considerations and may not be directly related
to the number of arithmetic operations.

In terms of multiplications and additions, the class of FFT algorithms can be or-
ders of magnitude more efficient than competing algorithms. The efficiency of FFT
algorithms is so high, in fact, that in many cases the most efficient procedure for imple-
menting a convolution is to compute the transform of the sequences to be convolved,
multiply their transforms, and then compute the inverse transform of the product of
transforms. The details of this technique were discussed in Section 8.7. In seeming con-
tradiction to this, there is a set of algorithms (mentioned briefly in Section 9.6) for
evaluation of the DFT (or a more general set of samples of the Fourier transform)
that derive their efficiency from a reformulation of the Fourier transform in terms of a
convolution and thereby implement the Fourier transform computation by using effi-
cient procedures for evaluating the associated convolution. This suggests the possibility
of implementing a convolution by multiplication of DFTs, where the DFTs have been
implemented by first expressing them as convolutions and then taking advantage of
efficient procedures for implementing the associated convolutions. While this seems on
the surface to be a basic contradiction, we will see in Section 9.6 that in certain cases it
is an entirely reasonable approach.

In the sections that follow, we consider a number of algorithms for computing the
discrete Fourier transform. We begin in Section 9.1 with discussions of direct computa-
tion methods, i.e., methods based on direct use of the defining relation for the DFT as a
computational formula. We include in this discussion the Goertzel algorithm (Goertzel,
1958), which requires computation proportional to N2, but with a smaller constant of
proportionality than that of the direct evaluation of the defining formula. One of the
principal advantages of the direct evaluation method or the Goertzel algorithm is that
they are not restricted to computation of the DFT, but can be used to compute any
desired set of samples of the DTFT of a finite-length sequence.

In Sections 9.2 and 9.3 we present a detailed discussion of FFT algorithms for
which computation is proportional to N log2 N . This class of algorithms is considerably
more efficient in terms of arithmetic operations than the Goertzel algorithm, but is
specifically oriented toward computation of all the values of the DFT. We do not attempt
to be exhaustive in our coverage of that class of algorithms, but we illustrate the general
principles common to all algorithms of this type by considering in detail only a few of
the more commonly used schemes.

In Section 9.4, we consider some of the practical issues that arise in implementing
the power-of-two-length FFT algorithms discussed in Sections 9.2 and 9.3. Section 9.5
provides a brief overview of algorithms for N a composite number including a brief
reference to FFT algorithms that are optimized for a particular computer architecture.
In Section 9.6, we discuss algorithms that rely on formulating the computation of the
DFT in terms of a convolution. In Section 9.7, we consider effects of arithmetic round-off
in FFT algorithms.

718 Chapter 9 Computation of the Discrete Fourier Transform

9.1 DIRECT COMPUTATION OF THE DISCRETE FOURIER TRANSFORM

As defined in Chapter 8, the DFT of a finite-length sequence of length N is

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1, (9.1)

where WN = e−j (2π/N). The inverse discrete Fourier transform is given by

x[n] = 1
N

N−1∑
k=0

X[k]W−kn
N , n = 0, 1, . . . , N − 1. (9.2)

In Eqs. (9.1) and (9.2), both x[n] and X[k] may be complex.1 Since the expressions on
the right-hand sides of those equations differ only in the sign of the exponent of WN and
in the scale factor 1/N , a discussion of computational procedures for Eq. (9.1) applies
with straightforward modifications to Eq. (9.2). (See Problem 9.1.)

Most approaches to improving the efficiency of computation of the DFT exploit
the symmetry and periodicity properties of Wkn

N ; specifically,

W
k(N−n)
N = W−kn

N = (Wkn
N)∗ (complex conjugate symmetry) (9.3a)

Wkn
N = W

k(n+N)
N = W

(k+N)n
N (periodicity in n and k). (9.3b)

(Since Wkn
N = cos(2πkn/N)− j sin(2πkn/N) these properties are a direct consequence

of the symmetry and periodicity of the underlying sine and cosine functions.) Because
the complex numbers Wkn

N have the role of coefficients in Eqs. (9.1) and (9.2), the re-
dundancy implied by these conditions can be used to advantage in reducing the amount
of computation required for their evaluation.

9.1.1 Direct Evaluation of the Definition of the DFT

To create a frame of reference, consider first the direct evaluation of the defining DFT
expression in Eq. (9.1). Since x[n] may be complex, N complex multiplications and
(N − 1) complex additions are required to compute each value of the DFT if we use
Eq. (9.1) directly as a formula for computation. To compute all N values therefore re-
quires a total of N2 complex multiplications and N(N−1) complex additions. Expressing

1In discussing algorithms for computing the DFT of a finite-length sequence x[n], it is worthwhile to
recall from Chapter 8 that the DFT values defined by Eq. (9.1) can be thought of either as samples of the
DTFT X(ejω) at frequencies ωk = 2πk/N or as coefficients in the discrete-time Fourier series for the periodic
sequence

x̃[n] =
∞∑

r=−∞
x[n + rN].

It will be helpful to keep both interpretations in mind and to be able to switch focus from one to the other as
is convenient.

Section 9.1 Direct Computation of the Discrete Fourier Transform 719

Eq. (9.1) in terms of operations on real numbers, we obtain

X[k] =
N−1∑
n=0

[
(Re{x[n]}Re{Wkn

N } − Im{x[n]}Im{Wkn
N })

+ j (Re{x[n]}Im{Wkn
N } + Im{x[n]}Re{Wkn

N })
]
, (9.4)

k = 0, 1, . . . , N − 1,

which shows that each complex multiplication x[n] · Wkn
N requires four real multipli-

cations and two real additions, and each complex addition requires two real additions.
Therefore, for each value of k, the direct computation of X[k] requires 4N real multi-
plications and (4N − 2) real additions.2 Since X[k] must be computed for N different
values of k, the direct computation of the discrete Fourier transform of a sequence
x[n] requires 4N2 real multiplications and N(4N − 2) real additions. Besides the mul-
tiplications and additions called for by Eq. (9.4), the digital computation of the DFT
on a general-purpose digital computer or with special-purpose hardware also requires
provision for storing and accessing the N complex input sequence values x[n] and val-
ues of the complex coefficients Wkn

N . Since the amount of computation, and thus the
computation time, is approximately proportional to N2, it is evident that the number
of arithmetic operations required to compute the DFT by the direct method becomes
very large for large values of N . For this reason, we are interested in computational
procedures that reduce the number of multiplications and additions.

As an illustration of how the properties of Wkn
N can be exploited, using the sym-

metry property in Eq. (9.3a), we can group terms in the summation in Eq. (9.4) for n

and (N − n). For example, the grouping

Re{x[n]}Re{Wkn
N } + Re{x[N − n]}Re{Wk(N−n)

N }
= (Re{x[n]} + Re{x[N − n]})Re{Wkn

N }
eliminates one real multiplication, as does the grouping

−Im{x[n]}Im{Wkn
N } − Im{x[N − n]}Im{Wk(N−n)

N }
= −(Im{x[n]} − Im{x[N − n]})Im{Wkn

N }.
Similar groupings can be used for the other terms in Eq. (9.4). In this way, the number
of multiplications can be reduced by approximately a factor of 2. We can also take
advantage of the fact that for certain values of the product kn, the implicit sine and cosine
functions take on the value 1 or 0, thereby eliminating the need for multiplications.
However, reductions of this type still leave us with an amount of computation that is
proportional to N2. Fortunately, the second property [Eq. (9.3b)], the periodicity of the
complex sequence Wkn

N , can be exploited with recursion to achieve significantly greater
reductions of the computation.

9.1.2 The Goertzel Algorithm

The Goertzel algorithm (Goertzel, 1958) is an example of how the periodicity of the
sequence Wkn

N can be used to reduce computation. To derive the algorithm, we begin

2Throughout the discussion, the formula for the number of computations may be only approximate.
Multiplication by W0

N
, for example, does not require a multiplication. Nevertheless, when N is large, the

estimate of computational complexity obtained by including such multiplications is sufficiently accurate to
permit comparisons between different classes of algorithms.

720 Chapter 9 Computation of the Discrete Fourier Transform

by noting that

W−kN
N = ej (2π/N)Nk = ej2πk = 1, (9.5)

since k is an integer. This is a result of the periodicity with period N of W−kn
N in either n

or k. Because of Eq. (9.5), we may multiply the right side of Eq. (9.1) by W−kN
N without

affecting the equation. Thus,

X[k] = W−kN
N

N−1∑
r=0

x[r]Wkr
N =

N−1∑
r=0

x[r]W−k(N−r)
N . (9.6)

To suggest the final result, we define the sequence

yk[n] =
∞∑

r=−∞
x[r]W−k(n−r)

N u[n − r]. (9.7)

From Eqs. (9.6) and (9.7) and the fact that x[n] = 0 for n < 0 and n ≥ N , it follows that

X[k] = yk[n]
∣∣∣
n=N

. (9.8)

Equation (9.7) can be interpreted as a discrete convolution of the finite-duration se-
quence x[n], 0 ≤ n ≤ N − 1, with the sequence W−kn

N u[n]. Consequently, yk[n] can be
viewed as the response of a system with impulse response W−kn

N u[n] to a finite-length
input x[n]. In particular, X[k] is the value of the output when n = N .

The signal flow graph of a system with impulse response W−kn
N u[n] is shown in

Figure 9.1, which represents the difference equation

yk[n] = W−k
N yk[n − 1] + x[n], (9.9)

where initial rest conditions are assumed. Since the general input x[n] and the coefficient
W−k

N are both complex, the computation of each new value of yk[n] using the system
of Figure 9.1 requires 4 real multiplications and 4 real additions. All the intervening
values yk[1], yk[2], . . . , yk[N − 1] must be computed in order to compute yk[N] = X[k],
so the use of the system in Figure 9.1 as a computational algorithm requires 4N real
multiplications and 4N real additions to compute X[k] for a particular value of k. Thus,
this procedure is slightly less efficient than the direct method. However, it avoids the
computation or storage of the coefficients Wkn

N , since these quantities are implicitly
computed by the recursion implied by Figure 9.1.

It is possible to retain this simplification while reducing the number of multiplica-
tions by a factor of 2. To see how this may be done, note that the system function of the
system of Figure 9.1 is

Hk(z) = 1

1 − W−k
N z−1

. (9.10)

WN

x [n] yk[n]

z–1

–k Figure 9.1 Flow graph of 1st-order
complex recursive computation of X [k].

Section 9.1 Direct Computation of the Discrete Fourier Transform 721

Multiplying both the numerator and the denominator of Hk(z) by the factor (1−Wk
Nz−1),

we obtain

Hk(z) = 1 − Wk
Nz−1

(1 − W−k
N z−1)(1 − Wk

Nz−1)

= 1 − Wk
Nz−1

1 − 2 cos(2πk/N)z−1 + z−2
.

(9.11)

The signal flow graph of Figure 9.2 corresponds to the direct form II implementation of
the system function of Eq. (9.11) for which the difference equation for the poles is

vk[n] = 2 cos(2πk/N)vk[n − 1] − vk[n − 2] + x[n]. (9.12a)

After N iterations of Eq. (9.12a) starting with initial rest conditions wk[−2] = wk[−1] =
0, the desired DFT value can be obtained by implementing the zero as in

X[k] = yk[n]
∣∣∣
n=N

= vk[N] − Wk
Nvk[N − 1]. (9.12b)

If the input is complex, only two real multiplications per sample are required to
implement the poles of this system, since the coefficients are real and the factor −1 need
not be counted as a multiplication. As in the case of the 1st-order system, for a complex
input, four real additions per sample are required to implement the poles (if the input
is complex). Since we only need to bring the system to a state from which yk[N] can be
computed, the complex multiplication by −Wk

N required to implement the zero of the
system function need not be performed at every iteration of the difference equation,
but only after the N th iteration. Thus, the total computation is 2N real multiplications
and 4N real additions for the poles,3 plus 4 real multiplications and 4 real additions for
the zero. The total computation is therefore 2(N + 2) real multiplications and 4(N + 1)
real additions, about half the number of real multiplications required with the direct
method. In this more efficient scheme, we still have the advantage that cos(2πk/N)

and Wk
N are the only coefficients that must be computed and stored. The coefficients

Wkn
N are again computed implicitly in the iteration of the recursion formula implied by

Figure 9.2.
As an additional advantage of the use of this network, let us consider the compu-

tation of the DFT of x[n] at the two symmetric frequencies 2πk/N and 2π(N − k)/N ,

x [n]

–1

z–1

z–1

2 cos 2πk
N –WN

yk[n]

k

Figure 9.2 Flow graph of 2nd-order
recursive computation of X [k]
(Goertzel algorithm).

3This assumes that x[n] is complex. If x[n] is real, the operation count is N real multiplications and
2N real additions for implementing the poles.

722 Chapter 9 Computation of the Discrete Fourier Transform

that is, the computation of X[k] and X[N − k]. It is straightforward to verify that the
network in the form of Figure 9.2 required to compute X[N − k] has exactly the same
poles as that in Figure 9.2, but the coefficient for the zero is the complex conjugate of
that in Figure 9.2. (See Problem 9.21.) Since the zero is implemented only on the final
iteration, the 2N multiplications and 4N additions required for the poles can be used
for the computation of two DFT values. Thus, for the computation of all N values of the
discrete Fourier transform using the Goertzel algorithm, the number of real multiplica-
tions required is approximately N2 and the number of real additions is approximately
2N2. While this is more efficient than the direct computation of the discrete Fourier
transform, the amount of computation is still proportional to N2.

In either the direct method or the Goertzel algorithm we do not need to evaluate
X[k] at all N values of k. Indeed, we can evaluate X[k] for any M values of k, with
each DFT value being computed by a recursive system of the form of Figure 9.2 with
appropriate coefficients. In this case, the total computation is proportional to NM . The
Goertzel method and the direct method are attractive when M is small; however, as
indicated previously, algorithms are available for which the computation is proportional
to N log2 N when N is a power of 2. Therefore, when M is less than log2 N , either the
Goertzel algorithm or direct evaluation of the DFT may in fact be the most efficient
method, but when all N values of X[k] are required, the decimation-in-time algorithms,
to be considered next, are roughly (N/ log2 N) times more efficient than either the direct
method or the Goertzel algorithm.

As we have derived it, the Goertzel algorithm computes the DFT value X[k],
which is identical to the DTFT X(ejω) evaluated at frequency ω = 2πk/N . With only a
minor modification of the above derivation, we can show that X(ejω) can be evaluated
at any frequency ωa by iterating the difference equation

va[n] = 2 cos(ω0)va[n − 1] − va[n − 2] + x[n], (9.13a)

N times with the desired value of the DTFT obtained by

X(ejωa) = e−jωaN (va[N] − e−jωa va[N − 1]). (9.13b)

Note that in the case ωa = 2πk/N Eqs. (9.13a) and (9.13b) reduce to Eqs. (9.12a)
and (9.12b). Because Eq. (9.13b) must only be computed once, it is only slightly less
efficient to compute the value of X(ejω) at an arbitrarily chosen frequency than at a
DFT frequency.

Still another advantage of the Goertzel algorithm in some real-time applications
is that the computation can begin as soon as the first input sample is available. The
computation then involves iterating the difference equation Eq. (9.12a) or Eq. (9.13a)
as each new input sample becomes available. After N iterations, the desired value of
X(ejω) can be computed with either Eq. (9.12b) or Eq. (9.13b) as is appropriate.

9.1.3 Exploiting both Symmetry and Periodicity

Computational algorithms that exploit both the symmetry and the periodicity of the
sequence Wkn

N were known long before the era of high-speed digital computation. At
that time, any scheme that reduced manual computation by even a factor of 2 was
welcomed. Heideman, Johnson and Burrus (1984) have traced the origins of the basic
principles of the FFT back to Gauss, as early as 1805. Runge (1905) and later Danielson

Section 9.2 Decimation-in-Time FFT Algorithms 723

and Lanczos (1942) described algorithms for which computation was roughly propor-
tional to N log2 N rather than N2. However, the distinction was not of great importance
for the small values of N that were feasible for hand computation. The possibility of
greatly reduced computation was generally overlooked until about 1965, when Cooley
and Tukey (1965) published an algorithm for the computation of the discrete Fourier
transform that is applicable when N is a composite number, i.e., the product of two
or more integers. The publication of their paper touched off a flurry of activity in the
application of the discrete Fourier transform to signal processing and resulted in the
discovery of a number of highly efficient computational algorithms. Collectively, the
entire set of such algorithms has come to be known as the fast Fourier transform, or the
FFT.4

In contrast to the direct methods discussed above, FFT algorithms are based on
the fundamental principle of decomposing the computation of the discrete Fourier
transform of a sequence of length N into smaller-length discrete Fourier transforms
that are combined to form the N -point transform. These smaller-length transforms may
be evaluated by direct methods, or they may be further decomposed into even smaller
transforms. The manner in which this principle is implemented leads to a variety of
different algorithms, all with comparable improvements in computational speed. In this
chapter, we are concerned with two basic classes of FFT algorithms. The first class, called
decimation in time, derives its name from the fact that in the process of arranging the
computation into smaller transformations, the sequence x[n] (generally thought of as
a time sequence) is decomposed into successively smaller subsequences. In the second
general class of algorithms, the sequence of discrete Fourier transform coefficients X[k]
is decomposed into smaller subsequences—hence its name, decimation in frequency.

We discuss decimation-in-time algorithms in Section 9.2. Decimation-in-frequency
algorithms are discussed in Section 9.3. This is an arbitrary ordering. The two sections
are essentially independent and can therefore be read in either order.

9.2 DECIMATION-IN-TIME FFT ALGORITHMS

Dramatic efficiency in computing the DFT results from decomposing the computation
into successively smaller DFT computations while exploiting both the symmetry and
the periodicity of the complex exponential Wkn

N = e−j (2π/N)kn. Algorithms in which
the decomposition is based on decomposing the sequence x[n] into successively smaller
subsequences are called decimation-in-time algorithms.

The principle of decimation-in-time is conveniently illustrated by considering the
special case of N an integer power of 2, i.e., N = 2ν . Since N is divisible by two,
we can consider computing X[k] by separating x[n] into two (N/2)-point5 sequences
consisting of the even-numbered points g[n] = x[2n] and the odd-numbered points
h[n] = x[2n + 1]. Figure 9.3 shows this decomposition and also the (somewhat obvious,
but crucial) fact that the original sequence can be recovered simply by re-interleaving
the two sequences.

4See Cooley, Lewis and Welch (1967) and Heideman, Johnson and Burrus (1984) for historical sum-
maries of algorithmic developments related to the FFT.

5When discussing FFT algorithms, it is common to use the words sample and point interchangeably to
mean sequence value, i.e., a single number. Also, we refer to a sequence of length N as an N -point sequence,
and the DFT of a sequence of length N will be called an N -point DFT.

724 Chapter 9 Computation of the Discrete Fourier Transform

x[n] x[n]
2

ge[n]
2

Left
Shift 1

Right
Shift 1

g[n] = x[2n]

2
he[n]

2
h[n] = x[2n+ 1]

x[n + 1]

x[n − 1]

0 � n � N/2 − 1 0 � n � N − 1
Figure 9.3 Illustration of the basic
principle of decimation-in-time.

To understand the significance of Figure 9.3 as an organizing principle for comput-
ing the DFT, it is helpful to consider the frequency-domain equivalents of the operations
depicted in the block diagram. First, note that the time-domain operation labeled “Left
Shift 1” corresponds in the frequency domain to multiplying X(ejω) by ejω. As discussed
in Section 4.6.1, corresponding to the compression of the time sequences by 2, the DTFTs
G(ejω) and H(ejω) (and therefore G[k] and H [k]) are obtained by frequency-domain
aliasing that occurs after expanding the frequency scale by the substitution ω → ω/2 in
X(ejω) and ejωX(ejω). That is, the DTFTs of the compressed sequences g[n] = x[2n]
and h[n] = x[2n + 1] are respectively

G(ejω) = 1
2

(
X(ejω/2) + X(ej(ω−2π)/2)

)
(9.14a)

H(ejω) = 1
2

(
X(ejω/2)ejω/2 + X(ej(ω−2π)/2)ej (ω−2π)/2

)
. (9.14b)

The sequence-expansion-by-2 shown in the right half of the block diagram in Figure 9.3
results in the frequency-compressed DTFTs Ge(e

jω) = G(ej2ω) and He(e
jω) = H(ej2ω),

which, according to Figure 9.3, combine to form X(ejω) through

X(ejω) = Ge(e
jω) + e−jωHe(e

jω)

= G(ej2ω) + e−jωH(ej2ω). (9.15)

Substituting Eqs. (9.14a) and (9.14b) into Eq. (9.15) will verify that the DTFT X(ejω) of
the N -point sequence x[n] can be represented as in Eq. (9.15) in terms of the DTFTs of
the N/2-point sequences g[n] = x[2n] and h[n] = x[2n + 1]. Therefore, the DFT X[k]
can likewise be represented in terms of the DFTs of g[n] and h[n].

Specifically, X[k] corresponds to evaluating X(ejω) at frequencies ωk = 2πk/N

with k = 0, 1, . . . , N − 1. Therefore, using Eq. (9.15) we obtain

X[k] = X(ej2πk/N) = G(ej(2πk/N)2) + e−j2πk/NH(e(j2πk/N)2). (9.16)

Section 9.2 Decimation-in-Time FFT Algorithms 725

From the definition of g[n] and G(ejω), it follows that

G(ej(2πk/N)2) =
N/2−1∑
n=0

x[2n]e−j (2πk/N)2n

=
N/2−1∑
n=0

x[2n]e−j (2πk/(N/2)n

=
N/2−1∑
n=0

x[2n]Wkn
N/2, (9.17a)

and by a similar manipulation, it can be shown that

H(ej(2πk/N)2) =
N/2−1∑
n=0

x[2n + 1]Wkn
N/2. (9.17b)

Thus, from Eqs. (9.17a) and (9.17b) and Eq. (9.16), it follows that

X[k] =
N/2−1∑
n=0

x[2n]Wkn
N/2 + Wk

N

N/2−1∑
n=0

x[2n + 1]Wkn
N/2 k = 0, 1, . . . , N − 1, (9.18)

where the N -point DFT X[k] is by definition

X[k] =
N−1∑
n=0

x[n]Wnk
N , k = 0, 1, . . . , N − 1. (9.19)

Likewise, by definition, the (N/2)-point DFTs of g[n] and h[n] are

G[k] =
N/2−1∑
n=0

x[2n]Wnk
N/2, k = 0, 1, . . . , N/2 − 1 (9.20a)

H [k] =
N/2−1∑
n=0

x[2n + 1]Wnk
N/2, k = 0, 1, . . . , N/2 − 1. (9.20b)

Equation (9.18) shows that the N -point DFT X[k] can be computed by evaluating the
(N/2)-point DFTs G[k] and H [k] over k = 0, 1, . . . , N−1 instead of k = 0, 1, . . . , N/2−1
as we normally do for (N/2)-point DFTs. This is easily achieved even when G[k] and
H [k] are computed only for k = 0, 1, . . . , N/2 − 1, because the (N/2)-point transforms

726 Chapter 9 Computation of the Discrete Fourier Transform

x [0]
G [0]

X [0]
WN

X [1]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]

G [1]

G [2]

G [3]

H [0]

H [1]

H [2]

H [3]

x [2]

x [4]

x [6]

x [1]

x [3]

x [5]

x [7]

N
2

DFT

– point

N
2

DFT

– point

0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

Figure 9.4 Flow graph of the
decimation-in-time decomposition of
an N -point DFT computation into two
(N/2)-point DFT computations (N = 8).

are implicitly periodic with period N/2. With this observation, Eq. (9.18) can be rewrit-
ten as

X[k] = G[((k))N/2] + Wk
NH [((k))N/2] k = 0, 1, . . . , N − 1. (9.21)

The notation ((k))N/2 conveniently makes it explicit that even though G[k] and H [k]
are only computed for k = 0, 1, . . . , N/2 − 1, they are extended periodically (with no
additional computation) by interpreting k modulo N/2.

After the two DFTs are computed, they are combined according to Eq. (9.21)
to yield the N -point DFT X[k]. Figure 9.4 depicts this computation for N = 8. In this
figure, we have used the signal flow graph conventions that were introduced in Chapter 6
for representing difference equations. That is, branches entering a node are summed to
produce the node variable. When no coefficient is indicated, the branch transmittance
is assumed to be unity. For other branches, the transmittance of a branch is an integer
power of the complex number WN .

In Figure 9.4, two 4-point DFTs are computed, with G[k] designating the 4-point
DFT of the even-numbered points and H [k] designating the 4-point DFT of the odd-
numbered points. According to Eq. (9.21), X[0] is obtained by multiplying H [0] by W 0

N

and adding the product to G[0]. The DFT value X[1] is obtained by multiplying H [1] by
W 1

N and adding that result to G[1]. Equation (9.21) states that, because of the implicit
periodicity of G[k] and H [k], to compute X[4], we should multiply H [((4))4] by W 4

N

and add the result to G[((4))4]. Thus, X[4] is obtained by multiplying H [0] by W 4
N and

adding the result to G[0]. As shown in Figure 9.4, the values X[5], X[6], and X[7] are
obtained similarly.

With the computation restructured according to Eq. (9.21), we can compare the
number of multiplications and additions required with those required for a direct com-
putation of the DFT. Previously we saw that, for direct computation without exploiting

Section 9.2 Decimation-in-Time FFT Algorithms 727

symmetry, N2 complex multiplications and additions were required.6 By comparison,
Eq. (9.21) requires the computation of two (N/2)-point DFTs, which in turn requires
2(N/2)2 complex multiplications and approximately 2(N/2)2 complex additions if we
do the (N/2)-point DFTs by the direct method. Then the two (N/2)-point DFTs must
be combined, requiring N complex multiplications, corresponding to multiplying the
second sum by Wk

N , and N complex additions, corresponding to adding the product
obtained to the first sum. Consequently, the computation of Eq. (9.21) for all values
of k requires at most N + 2(N/2)2 or N + N2/2 complex multiplications and complex
additions. It is easy to verify that for N > 2, the total N + N2/2 will be less than N2.

Equation (9.21) corresponds to breaking the original N -point computation into
two (N/2)-point DFT computations. If N/2 is even, as it is when N is equal to a power
of 2, then we can consider computing each of the (N/2)-point DFTs in Eq. (9.21) by
breaking each of the sums in that equation into two (N/4)-point DFTs, which would
then be combined to yield the (N/2)-point DFTs. Thus, G[k] in Eq. (9.21) can be
represented as

G[k] =
(N/2)−1∑

r=0

g[r]Wrk
N/2 =

(N/4)−1∑

=0

g[2
]W 2
k
N/2 +

(N/4)−1∑

=0

g[2
 + 1]W(2
+1)k

N/2 , (9.22)

or

G[k] =
(N/4)−1∑

=0

g[2
]W
k
N/4 + Wk

N/2

(N/4)−1∑

=0

g[2
 + 1]W
k
N/4. (9.23)

Similarly, H [k] can be represented as

H [k] =
(N/4)−1∑

=0

h[2
]W
k
N/4 + Wk

N/2

(N/4)−1∑

=0

h[2
 + 1]W
k
N/4. (9.24)

Consequently, the (N/2)-point DFT G[k] can be obtained by combining the (N/4)-point
DFTs of the sequences g[2
] and g[2
 + 1]. Similarly, the (N/2)-point DFT H [k] can
be obtained by combining the (N/4)-point DFTs of the sequences h[2
] and h[2
 + 1].
Thus, if the 4-point DFTs in Figure 9.4 are computed according to Eqs. (9.23) and
(9.24), then that computation would be carried out as indicated in Figure 9.5. Inserting
the computation of Figure 9.5 into the flow graph of Figure 9.4, we obtain the complete
flow graph of Figure 9.6, where we have expressed the coefficients in terms of powers
of WN rather than powers of WN/2, using the fact that WN/2 = W 2

N .
For the 8-point DFT that we have been using as an illustration, the computation

has been reduced to a computation of 2-point DFTs. For example, the 2-point DFT of
the sequence consisting of x[0] and x[4] is depicted in Figure 9.7. With the computation
of Figure 9.7 inserted in the flow graph of Figure 9.6, we obtain the complete flow graph
for computation of the 8-point DFT, as shown in Figure 9.9.

6For simplicity, we assume that N is large, so that (N − 1) can be approximated accurately by N .

728 Chapter 9 Computation of the Discrete Fourier Transform

x [0] G [0]

x [4] G [1]

WN/2
0

WN/2
1

WN/2
2

WN/2
3

x [2] G [2]

x [6] G [3]

N
4

DFT

– point

N
4

DFT

– point Figure 9.5 Flow graph of the
decimation-in-time decomposition of an
(N/2)-point DFT computation into two
(N/4)-point DFT computations (N = 8).

x [0] X [0]

x [4] X [1]

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

WN
6

WN
4

WN
0

WN
0

WN
4

WN
6

WN
2

WN
2

x [2] X [2]

x [6] X [3]

N
4

DFT

– point

N
4

DFT

– point

x [1] X [4]

x [5] X [5]

x [3] X [6]

x [7] X [7]

N
4

DFT

– point

N
4

DFT

– point

Figure 9.6 Result of substituting the structure of Figure 9.5 into Figure 9.4.

WN = 10

W2 = WN = –1N/2
x [4]

x [0]

Figure 9.7 Flow graph of a
2-point DFT.

For the more general case, but with N still a power of 2, we would proceed by
decomposing the (N/4)-point transforms in Eqs. (9.23) and (9.24) into (N/8)-point
transforms and continue until we were left with only 2-point transforms. This requires
ν = log2 N stages of computation. Previously, we found that in the original decomposi-
tion of an N -point transform into two (N/2)-point transforms, the number of complex
multiplications and additions required was N + 2(N/2)2. When the (N/2)-point trans-
forms are decomposed into (N/4)-point transforms, the factor of (N/2)2 is replaced by

Section 9.2 Decimation-in-Time FFT Algorithms 729

WN
r

WN
(r + N/2)

mth

stage
(m – 1)st

stage

Figure 9.8 Flow graph of basic
butterfly computation in Figure 9.9.

WN
0

WN
0 WN

0

WN
4

x [0] X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]

x [4]

x [2]

x [6]

x [1]

x [5]

x [3]

x [7]

WN
4

WN
4

WN
4

WN
0

WN
0

WN
0

WN
2 WN

1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7WN

6

WN
4

WN
6

WN
2

WN
0

WN
4

Figure 9.9 Flow graph of complete decimation-in-time decomposition of an
8-point DFT computation.

N/2 + 2(N/4)2, so the overall computation then requires N + N + 4(N/4)2 complex
multiplications and additions. If N = 2ν , this can be done at most ν = log2 N times,
so that after carrying out this decomposition as many times as possible, the number of
complex multiplications and additions is equal to Nν = N log2 N .

The flow graph of Figure 9.9 displays the operations explicitly. By counting branches
with transmittances of the form Wr

N , we note that each stage has N complex multiplica-
tions and N complex additions. Since there are log2 N stages, we have a total of N log2 N

complex multiplications and additions. This can be a substantial computational saving.
For example, if N = 210 = 1024, then N2 = 220 = 1,048,576, and N log2 N = 10,240, a
reduction of more than two orders of magnitude!

The computation in the flow graph of Figure 9.9 can be reduced further by exploit-
ing the symmetry and periodicity of the coefficients Wr

N . We first note that, in proceeding
from one stage to the next in Figure 9.9, the basic computation is in the form of Fig-
ure 9.8, i.e., it involves obtaining a pair of values in one stage from a pair of values in the
preceding stage, where the coefficients are always powers of WN and the exponents are

730 Chapter 9 Computation of the Discrete Fourier Transform

WN
r

mth

stage

–1

(m – 1)st

stage

Figure 9.10 Flow graph of simplified
butterfly computation requiring only one
complex multiplication.

separated by N/2. Because of the shape of the flow graph, this elementary computation
is called a butterfly. Since

W
N/2
N = e−j (2π/N)N/2 = e−jπ = −1, (9.25)

the factor W
r+N/2
N can be written as

W
r+N/2
N = W

N/2
N Wr

N = −Wr
N. (9.26)

With this observation, the butterfly computation of Figure 9.8 can be simplified to the
form shown in Figure 9.10, which requires one complex addition and one complex
subtraction, but only one complex multiplication instead of two. Using the basic flow
graph of Figure 9.10 as a replacement for butterflies of the form of Figure 9.8, we obtain
from Figure 9.9 the flow graph of Figure 9.11. In particular, the number of complex
multiplications has been reduced by a factor of 2 over the number in Figure 9.9.

Figure 9.11 shows log2 N stages of computation each involving a set of N/2 2-
point DFT computations (butterflies). Between the sets of 2-point transforms are com-

WN

x [0] X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x [4]

x [2]

x [6]

x [1]

x [5]

x [3]

x [7]

0

WN
0

WN
0

WN

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

0 WN
2 WN

3

WN
2

WN
1

WN
0

WN
0

WN
2

WN
0

Figure 9.11 Flow graph of 8-point DFT
using the butterfly computation of
Figure 9.10.

Section 9.2 Decimation-in-Time FFT Algorithms 731

plex multipliers of the form Wr
N . These complex multipliers have been called “twiddle

factors” because they serve as adjustments in the process of converting the 2-point
transforms into longer transforms.

9.2.1 Generalization and Programming the FFT

The flow graph of Figure 9.11, which describes an algorithm for computation of an
8-point discrete Fourier transform, is easily generalized to any N = 2ν , so it serves
both as a proof that the computation requires on the order of N log N operations and
as a graphical representation from which an implementation program could be writ-
ten. While programs in high-level computer languages are widely available, it may be
necessary in some cases to construct a program for a new machine architecture or to
optimize a given program to take advantage of low-level features of a given machine
architecture. A refined analysis of the diagram reveals many details that are important
for programming or for designing special hardware for computing the DFT. We call
attention to some of these details in Sections 9.2.2 and 9.2.3 for the decimation-in-time
algorithms and in Sections 9.3.1 and 9.3.2 for the decimation-in-frequency algorithms.
In Section 9.4 we discuss some additional practical considerations. While these sections
are not essential for obtaining a basic understanding of FFT principles, they provide
useful guidance for programming and system design.

9.2.2 In-Place Computations

The essential features of the flow graph of Figure 9.11 are the branches connecting the
nodes and the transmittance of each of these branches. No matter how the nodes in
the flow graph are rearranged, it will always represent the same computation, provided
that the connections between the nodes and the transmittances of the connections are
maintained. The particular form for the flow graph in Figure 9.11 arose out of deriving
the algorithm by separating the original sequence into the even-numbered and odd-
numbered points and then continuing to create smaller and smaller subsequences in
the same way. An interesting by-product of this derivation is that this flow graph, in
addition to describing an efficient procedure for computing the discrete Fourier trans-
form, also suggests a useful way of storing the original data and storing the results of
the computation in intermediate arrays.

To see this, it is useful to note that according to Figure 9.11, each stage of the com-
putation takes a set of N complex numbers and transforms them into another set of N

complex numbers through basic butterfly computations of the form of Figure 9.10. This
process is repeated ν = log2 N times, resulting in the computation of the desired dis-
crete Fourier transform. When implementing the computations depicted in Figure 9.11,
we can imagine the use of two arrays of (complex) storage registers, one for the array
being computed and one for the data being used in the computation. For example, in
computing the first array in Figure 9.11, one set of storage registers would contain the
input data and the second set would contain the computed results for the first stage.
While the validity of Figure 9.11 is not tied to the order in which the input data are
stored, we can order the set of complex numbers in the same order that they appear
in the figure (from top to bottom). We denote the sequence of complex numbers re-

732 Chapter 9 Computation of the Discrete Fourier Transform

WN
r

Xm – 1[p]

Xm – 1[q]

Xm[p]

Xm[q]
–1 Figure 9.12 Flow graph of Eqs. (9.28).

sulting from the mth stage of computation as Xm[
], where
 = 0, 1, . . . , N − 1, and
m = 1, 2, . . . , ν. Furthermore, for convenience, we define the set of input samples as
X0[
]. We can think of Xm−1[
] as the input array and Xm[
] as the output array for the
mth stage of the computations. Thus, for the case of N = 8, as in Figure 9.11,

X0[0] = x[0],
X0[1] = x[4],
X0[2] = x[2],
X0[3] = x[6],
X0[4] = x[1],
X0[5] = x[5],
X0[6] = x[3],
X0[7] = x[7].

(9.27)

Using this notation, we can label the input and output of the butterfly computation in
Figure 9.10 as indicated in Figure 9.12, with the associated equations

Xm[p] = Xm−1[p] + Wr
NXm−1[q], (9.28a)

Xm[q] = Xm−1[p] − Wr
NXm−1[q]. (9.28b)

In Eqs. (9.28), p, q, and r vary from stage to stage in a manner that is readily
inferred from Figure 9.11 and from Eqs. (9.21), (9.23), and (9.24) and. It is clear from
Figures 9.11 and 9.12 that only the complex numbers in locations p and q of the (m−1)st

array are required to compute the elements p and q of the mth array. Thus, only one
complex array of N storage registers is physically necessary to implement the complete
computation if Xm[p] and Xm[q] are stored in the same storage registers as Xm−1[p] and
Xm−1[q], respectively. This kind of computation is commonly referred to as an in-place
computation. The fact that the flow graph of Figure 9.11 (or Figure 9.9) represents an
in-place computation is tied to the fact that we have associated nodes in the flow graph
that are on the same horizontal line with the same storage location and the fact that the
computation between two arrays consists of a butterfly computation in which the input
nodes and the output nodes are horizontally adjacent.

In order that the computation may be done in place as just discussed, the input
sequence must be stored (or at least accessed) in a nonsequential order, as shown in
the flow graph of Figure 9.11. In fact, the order in which the input data are stored and
accessed is referred to as bit-reversed order. To see what is meant by this terminology,
we note that for the 8-point flow graph that we have been discussing, three binary digits

Section 9.2 Decimation-in-Time FFT Algorithms 733

x [n2n1n0]

x [000]

x [001]

x [010]

x [011]

x [100]

x [101]

x [110]

x [111]

n2

0

1

0

0

1

1

0

0

0

0

1

1

1

1

n1 n0

Figure 9.13 Tree diagram depicting
normal-order sorting.

are required to index through the data. Writing the indices in Eqs. (9.27) in binary form,
we obtain the following set of equations:

X0[000] = x[000],
X0[001] = x[100],
X0[010] = x[010],
X0[011] = x[110],
X0[100] = x[001],
X0[101] = x[101],
X0[110] = x[011],
X0[111] = x[111].

(9.29)

If (n2, n1, n0) is the binary representation of the index of the sequence x[n], then the
sequence value x[n2, n1, n0] is stored in the array position X0[n0, n1, n2]. That is, in
determining the position of x[n2, n1, n0] in the input array, we must reverse the order
of the bits of the index n.

Consider the process depicted in Figure 9.13 for sorting a data sequence in normal
order by successive examination of the bits representing the data index. If the most
significant bit of the data index is zero, x[n] belongs in the top half of the sorted array;
otherwise it belongs in the bottom half. Next, the top half and bottom half subsequences
can be sorted by examining the second most significant bit, and so on.

To see why bit-reversed order is necessary for in-place computation, recall the
process that resulted in Figure 9.9 and Figure 9.11. The sequence x[n] was first divided
into the even-numbered samples, with the even-numbered samples occurring in the top
half of Figure 9.4 and the odd-numbered samples occurring in the bottom half. Such
a separation of the data can be carried out by examining the least significant bit [n0]
in the index n. If the least significant bit is 0, the sequence value corresponds to an
even-numbered sample and therefore will appear in the top half of the array X0[
],
and if the least significant bit is 1, the sequence value corresponds to an odd-numbered

734 Chapter 9 Computation of the Discrete Fourier Transform

x [n2n1n0]

x [000]

x [100]

x [010]

x [110]

x [001]

x [101]

x [011]

x [111]

n0

0

1

0

0

1

1

0

0

0

0

1

1

1

1

n1 n2

Figure 9.14 Tree diagram depicting
bit-reversed sorting.

sample and consequently will appear in the bottom half of the array. Next, the even-
and odd-indexed subsequences are sorted into their even- and odd-indexed parts, and
this can be done by examining the second least significant bit in the index. Considering
first the even-indexed subsequence, if the second least significant bit is 0, the sequence
value is an even-numbered term in the subsequence, and if the second least significant
bit is 1, then the sequence value has an odd-numbered index in this subsequence. The
same process is carried out for the subsequence formed from the original odd-indexed
sequence values. This process is repeated until N subsequences of length 1 are obtained.
This sorting into even- and odd-indexed subsequences is depicted by the tree diagram
of Figure 9.14.

The tree diagrams of Figures 9.13 and 9.14 are identical, except that for normal
sorting, we examine the bits representing the index from left to right, whereas for the
sorting leading naturally to Figure 9.9 or 9.11, we examine the bits in reverse order, right
to left, resulting in bit-reversed sorting. Thus, the necessity for bit-reversed ordering of
the sequencex[n] results from the manner in which the DFT computation is decomposed
into successively smaller DFT computations in arriving at Figures 9.9 and 9.11.

9.2.3 Alternative Forms

Although it is reasonable to store the results of each stage of the computation in the
order in which the nodes appear in Figure 9.11, it is certainly not necessary to do so.
No matter how the nodes of Figure 9.11 are rearranged, the result will always be a valid
computation of the discrete Fourier transform of x[n], as long as the branch transmit-
tances are unchanged. Only the order in which data are accessed and stored will change.
If we associate the nodes with indexing of an array of complex storage locations, it is
clear from our previous discussion that a flow graph corresponding to an in-place com-
putation results only if the rearrangement of nodes is such that the input and output
nodes for each butterfly computation are horizontally adjacent. Otherwise two complex
storage arrays will be required. Figure 9.11, is, of course, such an arrangement. Another

Section 9.2 Decimation-in-Time FFT Algorithms 735

is depicted in Figure 9.15. In this case, the input sequence is in normal order and the
sequence of DFT values is in bit-reversed order. Figure 9.15 can be obtained from Fig-
ure 9.11 as follows: All the nodes that are horizontally adjacent to x[4] in Figure 9.11
are interchanged with all the nodes horizontally adjacent to x[1]. Similarly, all the nodes
that are horizontally adjacent to x[6] in Figure 9.11 are interchanged with those that are
horizontally adjacent to x[3]. The nodes horizontally adjacent to x[0], x[2], x[5], and
x[7] are not disturbed. The resulting flow graph in Figure 9.15 corresponds to the form
of the decimation-in-time algorithm originally given by Cooley and Tukey (1965).

The only difference between Figures 9.11 and 9.15 is in the ordering of the nodes.
This implies that Figures 9.11 and 9.15 represent two different programs for carrying
out the computations. The branch transmittances (powers of WN) remain the same,
and therefore the intermediate results will be exactly the same—they will be computed
in a different order within each stage. There are, of course, a large variety of possible
orderings. However, most do not make much sense from a computational viewpoint. As
one example, suppose that the nodes are ordered such that the input and output both
appear in normal order. A flow graph of this type is shown in Figure 9.16. In this case,
however, the computation cannot be carried out in place because the butterfly structure
does not continue past the first stage. Thus, two complex arrays of length N would be
required to perform the computation depicted in Figure 9.16.

In realizing the computations depicted by Figures 9.11, 9.15, and 9.16, it is clearly
necessary to access elements of intermediate arrays in non-sequential order. Thus, for
greater computational speed, the complex numbers must be stored in random-access
memory.7 For example, in the computation of the first array in Figure 9.11 from the
input array, the inputs to each butterfly computation are adjacent node variables and
are thought of as being stored in adjacent storage locations. In the computation of
the second intermediate array from the first, the inputs to a butterfly are separated by
two storage locations; and in the computation of the third array from the second, the
inputs to a butterfly computation are separated by four storage locations. If N > 8, the
separation between butterfly inputs is 8 for the fourth stage, 16 for the fifth stage, and
so on. The separation in the last (νth) stage is N/2.

In Figure 9.15 the situation is similar in that, to compute the first array from the
input data we use data separated by 4, to compute the second array from the first array we
use input data separated by 2, and then finally, to compute the last array we use adjacent
data. It is straightforward to imagine simple algorithms for modifying index registers
to access the data in the flow graph of either Figure 9.11 or Figure 9.15 if the data are
stored in random-access memory. However, in the flow graph of Figure 9.16, the data are
accessed non-sequentially, the computation is not in place, and a scheme for indexing
the data is considerably more complicated than in either of the two previous cases.
Even given the availability of large amounts of random-access memory, the overhead
for index computations could easily nullify much of the computational advantage that
is implied by eliminating multiplications and additions. Consequently, this structure has
no apparent advantages.

7When the Cooley–Tukey algorithms first appeared in 1965, digital memory was expensive and of
limited size. The size and availability of random access memory is no longer an issue except for exceedingly
large values of N .

x [0] X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

x [1]

x [2]

x [3]

x [4]

x [5]

x [6]

x [7]

WN
0

WN
0

WN

–1

–1

–1

–1–1

–1

–1

–1

–1

–1

–1

–1

0

WN
0

WN
2 WN

3

WN
2

WN
1

WN
2

WN
0

WN
0

WN
0

Figure 9.15 Rearrangement of
Figure 9.11 with input in normal order
and output in bit-reversed order.

x [0] X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]

x [1]

x [2]

x [3]

x [4]

x [5]

x [6]

x [7]

WN
0

WN
0

WN

–1

–1

–1

–1–1

–1

–1

–1

–1

0

WN
0

WN
2 WN

3

WN
1

WN
2

WN
2

WN
0

WN
0

WN
0

–1

–1

–1

Figure 9.16 Rearrangement of
Figure 9.11 with both input and output in
normal order.

x [0] X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]

x [4]

x [2]

x [6]

x [1]

x [5]

x [3]

x [7]

WN
0

WN
0

WN
0

WN

–1

–1–1

–1

–1–1

–1

–1

0 WN
2 WN

3

WN
1

WN
2WN

2

WN
0

WN
0 WN

0

–1

–1

–1

–1

Figure 9.17 Rearrangement of
Figure 9.11 having the same geometry
for each stage, thereby simplifying data
access.

736

Section 9.3 Decimation-in-Frequency FFT Algorithms 737

Some forms have advantages even if they do not allow in-place computation.
A rearrangement of the flow graph in Figure 9.11 that is particularly useful when an
adequate amount of random-access memory is not available is shown in Figure 9.17. This
flow graph represents the decimation-in-time algorithm originally given by Singleton
(1969). Note first that in this flow graph the input is in bit-reversed order and the output
is in normal order. The important feature of the flow graph is that the geometry is
identical for each stage; only the branch transmittances change from stage to stage. This
makes it possible to access data sequentially. Suppose, for example that we have four
separate mass-storage files, and suppose that the first half of the input sequence (in
bit-reversed order) is stored in one file and the second half is stored in a second file.
Then the sequence can be accessed sequentially in files 1 and 2 and the results written
sequentially on files 3 and 4, with the first half of the new array being written to file 3
and the second half to file 4. Then at the next stage of computation, files 3 and 4 are the
input, and the output is written to files 1 and 2. This is repeated for each of the ν stages.

Such an algorithm could be useful in computing the DFT of extremely long se-
quences. This could mean values of N on the order of hundreds of millions since random-
access memories of giga-byte size are routinely available. Perhaps a more interesting
feature of the diagram in Figure 9.17 is that the indexing is very simple and it is the same
from stage-to-stage. With two banks of random-access memory, this algorithm would
have very simple index calculations.

9.3 DECIMATION-IN-FREQUENCY FFT ALGORITHMS

The decimation-in-time FFT algorithms are based on structuring the DFT computation
by forming smaller and smaller subsequences of the input sequence x[n]. Alternatively,
we can consider dividing the DFT sequence X[k] into smaller and smaller subsequences
in the same manner. FFT algorithms based on this procedure are commonly called
decimation-in-frequency algorithms.

To develop this class of FFT algorithms, we again restrict the discussion to N

a power of 2 and consider computing separately the N/2 even-numbered frequency
samples and the N/2 odd-numbered frequency samples. We have depicted this in the
block diagram representation in Figure 9.18 where X0[k] = X[2k] and X1[k] = X[2k+1].
In shifting left by 1 DFT sample so that the compressor selects the odd-indexed samples,
it is important to remember that the DFT X[k] is implicitly periodic with period N . This
is denoted “Circular Left Shift 1” (and correspondingly “Circular Right Shift 1”) in
Figure 9.18. Observe that this diagram has a similar structure to Figure 9.3, where the
same operations were applied to the time sequence x[n] instead of the DFT X[k]. In
this case, Figure 9.18 directly depicts the fact that the N -point transform X[k] can be
obtained by interleaving its even-indexed and odd-indexed samples after expansion by
a factor of 2.

Figure 9.18 is a correct representation of X[k], but in order to use it as the basis
for computing X[k], we first show that X[2k] and X[2k + 1] can be computed from
the time-domain sequence x[n]. In Section 8.4 we saw that the DFT is related to the
DTFT by sampling at frequencies 2πk/N with the result that the corresponding time-

738 Chapter 9 Computation of the Discrete Fourier Transform

X[k] X[k]
22

Circular
Left

Shift 1

Circular
Right
Shift 1

X0[k] = X[2k]

22
X1[k] = X[2k+ 1]

X[k + 1] 0 � k � N/2 − 1 0 � k � N − 1
Figure 9.18 Illustration of the basic
principle of decimation-in-frequency.

domain operation is time-aliasing with repetition length (period) N . As discussed in
Section 8.4, if N is greater than or equal to the length of the sequence x[n], the inverse
DFT yields the original sequence over 0 ≤ n ≤ N − 1 because the N -point copies of
x[n] do not overlap when time-aliased with repetition offset N . However, in Figure
9.18, the DFT is compressed by 2, which is equivalent to sampling the DTFT X(ejω) at
frequencies 2πk/(N/2). Thus, the implicit periodic time-domain signal represented by
X0[k] = X[2k] is

x̃0[n] =
∞∑

m=−∞
x[n + mN/2] − ∞ < n < ∞. (9.30)

Since x[n] has length N , only two of the shifted copies of x[n] overlap in the interval
0 ≤ n ≤ N/2 − 1, so the corresponding finite-length sequence x0[n] is

x0[n] = x[n] + x[n + N/2] 0 ≤ n ≤ N/2 − 1. (9.31a)

To obtain the comparable result for the odd-indexed DFT samples, recall that the cir-
cularly shifted DFT X[k + 1] corresponds to Wn

Nx[n] (see Property 6 of Table 8.2).
Therefore the N/2-point sequence x1[n] corresponding to X1[k] = X[2k + 1] is

x1[n] = x[n]Wn
N + x[n + N/2]Wn+N/2

N

= (x[n] − x[n + N/2])Wn
N 0 ≤ n ≤ N/2 − 1, (9.31b)

since W
N/2
N = −1.

From Eqs. (9.31a) and (9.31b), it follows that

X0[k] =
N/2−1∑
n=0

(x[n] + x[n + N/2])Wkn
N/2 (9.32a)

X1[k] =
N/2−1∑
n=0

[(x[n] − x[n + N/2])Wn
N]Wkn

N/2 (9.32b)

k = 0, 1, . . . , N/2 − 1.

Section 9.3 Decimation-in-Frequency FFT Algorithms 739

x [0] X [0]

x [1] X [2]

x [2] X [4]
X0[k]

x [3] X [6]

x [4] X [1]

x [5] X [3]

x [6] X [5]

x [7]
WN

X [7]

N
2

–1

–1

–1

–1

DFT

– point

N
2

DFT

– point

3

WN
2

WN
1

WN
0

X1[k]

Figure 9.19 Flow graph of decimation-in-frequency decomposition of an N -point
DFT computation into two (N/2)-point DFT computations (N = 8).

Equation (9.32a) is the (N/2)-point DFT of the sequence x0[n] obtained by adding the
second half of the input sequence to the first half. Equation (9.32b) is the (N/2)-point
DFT of the sequence x1[n] obtained by subtracting the second half of the input sequence
from the first half and multiplying the resulting sequence by Wn

N .
Thus, using Eqs. (9.32a) and (9.32b), the even-numbered and odd-numbered out-

put points of X[k] can be computed since X[2k] = X0[k] and X[2k + 1] = X1[k],
respectively. The procedure suggested by Eqs. (9.32a) and (9.32b) is illustrated for the
case of an 8-point DFT in Figure 9.19.

Proceeding in a manner similar to that followed in deriving the decimation-in-time
algorithm, we note that for N a power of 2, N/2 is divisible by 2 so the (N/2)-point DFTs
can be computed by computing the even-numbered and odd numbered output points
for those DFTs separately. As in the case of the procedure leading to Eqs. (9.32a)
and (9.32b), this is accomplished by combining the first half and the last half of the
input points for each of the (N/2)-point DFTs and then computing (N/4)-point DFTs.
The flow graph resulting from taking this step for the 8-point example is shown in
Figure 9.20. For the 8-point example, the computation has now been reduced to the
computation of 2-point DFTs, which are implemented by adding and subtracting the
input points, as discussed previously. Thus, the 2-point DFTs in Figure 9.20 can be
replaced by the computation shown in Figure 9.21, so the computation of the 8-point
DFT can be accomplished by the algorithm depicted in Figure 9.22. We again see log2 N

stages of 2-point transforms coupled together through twiddle factors that in this case
occur at the output of the 2-point transforms.

By counting the arithmetic operations in Figure 9.22 and generalizing to N = 2ν ,
we see that the computation of Figure 9.22 requires (N/2) log2 N complex multiplica-
tions and N log2 N complex additions. Thus, the total number of computations is the
same for the decimation-in-frequency and the decimation-in-time algorithms.

x [0] X [0]

x [1] X [4]

x [2] X [2]

x [3] X [6]

x [4] X [1]

x [5] X [5]

x [6] X [3]

x [7]
WN

X [7]

–1

–1

–1

–1

–1

–1

–1

–1

N
4

DFT

– point

N
4

DFT

– point

N
4

DFT

– point

N
4

DFT

– point
3

WN
2

WN
1

WN
0

WN
0

WN
2

WN
0

WN
2

Figure 9.20 Flow graph of
decimation-in-frequency decomposition
of an 8-point DFT into four 2-point DFT
computations.

Xν – 1[p]

Xν – 1[q] Xν[q]
WN

Xν[p]

–1

0

Figure 9.21 Flow graph of a typical
2-point DFT as required in the last stage
of decimation-in-frequency
decomposition.

x [0] X[0]

x [1] X[4]

x [2] X[2]

x [3] X[6]

x [4] X[1]

x [5] X[5]

x [6] X[3]

x [7]
WN

X [7]

–1

–1

–1

–1

–1

–1

–1

–1

–1

3

WN
2

WN
1

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
2

WN
0

WN
2

–1

–1

–1

Figure 9.22 Flow graph of complete
decimation-in-frequency decomposition
of an 8-point DFT computation.

740

Section 9.3 Decimation-in-Frequency FFT Algorithms 741

9.3.1 In-Place Computation

The flow graph in Figure 9.22 depicts one FFT algorithm based on decimation in fre-
quency. We can observe a number of similarities and also a number of differences in
comparing this graph with the flow graphs derived on the basis of decimation in time.
As with decimation in time, of course, the flow graph of Figure 9.22 corresponds to a
computation of the discrete Fourier transform, regardless of how the graph is drawn,
as long as the same nodes are connected to each other with the proper branch trans-
mittances. In other words, the flow graph of Figure 9.22 is not based on any assumption
about the order in which the input sequence values are stored. However, as was done
with the decimation-in-time algorithms, we can interpret successive vertical nodes in
the flow graph of Figure 9.22 as corresponding to successive storage registers in a digital
memory. In this case, the flow graph in Figure 9.22 begins with the input sequence in
normal order and provides the output DFT in bit-reversed order. The basic computa-
tion again has the form of a butterfly computation, although the butterfly is different
from that arising in the decimation-in-time algorithms. However, because of the but-
terfly nature of the computation, the flow graph of Figure 9.22 can be interpreted as an
in-place computation of the discrete Fourier transform.

9.3.2 Alternative Forms

A variety of alternative forms for the decimation-in-frequency algorithm can be ob-
tained by transposing the decimation-in-time forms developed in Section 9.2.3. If we
denote the sequence of complex numbers resulting from the mth stage of the computa-
tion as Xm[
], where
 = 0, 1, . . . , N − 1, and m = 1, 2, . . . , ν, then the basic butterfly
computation shown in Figure 9.23 has the form

Xm[p] = Xm−1[p] + Xm−1[q], (9.33a)

Xm[q] = (Xm−1[p] − Xm−1[q])Wr
N . (9.33b)

Comparing Figures 9.12 and 9.23 or Eqs. (9.28) and (9.33), it appears that the
butterfly computations are different for the two classes of FFT algorithms. However,
the two butterfly flow graphs are, in the terminology of Chapter 6, transposes of one
another. That is, if we reverse the direction of arrows and redefine the input and output
nodes in Figure 9.12, we obtain Figure 9.23 and vice-versa. Since the FFT flow graphs
consist of connected sets of butterflies, it is not surprising, therefore, that we also note

Xm – 1[p]

Xm – 1[q] Xm[q]
WN

Xm[p]

–1

r Figure 9.23 Flow graph of a typical
butterfly computation required in
Figure 9.22.

742 Chapter 9 Computation of the Discrete Fourier Transform

x [0] X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]x [7]

x [3]

x [5]

x [1]

x [6]

x [2]

x [4]
–1

–1

–1

–1 –1

–1

–1

–1

–1

–1

–1

–1

WN
0

WN
2

WN
1

WN
3 WN

2 WN
0

WN
0

WN
0

WN
0

WN
2

WN
0

WN
0

Figure 9.24 Flow graph of a
decimation-in-frequency DFT algorithm
obtained from Figure 9.22. Input in
bit-reversed order and output in normal
order. (Transpose of Figure 9.15.)

a resemblance between the FFT flow graphs of Figures 9.11 and 9.22. Specifically, Fig-
ure 9.22 can be obtained from Figure 9.11 by reversing the direction of signal flow and
interchanging the input and output. That is, Figure 9.22 is the transpose of the flow graph
in Figure 9.11. In Chapter 6 we stated a transposition theorem that applies only to single-
input/single-output flow graphs. When viewed as flow graphs, however, FFT algorithms
are multi-input/multi-output systems, which require a more general form of the transpo-
sition theorem. (See Claasen and Mecklenbräuker, 1978.) Nevertheless, it is intuitively
clear that the input–output characteristics of the flow graphs in Figures 9.11 and 9.22
are the same based simply on the above observation that the butterflies are transposes
of each other. This can be shown more formally by noting that the butterfly equations in
Eqs. (9.33) can be solved backward, starting with the output array. (Problem 9.31 out-
lines a proof of this result.) More generally, it is true that for each decimation-in-time
FFT algorithm, there exists a decimation-in-frequency FFT algorithm that corresponds
to interchanging the input and output and reversing the direction of all the arrows in
the flow graph.

This result implies that all the flow graphs of Section 9.2 have counterparts in the
class of decimation-in-frequency algorithms. This, of course, also corresponds to the fact
that, as before, it is possible to rearrange the nodes of a decimation-in-frequency flow
graph without altering the final result.

Applying the transposition procedure to Figure 9.15 leads to Figure 9.24. In this
flow graph, the output is in normal order and the input is in bit-reversed order. The
transpose of the flow graph of Figure 9.16 would lead to a flow graph with both the
input and output in normal order. An algorithm base on the resulting flow graph would
suffer from the same limitations as for Figure 9.16.

The transpose of Figure 9.17 is shown in Figure 9.25. Each stage of Figure 9.25 has
the same geometry, a property that simplifies data access, as discussed before.

Section 9.4 Practical Considerations 743

x [0] X [0]

X [4]

X [2]

X [6]

X [1]

X [5]

X [3]

X [7]x [7]

x [6]

x [5]

x [4]

x [3]

x [2]

x [1]

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

WN
0

WN
1

WN
2

WN
3

WN
0

WN
0

WN
2

WN
2

WN
0

WN
0

WN
0

WN
0

Figure 9.25 Rearrangement of
Figure 9.22 having the same geometry
for each stage, thereby simplifying data
access. (Transpose of Figure 9.17.)

9.4 PRACTICAL CONSIDERATIONS

In Sections 9.2 and 9.3, we discussed the basic principles of efficient computation of the
DFT when N is an integer power of 2. In these discussions, we favored the use of signal
flow graph representations rather than explicitly writing out in detail the equations that
such flow graphs represent. Of necessity, we have shown flow graphs for specific values
of N . However, by considering a flow graph such as that in Figure 9.11, for a specific
value of N , it is possible to see how to structure a general computational algorithm that
would apply to any N = 2v . While the discussion in Sections 9.2 and 9.3 is completely
adequate for a basic understanding of the FFT principles, the material of this section is
intended to provide useful guidance for programming and system design.

Although it is true that the flow graphs of the previous sections capture the essence
of the FFT algorithms that they depict, a variety of details must be considered in the
implementation of a given algorithm. In this section, we briefly suggest some of these.
Specifically, in Section 9.4.1 we discuss issues associated with accessing and storing data
in the intermediate arrays of the FFT. In Section 9.4.2 we discuss issues associated
with computing or accessing the branch coefficients in the flow graph. Our emphasis
is on algorithms for N a power of 2, but much of the discussion applies to the general
case as well. For purposes of illustration, we focus primarily on the decimation-in-time
algorithm of Figure 9.11.

9.4.1 Indexing

In the algorithm depicted in Figure 9.11, the input must be in bit-reversed order so
that the computation can be performed in place. The resulting DFT is then in normal
order. Generally, sequences do not originate in bit-reversed order, so the first step in the
implementation of Figure 9.11 is to sort the input sequence into bit-reversed order. As
can be seen from that figure and Eqs. (9.27) and (9.29), bit-reversed sorting can be done

744 Chapter 9 Computation of the Discrete Fourier Transform

in place, since samples are only pairwise interchanged; i.e., a sample at a given index is
interchanged with the sample in the location specified by the bit-reversed index. This
is conveniently done in place by using two counters, one in normal order and the other
in bit-reversed order. The data in the two positions specified by the two counters are
simply interchanged. Once the input is in bit-reversed order, we can proceed with the
first stage of computation. In this case, the inputs to the butterflies are adjacent elements
of the array X0[·]. In the second stage, the inputs to the butterflies are separated by 2. In
the mth stage, the butterfly inputs are separated by 2m−1. The coefficients are powers of
W

(N/2m)
N in the mth stage and are required in normal order if computation of butterflies

begins at the top of the flow graph of Figure 9.11. The preceding statements define the
manner in which data must be accessed at a given stage, which, of course, depends on
the flow graph that is implemented. For example, in the mth stage of Figure 9.15, the
butterfly spacing is 2v−m, and in this case the coefficients are required in bit-reversed
order. The input is in normal order; however, the output is in bit-reversed order, so it
generally would be necessary to sort the output into normal order by using a normal-
order counter and a bit-reversed counter, as discussed previously.

In general, if we consider all the flow graphs in Sections 9.2 and 9.3, we see that each
algorithm has its own characteristic indexing issues. The choice of a particular algorithm
depends on a number of factors. The algorithms utilizing an in-place computation have
the advantage of making efficient use of memory. Two disadvantages, however, are
that the kind of memory required is random-access rather than sequential memory
and that either the input sequence or the output DFT sequence is in bit-reversed order.
Furthermore, depending on whether a decimation-in-time or a decimation-in-frequency
algorithm is chosen and whether the inputs or the outputs are in bit-reversed order, the
coefficients are required to be accessed in either normal order or bit-reversed order. If
non-random-access sequential memory is used, some fast Fourier transform algorithms
utilize sequential memory, as we have shown, but either the inputs or the outputs must
be in bit-reversed order. While the flow graph for the algorithm can be arranged so that
the inputs, the outputs, and the coefficients are in normal order, the indexing structure
required to implement these algorithms is complicated, and twice as much random
access memory is required. Consequently, the use of such algorithms does not appear
to be advantageous.

The in-place FFT algorithms of Figures 9.11, 9.15, 9.22, and 9.24 are among the
most commonly used. If a sequence is to be transformed only once, then bit-reversed
sorting must be implemented on either the input or the output. However, in some
situations a sequence is transformed, the result is modified in some way, and then the
inverse DFT is computed. For example, in implementing FIR digital filters by block
convolution using the discrete Fourier transform, the DFT of a section of the input
sequence is multiplied by the DFT of the filter impulse response, and the result is inverse
transformed to obtain a segment of the output of the filter. Similarly, in computing
an autocorrelation function or cross-correlation function using the discrete Fourier
transform, a sequence will be transformed, the DFTs will be multiplied, and then the
resulting product will be inverse transformed. When two transforms are cascaded in
this way, it is possible, by appropriate choice of the FFT algorithms, to avoid the need
for bit reversal. For example, in implementing an FIR digital filter using the DFT,
we can choose an algorithm for the direct transform that utilizes the data in normal

Section 9.5 More General FFT Algorithms 745

order and provides a DFT in bit-reversed order. Either the flow graph corresponding
to Figure 9.15, based on decimation in time, or that of Figure 9.22, based on decimation
in frequency, could be used in this way. The difference between these two forms is that
the decimation-in-time form requires the coefficients in bit-reversed order, whereas the
decimation-in-frequency form requires the coefficients in normal order.

Note that Figure 9.11 utilizes coefficients in normal order, whereas Figure 9.24
requires the coefficients in bit-reversed order. If the decimation-in-time form of the
algorithm is chosen for the direct transform, then the decimation-in-frequency form
of the algorithm should be chosen for the inverse transform, requiring coefficients in
bit-reversed order. Likewise, the decimation-in-frequency algorithm for the direct trans-
form should be paired with the decimation-in-time algorithm for the inverse transform,
which would then utilize normally ordered coefficients.

9.4.2 Coefficients

We have observed that the coefficients Wr
N (twiddle factors) may be required in either

bit-reversed order or in normal order. In either case we must store a table sufficient
to look up all required values, or we must compute the values as needed. The first
alternative has the advantage of speed, but of course requires extra storage. We observe
from the flow graphs that we require Wr

N for r = 0, 1, . . . , (N/2) − 1. Thus, we require
N/2 complex storage registers for a complete table of values of Wr

N .8 In the case of
algorithms in which the coefficients are required in bit-reversed order, we can simply
store the table in bit-reversed order.

The computation of the coefficients as they are needed saves storage, but is less
efficient than storing a lookup table. If the coefficients are to be computed, it is generally
most efficient to use a recursion formula. At any given stage, the required coefficients
are all powers of a complex number of the form W

q
N , where q depends on the algorithm

and the stage. Thus, if the coefficients are required in normal order, we can use the
recursion formula

W
q

N = W

q
N · W

q(
−1)
N (9.34)

to obtain the
th coefficient from the (
−1)st coefficient. Clearly, algorithms that require
coefficients in bit-reversed order are not well suited to this approach. It should be
noted that Eq. (9.34) is essentially the coupled-form oscillator of Problem 6.21. When
using finite-precision arithmetic, errors can build up in the iteration of this difference
equation. Therefore, it is generally necessary to reset the value at prescribed points
(e.g., W

N/4
N = −j) so that errors do not become unacceptable.

9.5 MORE GENERAL FFT ALGORITHMS

The power-of-two algorithms discussed in detail in Sections 9.2 and 9.3 are straight-
forward, highly efficient and easy to program. However, there are many applications
where efficient algorithms for other values of N are very useful.

8This number can be reduced using symmetry at the cost of greater complexity in accessing desired
values.

746 Chapter 9 Computation of the Discrete Fourier Transform

9.5.1 Algorithms for Composite Values of N

Although the special case of N a power of 2 leads to algorithms that have a partic-
ularly simple structure, this is not the only restriction on N that can lead to reduced
computation for the DFT. The same principles that were applied in the power-of-two
decimation-in-time and decimation-in-frequency algorithms can be employed when N

is a composite integer, i.e., the product of two or more integer factors. For example, if
N = N1N2, it is possible to express the N-point DFT as either a combination of N1 N2-
point DFTs or as a combination of N2 N1-point DFTs, and thereby obtain reductions in
the number of computations. To see this, the indices n and k are represented as follows:

n = N2n1 + n2

{
n1 = 0, 1, . . . , N1 − 1
n2 = 0, 1, . . . , N2 − 1

(9.35a)

k = k1 + N1k2

{
k1 = 0, 1, . . . , N1 − 1
k2 = 0, 1, . . . , N2 − 1.

(9.35b)

Since N = N1N2, these index decompositions ensure that n and k range over all the
values 0, 1, . . . , N − 1. Substituting these representations of n and k into the definition
of the DFT leads after a few manipulations to

X[k] = X[k1 + N1k2]

=
N2−1∑
n2=0

⎡⎣⎛⎝N1−1∑
n1=0

x[N2n1 + n2]Wk1n1
N1

⎞⎠W
k1n2
N

⎤⎦W
k2n2
N2

, (9.36)

where k1 = 0, 1, . . . , N1 − 1 and k2 = 0, 1, . . . , N2 − 1. The part of Eq. (9.36) inside
the parentheses represents N2 N1-point DFTs, while the outer sum corresponds to N1
N2-point DFTs of the outputs of the first set of transforms occurring after modification
by the twiddle factors W

k1n2
N .

If N1 = 2 and N2 = N/2, Eq. (9.36) reduces to the first stage decomposition of
the decimation-in-frequency power-of-two algorithm depicted in Figure 9.19 of Section
9.3, which consists of N/2 2-point transforms followed by two N/2-point transforms.
Conversely, if N1 = N/2 and N2 = 2, Eq. (9.36) reduces to the first stage decomposition
of the decimation-in-time power-of-two algorithm depicted in Figure 9.4 Section 9.2,
which consists of two N/2-point transforms followed by N/2 2-point transforms.9

Cooley–Tukey algorithms for general composite N are obtained by first doing the
N1-point transforms and then again applying Eq. (9.36) to another remaining factor N2
of N/N1 until all the factors of N have been used. The repeated application of Eq. (9.36)

9For Figure 9.4 to be an exact representation of Eq. (9.36), the two-point butterflies of the last stage
must be replaced by the butterflies of Figure 9.10.

Section 9.5 More General FFT Algorithms 747

0 50 100 150 200 250
0

1

2

3

4

5

6
� 105 Number of FLOPS for MATLAB FFT Function

Transform length N

N
um

be
r

of
 F

L
O

P
S

Figure 9.26 Number of floating-point operations as a function of N for MATLAB
fft() function (revision 5.2).

leads to decompositions similar to the power-of-two algorithms. These algorithms re-
quire only slightly more complicated indexing than the power of 2 case. If the factors
of N are relatively prime, the number of multiplications can be further reduced at the
cost of more complicated indexing. The “prime factor” algorithms use different index
decompositions from those of Eqs. (9.35a) and (9.35b) so as to eliminate the twiddle
factors in Eq. (9.36), and thus save a significant amount of computation. The details of
the more general Cooley–Tukey and prime factor algorithms are discussed in Burrus
and Parks (1985), Burrus (1988), and Blahut (1985).

As an illustration of what can be achieved using such prime factor algorithms,
consider the measurements plotted in Figure 9.26. These measurements of the number
of floating-point operations (FLOPS) as a function of N are for MATLAB’s fft()
function in Rev. 5.2 of MATLAB.10 As we have discussed, the total number of floating
point operations should be proportional to N log2 N for N a power of two and propor-
tional to N2 for direct computation. For other values of N the total operation count will
be dependent on the number (and cardinality) of the factors.

When N is a prime number, direct evaluation is required so the number of FLOPS
will be proportional to N2. The upper (solid) curve in Figure 9.26 shows the function

FLOPS(N) = 6N2 + 2N(N − 1). (9.37)
All the points falling on this curve are for values N a prime number. The lower dashed
curve shows the function

FLOPS(N) = 6N log2 N. (9.38)

10This graph was created with a modified version of a program written by C. S. Burrus. Since it is
no longer possible to measure the number of floating-point operations in recent revisions of MATLAB, the
reader may not be able to repeat this experiment.

748 Chapter 9 Computation of the Discrete Fourier Transform

The points falling on this curve are all for N a power of two. For other composite
numbers the number of operations falls between the two curves. To see how efficiency
varies from integer to integer, consider values of N from 199 to 202. The number 199 is
a prime, so the number of operations (318004) falls on the maximum curve. The value
N = 200 has the factorization N = 2 · 2 · 2 · 5 · 5, and the number of operations (27134)
is near the minimum curve. For N = 201 = 3 · 67, the number of FLOPS is 113788, and
for N = 202 = 2 · 101 the number is 167676. This wide difference between N = 201
and N = 202 is because a 101-point transform requires much more computation than
a 67-point transform. Also note that when N has many small factors (such as N = 200)
the efficiency is much greater.

9.5.2 Optimized FFT Algorithms

An FFT algorithm is based on the mathematical decomposition of the DFT into a com-
bination of smaller transforms as we showed in detail in Sections 9.2 and 9.3. The FFT
algorithm can be expressed in a high-level programming language that can be translated
into machine-level instructions by compilers running on the target machine. In general,
this will lead to implementations whose efficiency will vary with machine architecture.
To address the issue of maximizing efficiency over a range of machines, Frigo and John-
son (1998 and 2005), developed a free-software library called FFTW (“Fastest Fourier
Transform in the West”). FFTW uses a “planner” to adapt its generalized Coley–Tukey-
type FFT algorithms to a given hardware platform, thereby maximizing efficiency. The
system operates in two stages, the first being a planning stage in which the computations
are organized so as to optimize performance on the given machine, and the second being
a computation stage where the resulting plan (program) is executed. Once the plan is
determined for a given machine, it can be executed on that machine as many times as
needed. The details of FFTW are beyond our scope here. However, Frigo and Johnson,
2005 have shown that over a wide range of host machines, the FFTW algorithm is sig-
nificantly faster than other implementations for values of N ranging from about 16 up
to 8192. Above 8192, the performance of FFTW drops drastically due to memory cache
issues.

9.6 IMPLEMENTATION OF THE DFT USING
CONVOLUTION

Because of the dramatic efficiency of the FFT, convolution is often implemented by
explicitly computing the inverse DFT of the product of the DFTs of each sequence to be
convolved, where an FFT algorithm is used to compute both the forward and the inverse
DFTs. In contrast, and even in apparent (but, of course, not actual) contradiction, it is
sometimes preferable to compute the DFT by first reformulating it as a convolution.
We have already seen an example of this in the Goertzel algorithm. A number of other,
more sophisticated, procedures are based on this approach as discussed in the following
sections.

Section 9.6 Implementation of the DFT Using Convolution 749

9.6.1 Overview of the Winograd Fourier Transform
Algorithm

One procedure proposed and developed by S. Winograd (1978), often referred to as
the Winograd Fourier transform algorithm (WFTA), achieves its efficiency by express-
ing the DFT in terms of polynomial multiplication or, equivalently, convolution. The
WFTA uses an indexing scheme corresponding to the decomposition of the DFT into a
multiplicity of short-length DFTs where the lengths are relatively prime. Then the short
DFTs are converted into periodic convolutions. A scheme for converting a DFT into a
convolution when the number of input samples is prime was proposed by Rader (1968),
but its application awaited the development of efficient methods for computing periodic
convolutions. Winograd combined all of the foregoing procedures together with highly
efficient algorithms for computing cyclic convolutions into a new approach to com-
puting the DFT. The techniques for deriving efficient algorithms for computing short
convolutions are based on relatively advanced number-theoretic concepts, such as the
Chinese remainder theorem for polynomials, and consequently, we do not explore the
details here. However, excellent discussions of the details of the WFTA are available
in McClellan and Rader (1979), Blahut (1985), and Burrus (1988).

With the WFTA approach, the number of multiplications required for an N -point
DFT is proportional to N rather than N log N . Although this approach leads to algo-
rithms that are optimal in terms of minimizing multiplications, the number of additions
is significantly increased in comparison with the FFT. Therefore, the WFTA is most
advantageous when multiplication is significantly slower than addition, as is often the
case with fixed-point digital arithmetic. However, in processors where multiplication
and accumulation are tied together, the Cooley–Tukey or prime factor algorithms are
generally preferable. Additional difficulties with the WFTA are that indexing is more
complicated, in-place computation is not possible, and there are major structural dif-
ferences in algorithms for different values of N.

Thus, although the WFTA is extremely important as a benchmark for determining
how efficient the DFT computation can be (in terms of number of multiplications), other
factors often dominate in determining the speed and efficiency of a hardware or software
implementation of the DFT computation.

9.6.2 The Chirp Transform Algorithm

Another algorithm based on expressing the DFT as a convolution is referred to as
the chirp transform algorithm (CTA). This algorithm is not optimal in minimizing any
measure of computational complexity, but it has been useful in a variety of applications,
particularly when implemented in technologies that are well suited to doing convolu-
tion with a fixed, prespecified impulse response. The CTA is also more flexible than the
FFT, since it can be used to compute any set of equally spaced samples of the Fourier
transform on the unit circle.

To derive the CTA, we let x[n] denote an N -point sequence and X(ejω) its Fourier
transform. We consider the evaluation of M samples of X(ejω) that are equally spaced
in angle on the unit circle, as indicated in Figure 9.27, i.e., at frequencies

ωk = ω0 + k	ω, k = 0, 1, . . . , M − 1, (9.39)

750 Chapter 9 Computation of the Discrete Fourier Transform

Re

Im

(M – 1)Δ�
Unit
circle

�0

z-plane

Figure 9.27 Frequency samples for
chirp transform algorithm.

where the starting frequency ω0 and the frequency increment 	ω can be chosen arbi-
trarily. (For the specific case of the DFT, ω0 = 0, M = N , and 	ω = 2π/N .) The Fourier
transform corresponding to this more general set of frequency samples is given by

X(ejωk) =
N−1∑
n=0

x[n]e−jωkn, k = 0, 1, . . . , M − 1, (9.40)

or, with W defined as

W = e−j	ω (9.41)

and using Eq. (9.39),

X(ejωk) =
N−1∑
n=0

x[n]e−jω0nWnk. (9.42)

To express X(ejωk) as a convolution, we use the identity

nk = 1
2 [n2 + k2 − (k − n)2] (9.43)

to express Eq. (9.42) as

X(ejωk) =
N−1∑
n=0

x[n]e−jω0nWn2/2Wk2/2W−(k−n)2/2. (9.44)

Letting

g[n] = x[n]e−jω0nWn2/2, (9.45)

we can then write

X(ejωk) = Wk2/2

⎛⎝N−1∑
n=0

g[n]W−(k−n)2/2

⎞⎠ , k = 0, 1, . . . , M − 1. (9.46)

Section 9.6 Implementation of the DFT Using Convolution 751

x [n] g [n]
��

X(e jωn)

e –jω0 nW n 2/2 W n2/2

W –n 2/2

Figure 9.28 Block diagram of chirp
transform algorithm.

In preparation for interpreting Eq. (9.46) as the output of a linear time-invariant system,
we obtain more familiar notation by replacing k by n and n by k in Eq. (9.46):

X(ejωn) = Wn2/2

⎛⎝N−1∑
k=0

g[k]W−(n−k)2/2

⎞⎠ , n = 0, 1, . . . , M − 1. (9.47)

In the form of Eq. (9.47), X(ejωn) corresponds to the convolution of the sequence
g[n] with the sequence W−n2/2, followed by multiplication by the sequence Wn2/2. The
output sequence, indexed on the independent variable n, is the sequence of frequency
samples X(ejωn). With this interpretation, the computation of Eq. (9.47) is as depicted in
Figure 9.28. The sequence W−n2/2 can be thought of as a complex exponential sequence
with linearly increasing frequency n	w. In radar systems, such signals are called chirp
signals—hence the name chirp transform. A system similar to Figure 9.28 is commonly
used in radar and sonar signal processing for pulse compression (Skolnik, 2002).

For the evaluation of the Fourier transform samples specified in Eq. (9.47), we
need only compute the output of the system in Figure 9.28 over a finite interval. In
Figure 9.29, we depict illustrations of the sequences g[n], W−n2/2, and g[n] ∗ W−n2/2.
Since g[n] is of finite duration, only a finite portion of the sequence W−n2/2 is used in
obtaining g[n] ∗ W−n2/2 over the interval n = 0, 1, . . . , M − 1, specifically, that portion
from n = −(N − 1) to n = M − 1. Let us define

h[n] =
{

W−n2/2, −(N − 1) ≤ n ≤ M − 1,

0, otherwise,
(9.48)

as illustrated in Figure 9.30. It is easily verified by considering the graphical represen-
tation of the process of convolution that

g[n] ∗ W−n2/2 = g[n] ∗ h[n], n = 0, 1, . . . , M − 1. (9.49)

Consequently, the infinite-duration impulse responseW−n2/2 in the system of Figure 9.28
can be replaced by the finite-duration impulse response of Figure 9.30. The system is
now as indicated in Figure 9.31, where h[n] is specified by Eq. (9.48) and the frequency
samples are given by

X(ejωn) = y[n], n = 0, 1, . . . , M − 1. (9.50)

Evaluation of frequency samples using the procedure indicated in Figure 9.31 has
a number of potential advantages. In general, we do not require N = M as in the FFT
algorithms, and neither N nor M need be composite numbers. In fact, they may be
prime numbers if desired. Furthermore, the parameter ω0 is arbitrary. This increased
flexibility over the FFT does not preclude efficient computation, since the convolution
in Figure 9.31 can be implemented efficiently using an FFT algorithm with the technique

g [n]

n
(N – 1)

0

(a)

W –n2/2

g [n] * W –n2/2

n0

(b)

n
(M – 1)

0

(c)

......

......

Figure 9.29 An illustration of the sequences used in the chirp transform
algorithm. Note that the actual sequences involved are complex valued.
(a) g[n] = x [n]e−jω0nW n2/2. (b) W −n2/2. (c) g[n] ∗ W −n2/2.

h [n]

n
(M – 1)–(N – 1)

0

Figure 9.30 An illustration of the region of support for the FIR chirp filter. Note
that the actual values of h[n] as given by Eq. (9.48) are complex.

x [n] g [n] y [n]
��

e –jω0 nW n2/2 W n2/2

h [n]

Figure 9.31 Block diagram of chirp
transform system for finite-length
impulse response.

752

Section 9.6 Implementation of the DFT Using Convolution 753

of Section 8.7 to compute the convolution. As discussed in that section, the FFT size
must be greater than or equal to (M +N − 1) in order that the circular convolution will
be equal to g[n]∗h[n] for 0 ≤ n ≤ M−1. The FFT size is otherwise arbitrary and can, for
example, be chosen to be a power of 2. It is interesting to note that the FFT algorithms
used to compute the convolution implied by the CTA could be of the Winograd type.
These algorithms themselves use convolution to implement the DFT computation.

In the system of Figure 9.31 h[n] is noncausal, and for certain real-time implemen-
tations it must be modified to obtain a causal system. Since h[n] is of finite duration,
this modification is easily accomplished by delaying h[n] by (N − 1) to obtain a causal
impulse response:

h1[n] =
{

W−(n−N+1)2/2, n = 0, 1, . . . , M + N − 2,

0, otherwise.
(9.51)

Since both the chirp demodulation factor at the output and the output signal are also
delayed by (N − 1) samples, the Fourier transform values are

X(ejωn) = y1[n + N − 1], n = 0, 1, . . . , M − 1. (9.52)

Modifying the system of Figure 9.31 to obtain a causal system results in the system
of Figure 9.32. An advantage of this system stems from the fact that it involves the convo-
lution of the input signal (modulated with a chirp) with a fixed, causal impulse response.
Certain technologies, such as charge-coupled devices (CCD) and surface acoustic wave
(SAW) devices, are particularly useful for implementing convolution with a fixed, pre-
specified impulse response. These devices can be used to implement FIR filters, with the
filter impulse response being specified at the time of fabrication by a geometric pattern
of electrodes. A similar approach was followed by Hewes, Broderson and Buss (1979)
in implementing the CTA with CCDs.

Further simplification of the CTA results when the frequency samples to be com-
puted correspond to the DFT, i.e., when ω0 = 0 and W = e−j2π/N , so that ωn = 2πn/N .
In this case, it is convenient to modify the system of Figure 9.32. Specifically, with ω0 = 0
and W = e−j2π/N = WN , consider applying an additional unit of delay to the impulse
response in Figure 9.32. With N even, WN

N = ej2π = 1, so

W
−(n−N)2/2
N = W

−n2/2
N . (9.53)

Therefore, the system now is as shown in Figure 9.33, where

h2[n] =
{

W
−n2/2
N , n = 1, 2, . . . , M + N − 1,

0, otherwise.
(9.54)

In this case, the chirp signal modulating x[n] and the chirp signal modulating the output
of the FIR filter are identical, and

X(ej2πn/N) = y2[n + N], n = 0, 1, . . . , M − 1. (9.55)

x [n] g [n] y1[n]
��

e –jω0 nW n2/2 W (n – N + 1)2/2

h1[n]

Figure 9.32 Block diagram of chirp
transform system for causal finite-length
impulse response.

754 Chapter 9 Computation of the Discrete Fourier Transform

x [n] g [n] y2[n]
��

W (n – N)2/2 = W n2/2W n2/2

h2[n]

N NN

Figure 9.33 Block diagram of chirp
transform system for obtaining DFT
samples.

Example 9.1 Chirp Transform Parameters

Suppose we have a finite-length sequence x[n] that is nonzero only on the interval
n = 0, . . . , 25, and we wish to compute 16 samples of the DTFT X(ejω) at the fre-
quencies ωk = 2π/27 + 2πk/1024 for k = 0, . . . , 15. We can compute the desired
frequency samples through convolution with a causal impulse response using the sys-
tem in Figure 9.32 with an appropriate choice of parameters. We set M = 16, the
number of samples desired, and N = 26, the length of the sequence. The frequency of
the initial sample, ω0, is 2π/27, while the interval between adjacent frequency samples,
	ω, is 2π/1024. With these choices for the parameters, we know from Eq. (9.41) that
W = e−j	ω, and so the causal impulse response we desire is from Eq. (9.51)

h1[n] =
{

[e−j2π/1024]−(n−25)2/2, n = 0, . . . , 40,

0, otherwise.

For this causal impulse response, the output y1[n] will be the desired frequency samples
beginning at y1[25], i.e.,

y1[n + 25] = X(ejωn)|ωn=2π/27+2πn/1024, n = 0, . . . , 15.

An algorithm similar to the CTA was first proposed by Bluestein (1970), who
showed that a recursive realization of Figure 9.32 can be obtained for the case
	ω = 2π/N, N a perfect square. (See Problem 9.48.) Rabiner, Schafer and Rader
(1969) generalized this algorithm to obtain samples of the z-transform equally spaced
in angle on a spiral contour in the z-plane. This more general form of the CTA was
called the chirp z-transform (CZT) algorithm. The algorithm that we have called the
CTA is a special case of the CZT algorithm.

9.7 EFFECTS OF FINITE REGISTER LENGTH

Since the fast Fourier transform algorithm is widely used for digital filtering and spec-
trum analysis, it is important to understand the effects of finite register length in the
computation. As in the case of digital filters, a precise analysis of the effects is difficult.
However, a simplified analysis is often sufficient for the purpose of choosing the required
register length. The analysis that we will present is similar in style to that carried out
in Section 6.9. Specifically, we analyze arithmetic round-off by means of a linear-noise
model obtained by inserting an additive noise source at each point in the computation
algorithm where round-off occurs. Furthermore, we will make a number of assumptions
to simplify the analysis. The results that we obtain lead to several simplified, but useful,
estimates of the effect of arithmetic round-off. Although the analysis is for rounding, it
is generally easy to modify the results for truncation.

Section 9.7 Effects of Finite Register Length 755

x [0]

x [4] X [1]

X [0]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]

x [2]

x [6]

x [1]

x [5]

x [3]

x [7]

WN
0

WN
2

WN
0

WN
2

WN
0

WN
1

WN
2

WN
3

–1

–1 –1 –1

–1

–1

–1

–1

–1

–1

–1

–1

Figure 9.34 Flow graph for
decimation-in-time FFT algorithm.

We have seen several different algorithmic structures for the FFT. However, the
effects of round-off noise are very similar among the different classes of algorithms.
Therefore, even though we consider only the radix-2 decimation-in-time algorithm, our
results are representative of other forms as well.

The flow graph depicting a decimation-in-time algorithm for N = 8 was shown
in Figure 9.11 and is reproduced in Figure 9.34. Some key aspects of this diagram are
common to all standard radix-2 algorithms. The DFT is computed in ν = log2 N stages.
At each stage a new array of N numbers is formed from the previous array by linear
combinations of the elements, taken two at a time. The νth array contains the desired
DFT. For radix-2 decimation-in-time algorithms, the basic 2-point DFT computation is
of the form

Xm[p] = Xm−1[p] + Wr
NXm−1[q], (9.56a)

Xm[q] = Xm−1[p] − Wr
NXm−1[q]. (9.56b)

Here the subscripts m and (m − 1) refer to the mth array and the (m − 1)st array,
respectively, and p and q denote the location of the numbers in each array. (Note that
m = 0 refers to the input array and m = ν refers to the output array.) A flow graph
representing the butterfly computation is shown in Figure 9.35.

At each stage, N/2 separate butterfly computations are carried out to produce the
next array. The integer r varies with p, q, and m in a manner that depends on the specific
form of the FFT algorithm used. However, our analysis is not tied to the specific way

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

WN
r

–1
Figure 9.35 Butterfly computation for
decimation-in-time.

756 Chapter 9 Computation of the Discrete Fourier Transform

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

WN
r

–1
�[m, q]

Figure 9.36 Linear-noise model for
fixed-point round-off noise in a
decimation-in-time butterfly
computation.

in which r varies. Also, the specific relationship among p, q, and m, which determines
how we index through the mth array, is not important for the analysis. The details of
the analysis for decimation in time and decimation in frequency differ somewhat due
to the different butterfly forms, but the basic results do not change significantly. In our
analysis we assume a butterfly of the form of Eqs. (9.56a) and (9.56b), corresponding
to decimation in time.

We model the round-off noise by associating an additive noise generator with each
fixed-point multiplication. With this model, the butterfly of Figure 9.35 is replaced by
that of Figure 9.36 for analyzing the round-off noise effects. The notation ε[m, q] repre-
sents the complex-valued error introduced in computing the mth array from the (m−1)st

array; specifically, it indicates the error resulting from quantization of multiplication of
the qth element of the (m − 1)st array by a complex coefficient.

Since we assume that, in general, the input to the FFT is a complex sequence,
each of the multiplications is complex and thus consists of four real multiplications. We
assume that the errors due to each real multiplication have the following properties:

1. The errors are uniformly distributed random variables over the range −(1/2) ·2−B

to (1/2) · 2−B, where, as defined in Section 6.7.1, numbers are represented as
(B + 1)-bit signed fractions. Therefore, each error source has variance 2−2B/12.

2. The errors are uncorrelated with one another.

3. All the errors are uncorrelated with the input and, consequently, also with the
output.

Since each of the four noise sequences is uncorrelated zero-mean white noise and all
have the same variance,

E{|ε[m, q]|2} = 4 · 2−2B

12
= 1

3 · 2−2B = σ 2
B. (9.57)

To determine the mean-square value of the output noise at any output node, we must
account for the contribution from each of the noise sources that propagate to that node.
We can make the following observations from the flow graph of Figure 9.34:

1. The transmission function from any node in the flow graph to any other node to
which it is connected is multiplication by a complex constant of unity magnitude
(because each branch transmittance is either unity or an integer power of WN).

2. Each output node connects to seven butterflies in the flow graph. (In general, each
output node would connect to (N − 1) butterflies.) For example, Figure 9.37(a)

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
2

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1
(b)

(a)

X [0]

X [2]

Figure 9.37 (a) Butterflies that affect
X [0]; (b) butterflies that affect X [2].

757

758 Chapter 9 Computation of the Discrete Fourier Transform

shows the flow graph with all the butterflies removed that do not connect to X[0],
and Figure 9.37(b) shows the flow graph with all the butterflies removed that do
not connect to X[2].

These observations can be generalized to the case of N an arbitrary power of 2.
As a consequence of the first observation, the mean-square value of the magnitude

of the component of the output noise due to each elemental noise source is the same and
equal to σ 2

B . The total output noise at each output node is equal to the sum of the noise
propagated to that node. Since we assume that all the noise sources are uncorrelated,
the mean-square value of the magnitude of the output noise is equal to σ 2

B times the
number of noise sources that propagate to that node. At most one complex noise source
is introduced at each butterfly; consequently, from observation 2, at most (N − 1) noise
sources propagate to each output node. In fact, not all the butterflies generate round-off
noise, since some (for example, all those in the first and second stages for N = 8) involve
only multiplication by unity. However, if for simplicity we assume that round-off occurs
for each butterfly, we can consider the result as an upper bound on the output noise.
With this assumption, then, the mean square value of the output noise in the kth DFT
value, F [k], is given by

E{|F [k]|2} = (N − 1)σ 2
B, (9.58)

which, for large N , we approximate as

E{|F [k]|2} ∼= Nσ 2
B. (9.59)

According to this result, the mean-square value of the output noise is proportional to
N , the number of points transformed. The effect of doubling N , or adding another stage
in the FFT, is to double the mean-square value of the output noise. In Problem 9.52, we
consider the modification of this result when we do not insert noise sources for those
butterflies that involve only multiplication by unity or j . Note that for FFT algorithms,
a double-length accumulator does not help us reduce round-off noise, since the outputs
of the butterfly computation must be stored in (B +1)-bit registers at the output of each
stage.

In implementing an FFT algorithm with fixed-point arithmetic, we must ensure
against overflow. From Eqs. (9.56a) and (9.56b), it follows that

max(|Xm−1[p]|, |Xm−1[q]|) ≤ max(|Xm[p]|, |Xm[q]|) (9.60)

and also

max(|Xm[p]|, |Xm[q]|) ≤ 2 max(|Xm−1[p]|, |Xm−1[q]|). (9.61)

(See Problem 9.51.) Equation (9.60) implies that the maximum magnitude is non-
decreasing from stage to stage. If the magnitude of the output of the FFT is less than
unity, then the magnitude of the points in each array must be less than unity, i.e., there
will be no overflow in any of the arrays.11

To express this constraint as a bound on the input sequence, we note that the
condition

|x[n]| <
1
N

, 0 ≤ n ≤ N − 1, (9.62)

11Actually, one should discuss overflow in terms of the real and imaginary parts of the data rather
than the magnitude. However, |x| < 1 implies that |Re{x}| < 1 and |Im{x}| < 1, and only a slight increase in
allowable signal level is achieved by scaling on the basis of real and imaginary parts.

Section 9.7 Effects of Finite Register Length 759

is both necessary and sufficient to guarantee that

|X[k]| < 1, 0 ≤ k ≤ N − 1. (9.63)

This follows from the definition of the DFT, since

|X[k]| =
∣∣∣∣∣∣
N−1∑
n=0

x[n]Wkn
N

∣∣∣∣∣∣ ≤
N−1∑
n=0

|x[n]| k = 0, 1, . . . N − 1. (9.64)

Thus, Eq. (9.62) is sufficient to guarantee that there will be no overflow for all stages of
the algorithm.

To obtain an explicit expression for the noise-to-signal ratio at the output of the
FFT algorithm, consider an input in which successive sequence values are uncorrelated,
i.e., a white-noise input signal. Also, assume that the real and imaginary parts of the
input sequence are uncorrelated and that each has an amplitude density that is uniform
between −1/(

√
2N) and +1/(

√
2N). (Note that this signal satisfies Eq. (9.62).) Then

the average squared magnitude of the complex input sequence is

E{|x[n]|2} = 1
3N2

= σ 2
x . (9.65)

The DFT of the input sequence is

X[k] =
N−1∑
n=0

x[n]Wkn, (9.66)

from which it can be shown that, under the foregoing assumptions on the input,

E{|X[k]|2} =
N−1∑
n=0

E{|x[n]|2}|Wkn|2

= Nσ 2
x = 1

3N
.

(9.67)

Combining Eqs. (9.59) and (9.67), we obtain

E{|F [k]|2}
E{|X[k]|2} = 3N2σ 2

B = N22−2B. (9.68)

According to Eq. (9.68), the noise-to-signal ratio increases as N2, or 1 bit per stage.
That is, if N is doubled, corresponding to adding one additional stage to the FFT, then
to maintain the same noise-to-signal ratio, 1 bit must be added to the register length.
The assumption of a white-noise input signal is, in fact, not critical here. For a variety of
other inputs, the noise-to-signal ratio is still proportional to N2, with only the constant
of proportionality changing.

760 Chapter 9 Computation of the Discrete Fourier Transform

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

WN
r

�[m, q]

�[m, p]
1
2

1
2

Figure 9.38 Butterfly showing scaling
multipliers and associated fixed-point
round-off noise.

Equation (9.61) suggests an alternative scaling procedure. Since the maximum
magnitude increases by no more than a factor of 2 from stage to stage, we can prevent
overflow by requiring that |x[n]| < 1 and incorporating an attenuation of 1

2 at the
input to each stage. In this case, the output will consist of the DFT scaled by 1/N .
Although the mean-square output signal will be 1/N times what it would be if no
scaling were introduced, the input amplitude can be N times larger without causing
overflow. For the white-noise input signal, this means that we can assume that the real
and imaginary parts are uniformly distributed from −1/

√
2 to 1/

√
2, so that |x[n]| < 1.

Thus, with the ν divisions by 2, the maximum expected value of the magnitude squared
of the DFT that can be attained (for the white input signal) is the same as that given in
Eq. (9.67). However, the output noise level will be much less than in Eq. (9.59), since
the noise introduced at early stages of the FFT will be attenuated by the scaling that
takes place in the later arrays. Specifically, with scaling by 1/2 introduced at the input
to each butterfly, we modify the butterfly of Figure 9.36 to that of Figure 9.38, where,
in particular, two noise sources are now associated with each butterfly. As before, we
assume that the real and imaginary parts of these noise sources are uncorrelated and
are also uncorrelated with the other noise sources and that the real and imaginary parts
are uniformly distributed between ±(1/2) · 2−B . Thus, as before,

E{|ε[m, q]|2} = σ 2
B = 1

3 · 2−2B = E{|ε[m, p]|2}. (9.69)

Because the noise sources are all uncorrelated, the mean-squared magnitude of the
noise at each output node is again the sum of the mean-squared contributions of each
noise source in the flow graph. However, unlike the previous case, the attenuation that
each noise source experiences through the flow graph depends on the array at which it
originates. A noise source originating at the mth array will propagate to the output with
multiplication by a complex constant with magnitude (1/2)ν−m−1. By examination of
Figure 9.34, we see that for the case N = 8, each output node connects to:

1 butterfly originating at the (ν − 1)st array,

2 butterflies originating at the (ν − 2)nd array,

4 butterflies originating at the (ν − 3)rd array, etc.

Section 9.7 Effects of Finite Register Length 761

For the general case with N = 2ν , each output node connects to 2ν−m−1 butterflies
and therefore to 2ν−m noise sources that originate at the mth array. Thus, at each output
node, the mean-square magnitude of the noise is

E{|F [k]|2} = σ 2
B

ν−1∑
m=0

2ν−m · (0.5)2ν−2m−2

= σ 2
B

ν−1∑
m=0

(0.5)ν−m−2

= σ 2
B · 2

ν−1∑
k=0

0.5k

= 2σ 2
B

1 − 0.5ν

1 − 0.5
= 4σ 2

B(1 − 0.5ν).

(9.70)

For large N , we assume that 0.5ν (i.e., 1/N) is negligible compared with unity, so

E{|F [k]|2} ∼= 4σ 2
B = 4

3 · 2−2B, (9.71)

which is much less than the noise variance resulting when all the scaling is carried out
on the input data.

Now we can combine Eq. (9.71) with Eq. (9.67) to obtain the output noise-to-signal
ratio for the case of step-by-step scaling and white input. We obtain

E{|F [k]|2}
E{|X[k]|2} = 12Nσ 2

B = 4N · 2−2B, (9.72)

a result proportional to N rather than to N2. An interpretation of Eq. (9.72) is that the
output noise-to-signal ratio increases as N , corresponding to half a bit per stage, a result
first obtained by Welch (1969). It is important to note again that the assumption of a
white-noise signal is not essential in the analysis. The basic result of an increase of half
a bit per stage holds for a broad class of signals, with only the constant multiplier in
Eq. (9.72) being dependent on the signal.

We should also note that the dominant factor that causes the increase of the noise-
to-signal ratio with N is the decrease in signal level (required by the overflow constraint)
as we pass from stage to stage. According to Eq. (9.71), very little noise (only a bit or
two) is present in the final array. Most of the noise has been shifted out of the binary
word by the scalings.

We have assumed straight fixed-point computation in the preceding discussion;
i.e., only preset attenuations were allowed, and we were not permitted to rescale on
the basis of an overflow test. Clearly, if the hardware or programming facility is such

762 Chapter 9 Computation of the Discrete Fourier Transform

that straight fixed-point computation must be used, we should, if possible, incorporate
attenuators of 1/2 at each array rather than use a large attenuation of the input array.

A third approach to avoiding overflow is the use of block floating point. In this
procedure the original array is normalized to the far left of the computer word, with the
restriction that |x[n]| < 1; the computation proceeds in a fixed-point manner, except
that after every addition there is an overflow test. If overflow is detected, the entire
array is divided by 2 and the computation continues. The number of necessary divisions
by 2 are counted to determine a scale factor for the entire final array. The output noise-
to-signal ratio depends strongly on how many overflows occur and at what stages of the
computation they occur. The positions and timing of overflows are determined by the
signal being transformed; thus, to analyze the noise-to-signal ratio in a block floating-
point implementation of the FFT, we would need to know the input signal.

The preceding analysis shows that scaling to avoid overflow is the dominant factor
in determining the noise-to-signal ratio of fixed-point implementations of FFT algo-
rithms. Therefore, floating-point arithmetic should improve the performance of these
algorithms. The effect of floating-point round-off on the FFT was analyzed both theoret-
ically and experimentally by Gentleman and Sande (1966), Weinstein and Oppenheim
(1969), and Kaneko and Liu (1970). These investigations show that, since scaling is no
longer necessary, the decrease of noise-to-signal ratio with increasing N is much less
dramatic than for fixed-point arithmetic.

For example, Weinstein (1969) showed theoretically that the noise-to-signal ratio
is proportional to ν for N = 2ν , rather than proportional to N as in the fixed-point case.
Therefore, quadrupling ν (raising N to the fourth power) increases the noise-to-signal
ratio by only 1 bit.

9.8 SUMMARY

In this chapter we have considered techniques for computation of the discrete Fourier
transform, and we have seen how the periodicity and symmetry of the complex factor
e−j (2π/N)kn can be exploited to increase the efficiency of DFT computations.

We considered the Goertzel algorithm and the direct evaluation of the DFT ex-
pression because of the importance of these techniques when not all N of the DFT
values are required. However, our major emphasis was on fast Fourier transform (FFT)
algorithms. We described the decimation-in-time and decimation-in-frequency classes
of FFT algorithms in some detail and some of the implementation considerations, such
as indexing and coefficient quantization. Much of the detailed discussion concerned al-
gorithms that require N to be a power of 2, since these algorithms are easy to understand,
simple to program, and most often used.

The use of convolution as the basis for computing the DFT was briefly discussed.
We presented a brief overview of the Winograd Fourier transform algorithm, and in
somewhat more detail we discussed an algorithm called the chirp transform algorithm.

The final section of the chapter discussed effects of finite word length in DFT
computations. We used linear-noise models to show that the noise-to-signal ratio of a
DFT computation varies differently with the length of the sequence, depending on how
scaling is done. We also commented briefly on the use of floating-point representations.

Chapter 9 Problems 763

Problems

Basic Problems with Answers

9.1. Suppose that a computer program is available for computing the DFT

X[k] =
N−1∑
n=0

x[n]e−j (2π/N)kn, k = 0, 1, . . . , N − 1;

i.e., the input to the program is the sequence x[n] and the output is the DFT X[k]. Show
how the input and/or output sequences may be rearranged such that the program can also
be used to compute the inverse DFT

x[n] = 1
N

N−1∑
k=0

X[k]ej (2π/N)kn, n = 0, 1, . . . , N − 1;

i.e., the input to the program should be X[k] or a sequence simply related to X[k], and the
output should be either x[n] or a sequence simply related to x[n]. There are several possible
approaches.

9.2. Computing the DFT generally requires complex multiplications. Consider the product
X + jY = (A + jB)(C + jD) = (AC − BD) + j (BC + AD). In this form, a complex
multiplication requires four real multiplications and two real additions. Verify that a com-
plex multiplication can be performed with three real multiplications and five additions using
the algorithm

X = (A − B)D + (C − D)A,

Y = (A − B)D + (C + D)B.

9.3. Suppose that you time-reverse and delay a real-valued 32-point sequence x[n] to obtain
x1[n] = x[32−n]. If x1[n] is used as the input for the system in Figure P9.4, find an expression
for y[32] in terms of X(ejω), the DTFT of the original sequence x[n].

9.4. Consider the system shown in Figure P9.4. If the input to the system, x[n], is a 32-point
sequence in the interval 0 ≤ n ≤ 31, the output y[n] at n = 32 is equal to X(ejω) evaluated
at a specific frequency ωk . What is ωk for the coefficients shown in Figure P9.4?

z–1
x [n]

z–1

y [n]

2cos

–1

14�

32 –e–j
7�
16

Figure P9.4

764 Chapter 9 Computation of the Discrete Fourier Transform

9.5. Consider the signal flow graph in Figure P9.5. Suppose that the input to the system x[n] is
an 8-point sequence. Choose the values of a and b such that y[8] = X(ej6π/8).

z–1

a b

x [n]

–1

z–1

y [n]

Figure P9.5

9.6. Figure P9.6 shows the graph representation of a decimation-in-time FFT algorithm for
N = 8. The heavy line shows a path from sample x[7] to DFT sample X[2].

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

X [6]

X [7]

WN
0

WN
2

WN
0

WN
2

WN
0

WN
1

WN
2

WN
3

–1

–1

–1 –1 –1

–1

–1

–1

–1

–1

–1

–1

Figure P9.6

(a) What is the “gain” along the path that is emphasized in Figure P9.6?
(b) How many other paths in the flow graph begin at x[7] and end at X[2]? Is this true

in general? That is, how many paths are there between each input sample and each
output sample?

(c) Now consider the DFT sample X[2]. By tracing paths in the flow graph of Figure P9.6,
show that each input sample contributes the proper amount to the output DFT sample;
i.e., verify that

X[2] =
N−1∑
n=0

x[n]e−j (2π/N)2n.

Chapter 9 Problems 765

9.7. Figure P9.7 shows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x[n]
be the sequence whose DFT is X[k]. In the flow graph, A[·], B[·], C[·], and D[·] represent
separate arrays that are indexed consecutively in the same order as the indicated nodes.

(a) Specify how the elements of the sequence x[n] should be placed in the array A[r],
r = 0, 1, . . . , 7. Also, specify how the elements of the DFT sequence should be ex-
tracted from the array D[r], r = 0, 1, . . . , 7.

(b) Without determining the values in the intermediate arrays, B[·] and C[·], determine and
sketch the array sequence D[r], r = 0, 1, . . . , 7, if the input sequence is
x[n] = (−WN)n, n = 0, 1, . . . , 7.

(c) Determine and sketch the sequence C[r], r = 0, 1, . . . , 7, if the output Fourier trans-
form is X[k] = 1, k = 0, 1, . . . , 7.

A [0]

A [1] D [1]

D [0]
C [0]B [0]

C [1]B [1]

C [2]B [2]

C [3]B [3]

C [4]B [4]

C [5]B [5]

C [6]B [6]

D [2]

D [3]

D [4]

D [5]

D [6]

D [7]

A [2]

A [3]

A [4]

A [5]

A [6]

A [7]

WN
0

WN
2

WN
0

WN
2

WN
0

WN
0

WN
0

WN
0

WN
0

WN
1

WN
2

WN
3C[7]B [7]

–1

–1

–1 –1 –1

–1

–1

–1

–1

–1

–1

–1

Figure P9.7

9.8. In implementing an FFT algorithm, it is sometimes useful to generate the powers of WN

with a recursive difference equation, or oscillator. In this problem we consider a radix-2
decimation-in-time algorithm for N = 2ν . Figure 9.11 depicts this type of algorithm for
N = 8. To generate the coefficients efficiently, the frequency of the oscillator would change
from stage to stage.

Assume that the arrays are numbered 0 through ν = log2 N , so the array holding the
initial input sequence is the zeroth array and the DFT is in the vth array. In computing the
butterflies in a given stage, all butterflies requiring the same coefficients Wr

N
are evaluated

before obtaining new coefficients. In indexing through the array, we assume that the data in
the array are stored in consecutive complex registers numbered 0 through (N − 1). All the
following questions are concerned with the computation of the mth array from the (m−1)st

array, where 1 ≤ m ≤ ν. Answers should be expressed in terms of m.

766 Chapter 9 Computation of the Discrete Fourier Transform

(a) How many butterflies must be computed in the mth stage? How many different coef-
ficients are required in the mth stage?

(b) Write a difference equation whose impulse response h[n] contains the coefficients Wr
N

required by the butterflies in the mth stage.
(c) The difference equation from part (b) should have the form of an oscillator, i.e., h[n]

should be periodic for n ≥ 0. What is the period of h[n]? Based on this, write an
expression for the frequency of this oscillator as a function of m.

9.9. Consider the butterfly in Figure P9.9. This butterfly was extracted from a signal flow graph
implementing an FFT algorithm. Choose the most accurate statement from the following
list:

1. The butterfly was extracted from a decimation-in-time FFT algorithm.
2. The butterfly was extracted from a decimation-in-frequency FFT algorithm.
3. It is not possible to say from the figure which kind of FFT algorithm the butterfly

came from.

WN
–13

Figure P9.9

9.10. A finite-length signal x[n] is nonzero in the interval 0 ≤ n ≤ 19. This signal is the input to
the system shown in Figure P9.10, where

h[n] =
{

ej (2π/21)(n−19)2/2, n = 0, 1, . . . , 28,

0, otherwise.

W = e−j (2π/21)

The output of the system, y[n], for the interval n = 19, . . . , 28 can be expressed in terms of
the DTFT X(ejω) for appropriate values of ω. Write an expression for y[n] in this interval
in terms of X(ejω).

� �
y[n]x [n]

h [n]

e –j (2�/7)nWn2/2 W (n – 19)2/2 Figure P9.10

9.11. The butterfly flow graph in Figure 9.10 can be used to compute the DFT of a sequence of
length N = 2ν “in-place,” i.e., using a single array of complex-valued registers. Assume this
array of registers A[
] is indexed on 0 ≤ l ≤ N − 1. The input sequence is initially stored
in A[
] in bit-reversed order. The array is then processed by ν stages of butterflies. Each
butterfly takes two array elements A[
0] and A[
1] as inputs, then stores its outputs into

Chapter 9 Problems 767

those same array locations. The values of
0 and
1 depend on the stage number and the
location of the butterfly in the signal flow graph. The stages of the computation are indexed
by m = 1, . . . , ν.

(a) What is |
1 −
0| as a function of the stage number m?
(b) Many stages contain butterflies with the same “twiddle” factor Wr

N
. For these stages,

how far apart are the values of
0 for the butterflies with the same Wr
N

?

9.12. Consider the system shown in Figure P9.12, with

h[n] =
{

ej (2π/10)(n−11)2/2, n = 0, 1, . . . , 15,

0, otherwise.

It is desired that the output of the system, y[n + 11] = X(ejωn), where ωn = (2π/19) +
n(2π/10) for n = 0, . . . , 4. Give the correct value for the sequence r[n] in Figure P9.12 such
that the output y[n] provides the desired samples of the DTFT.

� �
y [n]x [n]

r [n]

h [n]

e– j(2�/10)(n – 11)2/2 Figure P9.12

9.13. Assume that you wish to sort a sequence x[n] of length N = 16 into bit-reversed order for
input to an FFT algorithm. Give the new sample order for the bit-reversed sequence.

9.14. For the following statement, assume that the sequence x[n] has length N = 2ν and that
X[k] is the N -point DFT of x[n]. Indicate whether the statement is true or false, and justify
your answer.

Statement: It is impossible to construct a signal flow graph to compute X[k] from x[n]
such that both x[n] and X[k] are in normal sequential (not bit-reversed) order.

9.15. The butterfly in Figure P9.15 was taken from a decimation-in-frequency FFT with N = 16,
where the input sequence was arranged in normal order. Note that a 16-point FFT will have
four stages, indexed m = 1, . . . , 4. Which of the four stages have butterflies of this form?
Justify your answer.

W16
–1 3

Figure P9.15

768 Chapter 9 Computation of the Discrete Fourier Transform

9.16. The butterfly in Figure P9.16 was taken from a decimation-in-time FFT with N = 16.
Assume that the four stages of the signal flow graph are indexed by m = 1, . . . , 4. What are
the possible values of r for each of the four stages?

W16
–1r

Figure P9.16

9.17. Suppose you have two programs for computing the DFT of a sequence x[n] that has N = 2ν

nonzero samples. Program A computes the DFT by directly implementing the definition
of the DFT sum from Eq. (8.67) and takes N2 seconds to run. Program B implements
the decimation-in-time FFT algorithm and takes 10N log2 N seconds to run. What is the
shortest sequence N such that Program B runs faster than Program A?

9.18. The butterfly in Figure P9.18 was taken from a decimation-in-time FFT with N = 16.
Assume that the four stages of the signal flow graph are indexed by m = 1, . . . , 4. Which
of the four stages have butterflies of this form?

W16
–12

Figure P9.18

9.19. Suppose you are told that an N = 32 FFT algorithm has a “twiddle” factor of W2
32 for one

of the butterflies in its fifth (last) stage. Is the FFT a decimation-in-time or decimation-in-
frequency algorithm?

9.20. Suppose you have a signalx[n]with 1021 nonzero samples whose DTFT you wish to estimate
by computing the DFT. You find that it takes your computer 100 seconds to compute the
1021-point DFT of x[n]. You then add three zero-valued samples at the end of the sequence
to form a 1024-point sequence x1[n]. The same program on your computer requires only
1 second to compute X1[k]. Reflecting, you realize that by using x1[n], you are able to
compute more samples of X(ejω) in a much shorter time by adding some zeros to the
end of x[n] and pretending that the sequence is longer. How do you explain this apparent
paradox?

Basic Problems

9.21. In Section 9.1.2, we used the fact that W−kN
N

= 1 to derive a recurrence algorithm for
computing a specific DFT value X[k] for a finite-length sequence x[n], n = 0, 1, . . . , N − 1.

(a) Using the fact that WkN
N

= WNn
N

= 1, show that X[N −k] can be obtained as the output
after N iterations of the difference equation depicted in Figure P9.21-1. That is, show
that

X[N − k] = yk[N].

Chapter 9 Problems 769

WN
k

x [n] yk[n]

z–1

Figure P9.21-1

(b) Show that X[N − k] is also equal to the output after N iterations of the difference
equation depicted in Figure P9.21-2. Note that the system of Figure P9.21-2 has the
same poles as the system in Figure 9.2, but the coefficient required to implement
the complex zero in Figure P9.21-2 is the complex conjugate of the corresponding
coefficient in Figure 9.2; i.e., W−k

N
= (Wk

N
)
∗
.

–WN
–k

x [n] yk[n]

z–1

z–1

–1

2cos
2�k
N

Figure P9.21-2

9.22. Consider the system shown in Figure P9.22. The subsystem from x[n] to y[n] is a causal,
LTI system implementing the difference equation

y[n] = x[n] + ay[n − 1].
x[n] is a finite length sequence of length 90, i.e.,

x[n] = 0 for n < 0 and n > 89.

n = M

a

x [n] y[n]
y[M]

z–1

Figure P9.22

Determine a choice for the complex constant a and a choice for the sampling instant
M so that

y[M] = X(ejω)

∣∣∣
ω=2π/60.

9.23. Construct a flow graph for a 16-point radix-2 decimation-in-time FFT algorithm. Label all
multipliers in terms of powers of W16, and also label any branch transmittances that are
equal to −1. Label the input and output nodes with the appropriate values of the input
and DFT sequences, respectively. Determine the number of real multiplications and the
number of real additions required to implement the flow graph.

770 Chapter 9 Computation of the Discrete Fourier Transform

9.24. It is suggested that if you have an FFT subroutine for computing a length-N DFT, the
inverse DFT of an N -point sequence X[k] can be implemented using this subroutine as
follows:

1. Swap the real and imaginary parts of each DFT coefficient X[k].
2. Apply the FFT routine to this input sequence.
3. Swap the real and imaginary parts of the output sequence.
4. Scale the resulting sequence by 1

N
to obtain the sequence x[n], corresponding to the

inverse DFT of X[k].
Determine whether this procedure works as claimed. If it doesn’t, propose a simple modi-
fication that will make it work.

9.25. The DFT is a sampled version of the DTFT of a finite-length sequence; i.e.,

X[k] = X(ej (2π/N)k)

= X(ejωk)

∣∣∣
ωk=(2π/N)k

=
N−1∑
n=0

x[n]e−j (2π/N)kn k = 0, 1, . . . , N − 1. (P9.25-1)

Furthermore, an FFT algorithm is an efficient way to compute the values X[k].
Now consider a finite-length sequence x[n] whose length is N samples. We want to evaluate
X(z), the z-transform of the finite-length sequence, at the following points in the z-plane

zk = rej (2π/N)k k = 0, 1, . . . , N − 1,

where r is a positive number. We have available an FFT algorithm.

(a) Plot the points zk in the z-plane for the case N = 8 and r = 0.9.
(b) Write an equation [similar to Eq. (P9.25-1) above] for X(zk) that shows that X(zk) is

the DFT of a modified sequence x̃[n]. What is x̃[n]?
(c) Describe an algorithm for computing X(zk) using the given FFT function. (Direct

evaluation is not an option.) You may describe your algorithm using any combination
of English text and equations, but you must give a step-by-step procedure that starts
with the sequence x[n] and ends with X(zk).

9.26. We are given a finite-length sequence x[n] of length 627 (i.e., x[n] = 0 for n < 0 and
n > 626), and we have available a program that will compute the DFT of a sequence of any
length N = 2ν .

For the given sequence, we want to compute samples of the DTFT at frequencies

ωk = 2π

627
+ 2πk

256
, k = 0, 1, . . . , 255.

Specify how to obtain a new sequence y[n] from x[n] such that the desired frequency samples
can be obtained by applying the available FFT program to y[n] with ν as small as possible.

9.27. A finite-length signal of length L = 500 (x[n] = 0 for n < 0 and n > L − 1) is ob-
tained by sampling a continuous-time signal with sampling rate 10,000 samples per second.
We wish to compute samples of the z-transform of x[n] at the N equally spaced points
zk = (0.8)ej2πk/N , for 0 ≤ k ≤ N − 1, with an effective frequency spacing of 50 Hz or less.

(a) Determine the minimum value for N if N = 2ν .
(b) Determine a sequence y[n] of length N , where N is as determined in part (a), such that

its DFT Y [k] is equal to the desired samples of the z-transform of x[n].

Chapter 9 Problems 771

9.28. You are asked to build a system that computes the DFT of a 4-point sequence

x[0], x[1], x[2], x[3].

You can purchase any number of computational units at the per-unit cost shown in Table 9.1.

TABLE 9.1

Module Per-Unit Cost

8-point DFT $1

8-point IDFT $1

adder $10

multiplier $100

Design a system of the lowest possible cost. Draw the associated block diagram and
indicate the system cost.

Advanced Problems

9.29. Consider an N -point sequence x[n] with DFT X[k], k = 0, 1, . . . , N − 1. The following
algorithm computes the even-indexed DFT values X[k], k = 0, 2, . . . , N − 2, for N even,
using only a single N/2-point DFT:

1. Form the sequence y[n] by time aliasing, i.e.,

y[n] =
{

x[n] + x[n + N/2], 0 ≤ n ≤ N/2 − 1,

0, otherwise.

2. Compute Y [r], r = 0, 1, . . . , (N/2) − 1, the N/2-point DFT of y[n].
3. Then the even-indexed values of X[k] are X[k] = Y [k/2], for k = 0, 2, . . . , N − 2.

(a) Show that the preceding algorithm produces the desired results.
(b) Now suppose that we form a finite-length sequence y[n] from a sequence x[n] by

y[n] =

⎧⎪⎨⎪⎩
∞∑

r=−∞
x[n + rM], 0 ≤ n ≤ M − 1,

0, otherwise.

Determine the relationship between the M-point DFT Y [k] and X(ejω), the Fourier
transform of x[n]. Show that the result of part (a) is a special case of the result of part
(b).

(c) Develop an algorithm similar to the one in part (a) to compute the odd-indexed DFT
values X[k], k = 1, 3, . . . , N − 1, for N even, using only a single N/2-point DFT.

772 Chapter 9 Computation of the Discrete Fourier Transform

9.30. The system in Figure P9.30 computes an N -point (where N is an even number) DFT X[k]
of an N -point sequence x[n] by decomposing x[n] into two N/2-point sequences g1[n] and
g2[n], computing the N/2-point DFT’s G1[k] and G2[k], and then combining these to form
X[k].

g1[n]

g2[n]

G1[k]

G2[k]

N
2 -point
DFT

N
2 -point
DFT

X[k]
Combine

Figure P9.30

If g1[n] is the even-indexed values of x[n] and g2[n] is the odd-indexed values of x[n]
i.e., g1[n] = x[2n] and g2[n] = x[2n + 1] then X[k] will be the DFT of x[n].
In using the system in Figure P9.30 an error is made in forming g1[n] and g2[n], such that
g1[n] is incorrectly chosen as the odd-indexed values and g2[n] as the even indexed values
but G1[k] and G2[k] are still combined as in Figure P9.30 and the incorrect sequence X̂[k]
results. Express X̂[k] in terms of X[k].

9.31. In Section 9.3.2, it was asserted that the transpose of the flow graph of an FFT algorithm
is also the flow graph of an FFT algorithm. The purpose of this problem is to develop that
result for radix-2 FFT algorithms.

(a) The basic butterfly for the decimation-in-frequency radix-2 FFT algorithm is depicted
in Figure P9.31-1. This flow graph represents the equations

Xm[p] = Xm−1[p] + Xm−1[q],
Xm[q] = (Xm−1[p] − Xm−1[q])Wr

N .

Starting with these equations, show that Xm−1[p] and Xm−1[q] can be computed from
Xm[p] and Xm[q], respectively, using the butterfly shown in Figure P9.31-2.

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

WN
r

–1 Figure P9.31-1

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

WN
–r

–1

1
2

1
2

Figure P9.31-2

Chapter 9 Problems 773

(b) In the decimation-in-frequency algorithm of Figure 9.22, Xν [r], r = 0, 1, . . . , N − 1 is
the DFT X[k] arranged in bit-reversed order, and X0[r] = x[r], r = 0, 1, . . . , N − 1;
i.e., the zeroth array is the input sequence arranged in normal order. If each butterfly
in Figure 9.22 is replaced by the appropriate butterfly of the form of Figure P9.31, the
result would be a flow graph for computing the sequence x[n] (in normal order) from
the DFT X[k] (in bit-reversed order). Draw the resulting flow graph for N = 8.

(c) The flow graph obtained in part (b) represents an inverse DFT algorithm, i.e., an
algorithm for computing

x[n] = 1
N

N−1∑
n=0

X[k]W−kn
N

, n = 0, 1, . . . , N − 1.

Modify the flow graph obtained in part (b) so that it computes the DFT

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1, . . . , N − 1,

rather than the inverse DFT.
(d) Observe that the result in part (c) is the transpose of the decimation-in-frequency

algorithm of Figure 9.22 and that it is identical to the decimation-in-time algorithm
depicted in Figure 9.11. Does it follow that, to each decimation-in-time algorithm (e.g.,
Figures 9.15–9.17), there corresponds a decimation-in-frequency algorithm that is the
transpose of the decimation-in-time algorithm and vice versa? Explain.

9.32. We want to implement a 6-point decimation-in-time FFT using a mixed radix approach.
One option is to first take three 2-point DFTs, and then use the results to compute the
6-point DFT. For this option:

(a) Draw a flowgraph to show what a 2-point DFT calculates. Also, fill in the parts of the
flowgraph in Figure P9.32-1 involved in calculating the DFT values X0, X1, and X4.

x0 X0

X1

X2

X3

X4

X5

x3

x1

x4

x2

x5

2–point
DFT

2–point
DFT

2–point
DFT

W6 W6
2

W6
4

W6
2

Figure P9.32-1

(b) How many complex multiplications does this option require? (Multiplying a number
by −1 does not count as a complex multiplication.)

774 Chapter 9 Computation of the Discrete Fourier Transform

A second option is to start with two 3-point DFTs, and then use the results to compute the
6-point DFT.

(c) Draw a flowgraph to show what a 3-point DFT calculates. Also, fill in all of the flowgraph
in Figure P9.32-2 and briefly explain how you derived your implementation:

(d) How many complex multiplications does this option require?

x0 X0

X1

X2

X3

X4

X5

x2

x4

x1

x3

x5

3–point
DFT

3–point
DFT

W6

W6
2

−1

W6
4

W6
5

Figure P9.32-2

9.33. The decimation-in-frequency FFT algorithm was developed in Section 9.3 for radix 2, i.e.,
N = 2ν . A similar approach leads to a radix-3 algorithm when N = 3ν .

(a) Draw a flow graph for a 9-point decimation-in-frequency algorithm using a 3 × 3
decomposition of the DFT.

(b) For N = 3ν , how many complex multiplications by powers of WN are needed to
compute the DFT of an N -point complex sequence using a radix-3 decimation-in-
frequency FFT algorithm?

(c) For N = 3ν , is it possible to use in-place computation for the radix-3 decimation-in-
frequency algorithm?

9.34. We have seen that an FFT algorithm can be viewed as an interconnection of butterfly com-
putational elements. For example, the butterfly for a radix-2 decimation-in-frequency FFT
algorithm is shown in Figure P9.34-1. The butterfly takes two complex numbers as input
and produces two complex numbers as output. Its implementation requires a complex mul-
tiplication by Wr

N
, where r is an integer that depends on the location of the butterfly in

the flow graph of the algorithm. Since the complex multiplier is of the form Wr
N

= ejθ ,
the CORDIC (coordinate rotation digital computer) rotator algorithm (see Problem 9.46)
can be used to implement the complex multiplication efficiently. Unfortunately, while the
CORDIC rotator algorithm accomplishes the desired change of angle, it also introduces a
fixed magnification that is independent of the angle θ . Thus, if the CORDIC rotator algo-
rithm were used to implement the multiplications by Wr

N
, the butterfly of Figure P9.34-1

would be replaced by the butterfly of Figure P9.34-2, where G represents the fixed magni-
fication factor of the CORDIC rotator. (We assume no error in approximating the angle of
rotation.) If each butterfly in the flow graph of the decimation-in-frequency FFT algorithm
is replaced by the butterfly of Figure P9.34-2, we obtain a modified FFT algorithm for which
the flow graph would be as shown in Figure P9.34-3 for N = 8. The output of this modified
algorithm would not be the desired DFT.

Chapter 9 Problems 775

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

WN
r

–1 Figure P9.34-1

Xm – 1[q]

Xm – 1[p]

Xm [q]

Xm [p]

GWN
r

–1 Figure P9.34-2

x [0]

x [1]

x [2]

x [3]

x [4]

x [7]

x [6]

x [5]

Y[0]

Y[4]

Y[2]

Y[6]

Y[1]

Y[5]

Y[3]

Y[7]
GWN

3

GWN
2

GWN
2

GWN
2

GWN
1

GWN
0

GWN
0

GWN
0

GWN
0

GWN
0

GWN
0

GWN
0

–1

–1

–1 –1 –1

–1

–1

–1

–1

–1

–1

–1

Figure P9.34-3

(a) Show that the output for the modified FFT algorithm is Y [k] = W [k]X[k], where X[k]
is the correct DFT of the input sequence x[n] and W [k] is a function of G, N , and k.

(b) The sequence W [k] can be described by a particularly simple rule. Find this rule and
indicate its dependence on G, N , and k.

(c) Suppose that we wish to preprocess the input sequence x[n] to compensate for the effect
of the modified FFT algorithm. Determine a procedure for obtaining a sequence x̂[n]
from x[n] such that if x̂[n] is the input to the modified FFT algorithm, then the output
will be X[k], the correct DFT of the original sequence x[n].

776 Chapter 9 Computation of the Discrete Fourier Transform

9.35. This problem deals with the efficient computation of samples of the z-transform of a finite-
length sequence. Using the chirp transform algorithm, develop a procedure for computing
values of X(z) at 25 points spaced uniformly on an arc of a circle of radius 0.5, beginning at
an angle of −π/6 and ending at an angle of 2π/3. The length of the sequence is 100 samples.

9.36. Consider a 1024-point sequence x[n] constructed by interleaving two 512-point sequences
xe[n] and xo[n]. Specifically,

x[n] =
⎧⎨⎩

xe[n/2], if n = 0, 2, 4, . . . , 1022;
xo[(n − 1)/2], if n = 1, 3, 5, . . . , 1023;

0, for n outside of the range 0 ≤ n ≤ 1023.

Let X[k] denote the 1024-point DFT of x[n] and Xe[k] and Xo[k] denote the 512-point
DFTs of xe[n] and xo[n], respectively. Given X[k] we would like to obtain Xe[k] from X[k]
in a computationally efficient way where computational efficiency is measured in terms of
the total number of complex multiplies and adds required. One not-very-efficient approach
is as shown in Figure P9.36:

ˆ
1024-point IDFT

X[k] X[k]
2 512-point DFT

Figure P9.36

Specify the most efficient algorithm that you can (certainly more efficient than the
block diagram of Figure P9.36) to obtain Xe[k] from X[k].

9.37. Suppose that a program is available that computes the DFT of a complex sequence. If we
wish to compute the DFT of a real sequence, we may simply specify the imaginary part to
be zero and use the program directly. However, the symmetry of the DFT of a real sequence
can be used to reduce the amount of computation.

(a) Let x[n] be a real-valued sequence of length N , and let X[k] be its DFT with real and
imaginary parts denoted XR[k] and XI [k], respectively; i.e.,

X[k] = XR[k] + jXI [k].
Show that if x[n] is real, then XR[k] = XR[N − k] and XI [k] = −XI [N − k] for
k = 1, . . . , N − 1.

(b) Now consider two real-valued sequences x1[n] and x2[n] with DFTs X1[k] and X2[k],
respectively. Let g[n] be the complex sequence g[n] = x1[n] + jx2[n], with corre-
sponding DFT G[k] = GR[k]+ jGI [k]. Also, let GOR[k], GER[k], GOI[k] and GEI[k]
denote, respectively, the odd part of the real part, the even part of the real part, the odd
part of the imaginary part, and the even part of the imaginary part of G[k]. Specifically,
for 1 ≤ k ≤ N − 1,

GOR[k] = 1
2 {GR[k] − GR[N − k]},

GER[k] = 1
2 {GR[k] + GR[N − k]},

GOI[k] = 1
2 {GI [k] − GI [N − k]},

GEI[k] = 1
2 {GI [k] + GI [N − k]},

and GOR[0] = GOI[0] = 0, GER[0] = GR[0], GEI[0] = GI [0]. Determine expres-
sions for X1[k] and X2[k] in terms of GOR[k], GER[k], GOI[k], and GEI[k].

Chapter 9 Problems 777

(c) Assume that N = 2ν and that a radix-2 FFT program is available to compute the
DFT. Determine the number of real multiplications and the number of real additions
required to compute both X1[k] and X2[k] by (i) using the program twice (with the
imaginary part of the input set to zero) to compute the two complex N -point DFTs
X1[k] and X2[k] separately and (ii) using the scheme suggested in part (b), which
requires only one N -point DFT to be computed.

(d) Assume that we have only one real N -point sequence x[n], where N is a power
of 2. Let x1[n] and x2[n] be the two real N/2-point sequences x1[n] = x[2n] and
x2[n] = x[2n + 1], where n = 0, 1, . . . , (N/2) − 1. Determine X[k] in terms of the
(N/2)-point DFTs X1[k] and X2[k].

(e) Using the results of parts (b), (c), and (d), describe a procedure for computing the
DFT of the real N -point sequence x[n] utilizing only one N/2-point FFT computation.
Determine the numbers of real multiplications and real additions required by this pro-
cedure, and compare these numbers with the numbers required if the X[k] is computed
using one N -point FFT computation with the imaginary part set to zero.

9.38. Let x[n] and h[n] be two real finite-length sequences such that

x[n] = 0 for n outside the interval 0 ≤ n ≤ L − 1,

h[n] = 0 for n outside the interval 0 ≤ n ≤ P − 1.

We wish to compute the sequence y[n] = x[n]∗h[n], where ∗ denotes ordinary convolution.

(a) What is the length of the sequence y[n]?
(b) For direct evaluation of the convolution sum, how many real multiplications are re-

quired to compute all of the nonzero samples of y[n]? The following identity may be
useful:

N∑
k=1

k = N(N + 1)

2
.

(c) State a procedure for using the DFT to compute all of the nonzero samples of y[n].
Determine the minimum size of the DFTs and inverse DFTs in terms of L and P .

(d) Assume that L = P = N/2, where N = 2ν is the size of the DFT. Determine a
formula for the number of real multiplications required to compute all the nonzero
values of y[n] using the method of part (c) if the DFTs are computed using a radix-
2 FFT algorithm. Use this formula to determine the minimum value of N for which
the FFT method requires fewer real multiplications than the direct evaluation of the
convolution sum.

9.39. In Section 8.7.3, we showed that linear time-invariant filtering can be implemented by sec-
tioning the input signal into finite-length segments and using the DFT to implement circular
convolutions on these segments. The two methods discussed were called the overlap–add
and the overlap–save methods. If the DFTs are computed using an FFT algorithm, these
sectioning methods can require fewer complex multiplications per output sample than the
direct evaluation of the convolution sum.

(a) Assume that the complex input sequence x[n] is of infinite duration and that the
complex impulse response h[n] is of length P samples, so that h[n] �= 0 only for
0 ≤ n ≤ P − 1. Also, assume that the output is computed using the overlap–save
method, with the DFTs of length L = 2ν , and suppose that these DFTs are computed
using a radix-2 FFT algorithm. Determine an expression for the number of complex
multiplications required per output sample as a function of ν and P .

778 Chapter 9 Computation of the Discrete Fourier Transform

(b) Suppose that the length of the impulse response is P = 500. By evaluating the formula
obtained in part (a), plot the number of multiplications per output sample as a function
of ν for the values of ν ≤ 20 such that the overlap–save method applies. For what
value of ν is the number of multiplications minimal? Compare the number of complex
multiplications per output sample for the overlap–save method using the FFT with the
number of complex multiplications per output sample required for direct evaluation
of the convolution sum.

(c) Show that for large FFT lengths, the number of complex multiplications per output
sample is approximatelyν. Thus, beyond a certain FFT length, the overlap–save method
is less efficient than the direct method. If P = 500, for what value of ν will the direct
method be more efficient?

(d) Assume that the FFT length is twice the length of the impulse response (i.e., L = 2P),
and assume that L = 2ν . Using the formula obtained in part (a), determine the smallest
value of P such that the overlap–save method using the FFT requires fewer complex
multiplications than the direct convolution method.

9.40. x[n] is a 1024-point sequence that is nonzero only for 0 ≤ n ≤ 1023. Let X[k] be the 1024-
point DFT of x[n]. Given X[k], we want to compute x[n] in the ranges 0 ≤ n ≤ 3 and
1020 ≤ n ≤ 1023 using the system in Figure P9.40. Note that the input to the system is the
sequence of DFT coefficients. By selecting m1[n], m2[n], and h[n], show how the system can
be used to compute the desired samples of x[n]. Note that the samples y[n] for 0 ≤ n ≤ 7
must contain the desired samples of x[n].

� �
y[n] = x[((n + 1020))1024]s[n] = X[k]|k = n

m1[n] m2[n]

h [n]

Figure P9.40

9.41. A system has been built for computing the 8-point DFT Y [0], Y [1], ..., Y [7] of a sequence
y[0], y[1], ..., y[7]. However, the system is not working properly: only the even DFT samples
Y [0], Y [2], Y [4], Y [6] are being computed correctly. To help you solve the problem, the data
you can access are:

• the (correct) even DFT samples, Y [0], Y [2], Y [4], Y [6];
• the first 4 input values y[0], y[1], y[2], y[3] (the other inputs are unavailable).

(a) If y[0] = 1, and y[1] = y[2] = y[3] = 0, and Y [0] = Y [2] = Y [4] = Y [6] = 2, what are
the missing values Y [1], Y [3], Y [5], Y [7]? Explain.

(b) You need to build an efficient system that computes the odd samples
Y [1], Y [3], Y [5], Y [7] for any set of inputs. The computational modules you have avail-
able are one 4-point DFT and one 4-point IDFT. Both are free. You can purchase
adders, subtracters, or multipliers for $10 each. Design a system of the lowest possible
cost that takes as input

y[0], y[1], y[2], y[3], Y [0], Y [2], Y [4], Y [6]
and produces as output

Y [1], Y [3], Y [5], Y [7].
Draw the associated block diagram and indicate the total cost.

Chapter 9 Problems 779

9.42. Consider a class of DFT-based algorithms for implementing a causal FIR filter with impulse
response h[n] that is zero outside the interval 0 ≤ n ≤ 63. The input signal (for the FIR
filter) x[n] is segmented into an infinite number of possibly overlapping 128-point blocks
xi [n], for i an integer and −∞ ≤ i ≤ ∞, such that

xi [n] =
{

x[n], iL ≤ n ≤ iL + 127,

0, otherwise,

where L is a positive integer.
Specify a method for computing

yi [n] = xi [n] ∗ h[n]
for any i. Your answer should be in the form of a block diagram utilizing only the types of
modules shown in Figures PP9.42-1 and PP9.42-2. A module may be used more than once
or not at all.

The four modules in Figure P9.42-2 either use radix-2 FFTs to compute X[k], the
N -point DFT of x[n], or use radix-2 inverse FFTs to compute x[n] from X[k].

Your specification must include the lengths of the FFTs and IFFTs used. For each
“shift by n0” module, you should also specify a value for n0, the amount by which the input
sequence is to be shifted.

Shift
by n0x [n] x[n – n0]

Multiplyx1[n]

x2[n]
x1[n]x2[n]

Figure P9.42-1

FFT-1
(N-point)

x [n] P [k]

FFT-2
(N-point)

q[n] X [k]

IFFT-1
(N-point)

X [k] r [n]

IFFT-2
(N-point)

S [k] x [n]

where S [k] is X [k] in
bit-reversed order.

where P [k] is X [k] in
bit-reversed order.

where q [n] is x [n] in
bit-reversed order.

where r [n] is x [n] in
bit-reversed order.

Figure P9.42-2

Extension Problems

9.43. In many applications (such as evaluating frequency responses and interpolation), it is of
interest to compute the DFT of a short sequence that is “zero-padded.” In such cases, a
specialized “pruned” FFT algorithm can be used to increase the efficiency of computation
(Markel, 1971). In this problem, we will consider pruning of the radix-2 decimation-in-
frequency algorithm when the length of the input sequence is M ≤ 2μ and the length of the
DFT is N = 2ν , where μ < ν.

(a) Draw the complete flow graph of a decimation-in-frequency radix-2 FFT algorithm for
N = 16. Label all branches appropriately.

780 Chapter 9 Computation of the Discrete Fourier Transform

(b) Assume that the input sequence is of length M = 2; i.e., x[n] �= 0 only for N = 0 and
N = 1. Draw a new flow graph for N = 16 that shows how the nonzero input samples
propagate to the output DFT; i.e., eliminate or prune all branches in the flow graph of
part (a) that represent operations on zero-inputs.

(c) In part (b), all of the butterflies in the first three stages of computation should have been
effectively replaced by a half-butterfly of the form shown in Figure P9.43, and in the
last stage, all the butterflies should have been of the regular form. For the general case
where the length of the input sequence is M ≤ 2μ and the length of the DFT is N = 2ν ,
where μ < ν, determine the number of stages in which the pruned butterflies can be
used. Also, determine the number of complex multiplications required to compute the
N -point DFT of an M-point sequence using the pruned FFT algorithm. Express your
answers in terms of ν and μ.

Xm – 1[p]

Xm [q]

Xm [p]

WN
r

Figure P9.43

9.44. In Section 9.2, we showed that if N is divisible by 2, an N -point DFT may be expressed as

X[k] = G[((k))N/2] + Wk
NH [((k))N/2], 0 ≤ k ≤ N − 1. (P9.44-1)

where G[k] is the N/2-point DFT of the sequence of even-indexed samples,

g[n] = x[2n], 0 ≤ n ≤ (N/2) − 1,

and H [k] is the N/2-point DFT of the odd-indexed samples,

h[n] = x[2n + 1], 0 ≤ n ≤ (N/2) − 1.

Note that G[k] and H [k] must be repeated periodically for N/2 ≤ k ≤ N − 1 for
Eq. (P9.44-1) to make sense. When N = 2ν , repeated application of this decomposition
leads to the decimation-in-time FFT algorithm depicted for N = 8 in Figure 9.11. As we
have seen, such algorithms require complex multiplications by the “twiddle” factors Wk

N
.

Rader and Brenner (1976) derived a new algorithm in which the multipliers are purely imag-
inary, thus requiring only two real multiplications and no real additions. In this algorithm,
Eq. (P9.44-1) is replaced by the equations

X[0] = G[0] + F [0], (P9.44-2)

X[N/2] = G[0] − F [0], (P9.44-3)

X[k] = G[k] − 1
2
j

F [k]
sin(2πk/N)

, k �= 0, N/2. (P9.44-4)

Here, F [k] is the N/2-point DFT of the sequence

f [n] = x[2n + 1] − x[2n − 1] + Q,

where

Q = 2
N

(N/2)−1∑
n=0

x[2n + 1]

is a quantity that need be computed only once.

Chapter 9 Problems 781

(a) Show that F [0] = H [0] and therefore that Eqs. (P9.44-2) and (P9.44-3) give the same
result as Eq. (P9.44-1) for k = 0, N/2.

(b) Show that

F [k] = H [k]Wk
N(W−k

N
− Wk

N)

for k = 1, 2, . . . , (N/2) − 1. Use this result to obtain Eq. (P9.44-4). Why must we
compute X[0] and X[N/2] using separate equations?

(c) When N = 2ν , we can apply Eqs. (P9.44-2)–(P9.44-4) repeatedly to obtain a com-
plete decimation-in-time FFT algorithm. Determine formulas for the number of real
multiplications and for the number of real additions as a function of N . In counting
operations due to Eq. (P9.44-4), take advantage of any symmetries and periodicities,
but do not exclude “trivial” multiplications by ±j/2.

(d) Rader and Brenner (1976) state that FFT algorithms based on Eqs. (P9.44-2)–(P9.44-4)
have “poor noise properties.” Explain why this might be true.

9.45. A modified FFT algorithm called the split-radix FFT, or SRFFT, was proposed by Duhamel
and Hollman (1984) and Duhamel (1986). The flow graph for the split-radix algorithm is
similar to the radix-2 flow graph, but it requires fewer real multiplications. In this problem,
we illustrate the principles of the SRFFT for computing the DFT X[k] of a sequence x[n]
of length N .

(a) Show that the even-indexed terms of X[k] can be expressed as the N/2-point DFT

X[2k] =
(N/2)−1∑

n=0

(x[n] + x[n + N/2])W2kn
N

for k = 0, 1, . . . , (N/2) − 1.

(b) Show that the odd-indexed terms of the DFT X[k] can be expressed as the N/4-point
DFTs

X[4k + 1]

=
(N/4)−1∑

n=0

{(x[n] − x[n + N/2]) − j (x[n + N/4] − x[n + 3N/4])}Wn
NW4kn

N

for k = 0, 1, . . . , (N/4) − 1, and

X[4k + 3]

=
(N/4)−1∑

n=0

{(x[n] − x[n + N/2]) + j (x[n + N/4] − x[n + 3N/4])}W3n
N W4kn

N

for k = 0, 1, . . . , (N/4) − 1.
(c) The flow graph in Figure P9.45 represents the preceding decomposition of the DFT for a

16-point transform. Redraw this flow graph, labeling each branch with the appropriate
multiplier coefficient.

782 Chapter 9 Computation of the Discrete Fourier Transform

x [0] X [0]

x [1] X [2]

x [2] X [4]

x [3] X [6]

x [4] X [8]

x [5] X [10]

x [6] X [12]

x [7] X [14]

x [8] X [1]

x [9] X [5]

x [10] X [9]

x [11] X [13]

x [12] X [3]

x [13] X [7]

x [14] X [11]

x [15] X [15]

Eight-
point
DFT

Four-
point
DFT

Four-
point
DFT

Figure P9.45

(d) Determine the number of real multiplications required to implement the 16-point
transform when the SRFFT principle is applied to compute the other DFTs in Fig-
ure P9.45. Compare this number with the number of real multiplications required to
implement a 16-point radix-2 decimation-in-frequency algorithm. In both cases, as-
sume that multiplications by W0

N
are not done.

9.46. In computing the DFT, it is necessary to multiply a complex number by another complex
number whose magnitude is unity, i.e., (X + jY)ejθ . Clearly, such a complex multiplication
changes only the angle of the complex number, leaving the magnitude unchanged. For
this reason, multiplications by a complex number ejθ are sometimes called rotations. In
DFT or FFT algorithms, many different angles θ may be needed. However, it may be
undesirable to store a table of all required values of sin θ and cos θ , and computing these
functions by a power series requires many multiplications and additions. With the CORDIC
algorithm given by Volder (1959), the product (X + jY)ejθ can be evaluated efficiently by
a combination of additions, binary shifts, and table lookups from a small table.
(a) Define θi = arctan(2−i). Show that any angle 0 < θ < π/2 can be represented as

θ =
M−1∑
i=0

αiθi + ε = θ̂ + ε,

where αi = ±1 and the error ε is bounded by
|ε| ≤ arctan(2−M).

Chapter 9 Problems 783

(b) The angles θi may be computed in advance and stored in a small table of length M .
State an algorithm for obtaining the sequence {αi} for i = 0, 1, . . . , M − 1, such that
αi = ±1. Use your algorithm to determine the sequence {αi} for representing the angle
θ = 100π/512 when M = 11.

(c) Using the result of part (a), show that the recursion

X0 = X,

Y0 = Y,

Xi = Xi−1 − αi−1Yi−12−i+1, i = 1, 2, . . . , M,

Yi = Yi−1 + αi−1Xi−12−i+1, i = 1, 2, . . . , M,

will produce the complex number

(XM + jYM) = (X + jY)GMejθ̂ ,

where θ̂ = ∑M−1
i=0 αiθi and GM is real, is positive, and does not depend on θ . That

is, the original complex number is rotated in the complex plane by an angle θ̂ and
magnified by the constant GM .

(d) Determine the magnification constant GM as a function of M .

9.47. In Section 9.3, we developed the decimation-in-frequency FFT algorithm for radix 2, i.e.,
N = 2ν . It is possible to formulate a similar algorithm for the general case of N = mν , where
m is an integer. Such an algorithm is known as a radix-m FFT algorithm. In this problem,
we will examine the radix-3 decimation-in-frequency FFT for the case when N = 9, i.e., the
input sequence x[n] = 0 for n < 0 and n > 8.

(a) Formulate a method of computing the DFT samples X[3k] for k = 0, 1, 2. Consider
defining X1[k] = X(ejωk)|ωk=2πk/3. How can you define a time sequence x1[n] in terms
of x[n] such that the 3-point DFT of x1[n] is X1[k] = X[3k]?

(b) Now define a sequence x2[n] in terms of x[n] such that the 3-point DFT of x2[n] is
X2[k] = X[3k + 1] for k = 0, 1, 2. Similarly, define x3[n] such that its 3-point DFT
X3[k] = X[3k + 2] for k = 0, 1, 2. Note that we have now defined the 9-point DFT as
three 3-point DFTs from appropriately constructed 3-point sequences.

(c) Draw the signal flow graph for the N = 3 DFT, i.e., the radix-3 butterfly.
(d) Using the results for parts (a) and (b), sketch the signal flow graph for the system that

constructs the sequences x1[n], x2[n], and x3[n], and then use 3-point DFT boxes on
these sequences to produce X[k] for k = 0, . . . , 8. Note that in the interest of clarity,
you should not draw the signal flow graph for the N = 3 DFTs, but simply use boxes
labeled “N = 3 DFT.” The interior of these boxes is the system you drew for part (c).

(e) Appropriate factoring of the powers of W9 in the system you drew in part (d) allows
these systems to be drawn as N = 3 DFTs, followed by “twiddle” factors analogous
to those in the radix-2 algorithm. Redraw the system in part (d) such that it consists
entirely of N = 3 DFTs with “twiddle” factors. This is the complete formulation of the
radix-3 decimation-in-frequency FFT for N = 9.

(f) How many complex multiplications are required to compute a 9-point DFT using a
direct implementation of the DFT equation? Contrast this with the number of com-
plex multiplications required by the system you drew in part (e). In general, how
many complex multiplications are required for the radix-3 FFT of a sequence of length
N = 3ν?

784 Chapter 9 Computation of the Discrete Fourier Transform

9.48. Bluestein (1970) showed that if N = M2, then the chirp transform algorithm has a recursive
implementation.

(a) Show that the DFT can be expressed as the convolution

X[k] = h∗[k]
N−1∑
n=0

(x[n]h∗[n])h[k − n],

where ∗ denotes complex conjugation and

h[n] = ej (π/N)n2
, −∞ < n < ∞.

(b) Show that the desired values of X[k] (i.e., for k = 0, 1, . . . , N − 1) can also be obtained
by evaluating the convolution of part (a) for k = N, N + 1, . . . , 2N − 1.

(c) Use the result of part (b) to show that X[k] is also equal to the output of the system
shown in Figure P9.48 for k = N, N + 1, . . . , 2N − 1, where ĥ[k] is the finite-duration
sequence

ĥ[k] =
{

ej (π/N)k2
, 0 ≤ k ≤ 2N − 1,

0, otherwise.

(d) Using the fact that N = M2, show that the system function corresponding to the
impulse response ĥ[k] is

Ĥ (z) =
2N−1∑
k=0

ej (π/N)k2
z−k

=
M−1∑
r=0

ej (π/N)r2
z−r 1 − z−2M2

1 + ej (2π/M)rz−M
.

Hint: Express k as k = r +
M .
(e) The expression for Ĥ (z) obtained in part (d) suggests a recursive realization of the FIR

system. Draw the flow graph of such an implementation.
(f) Use the result of part (e) to determine the total numbers of complex multiplications

and additions required to compute all of the N desired values of X[k]. Compare those
numbers with the numbers required for direct computation of X[k].

x [k] y [k]
�� h [k]

h*[k] h*[k] Figure P9.48

9.49. In the Goertzel algorithm for computation of the discrete Fourier transform, X[k] is com-
puted as

X[k] = yk[N],
where yk[n] is the output of the network shown in Figure P9.49. Consider the implemen-
tation of the Goertzel algorithm using fixed-point arithmetic with rounding. Assume that
the register length is B bits plus the sign, and assume that the products are rounded before
additions. Also, assume that round-off noise sources are independent.

Chapter 9 Problems 785

–WN
k

x [r] yk[r]

z–1

z–1
–1

2cos
2�
N

k

Figure P9.49

(a) Assuming that x[n] is real, draw a flow graph of the linear-noise model for the finite-
precision computation of the real and imaginary parts of X[k]. Assume that multipli-
cation by ±1 produces no round-off noise.

(b) Compute the variance of the round-off noise in both the real part and the imaginary
part of X[k].

9.50. Consider direct computation of the DFT using fixed-point arithmetic with rounding. As-
sume that the register length is B bits plus the sign (i.e., a total of B + 1 bits) and that
the round-off noise introduced by any real multiplication is independent of that produced
by any other real multiplication. Assuming that x[n] is real, determine the variance of the
round-off noise in both the real part and the imaginary part of each DFT value X[k].

9.51. In implementing a decimation-in-time FFT algorithm, the basic butterfly computation is

Xm[p] = Xm−1[p] + Wr
NXm−1[q],

Xm[q] = Xm−1[p] − Wr
NXm−1[q].

In using fixed-point arithmetic to implement the computations, it is commonly assumed that
all numbers are scaled to be less than unity. Therefore, to avoid overflow, it is necessary
to ensure that the real numbers that result from the butterfly computations do not exceed
unity.

(a) Show that if we require

|Xm−1[p]| < 1
2 and |Xm−1[q]| < 1

2 ,

then overflow cannot occur in the butterfly computation; i.e.,

|Re{Xm[p]}| < 1, |Im{Xm[p]}| < 1,

and

|Re{Xm[q]}| < 1, |Im{Xm[q]}| < 1.

(b) In practice, it is easier and most convenient to require

|Re{Xm−1[p]}| < 1
2 , |Im{Xm−1[p]}| < 1

2 ,

and

|Re{Xm−1[q]}| < 1
2 , |Im{Xm−1[q]}| < 1

2 .

Are these conditions sufficient to guarantee that overflow cannot occur in the decima-
tion-in-time butterfly computation? Explain.

9.52. In deriving formulas for the noise-to-signal ratio for the fixed-point radix-2 decimation-in-
time FFT algorithm, we assumed that each output node was connected to (N − 1) butterfly
computations, each of which contributed an amount σ 2

B
= 1

3 · 2−2B to the output noise
variance. However, when Wr

N
= ±1 or ±j , the multiplications can in fact be done without

786 Chapter 9 Computation of the Discrete Fourier Transform

error. Thus, if the results derived in Section 9.7 are modified to account for this fact, we
obtain a less pessimistic estimate of quantization noise effects.

(a) For the decimation-in-time algorithm discussed in Section 9.7, determine, for each
stage, the number of butterflies that involve multiplication by either ±1 or ±j .

(b) Use the result of part (a) to find improved estimates of the output noise variance,
Eq. (9.58), and noise-to-signal ratio, Eq. (9.68), for odd values of k. Discuss how these
estimates are different for even values of k. Do not attempt to find a closed form
expression of these quantities for even values of k.

(c) Repeat parts (a) and (b) for the case where the output of each stage is attenuated
by a factor of 1

2 ; i.e., derive modified expressions corresponding to Eq. (9.71) for the
output noise variance and Eq. (9.72) for the output noise-to-signal ratio, assuming that
multiplications by ±1 and ±j do not introduce error.

9.53. In Section 9.7 we considered a noise analysis of the decimation-in-time FFT algorithm
of Figure 9.11. Carry out a similar analysis for the decimation-in-frequency algorithm of
Figure 9.22, obtaining equations for the output noise variance and noise-to-signal ratio for
scaling at the input and also for scaling by 1

2 at each stage of computation.

9.54. In this problem, we consider a procedure for computing the DFT of four real symmetric
or antisymmetric N -point sequences using only one N -point DFT computation. Since we
are considering only finite-length sequences, by symmetric and antisymmetric, we explicitly
mean periodic symmetric and periodic antisymmetric, as defined in Section 8.6.4. Let x1[n],
x2[n], x3[n], and x4[n] denote the four real sequences of length N , and let X1[k], X2[k],
X3[k], and X4[k] denote the corresponding DFTs. We assume first that x1[n] and x2[n] are
symmetric and x3[n] and x4[n] are antisymmetric; i.e.,

x1[n] = x1[N − n], x2[n] = x2[N − n],
x3[n] = −x3[N − n], x4[n] = −x4[N − n],

for n = 1, 2, . . . , N − 1 and x3[0] = x4[0] = 0.

(a) Define y1[n] = x1[n] + x3[n] and let Y1[k] denote the DFT of y1[n]. Determine how
X1[k] and X2[k] can be recovered from Y1[k].

(b) y1[n] as defined in part (a) is a real sequence with symmetric part x1[n] and antisym-
metric part x3[n]. Similarly, we define the real sequence y2[n] = x2[n] + x4[n], and we
let y3[n] be the complex sequence

y3[n] = y1[n] + jy2[n].
First, determine how Y1[k] and Y2[k] can be determined from Y3[k], and then, using
the results of part (a), show how to obtain X1[k], X2[k], X3[k], and X4[k] from Y3[k].

The result of part (b) shows that we can compute the DFT of four real sequences simulta-
neously with only one N -point DFT computation if two sequences are symmetric and the
other two are antisymmetric. Now consider the case when all four are symmetric; i.e.,

xi [n] = xi [N − n], i = 1, 2, 3, 4,

for n = 0, 1, . . . , N − 1. For parts (c)–(f), assume x3[n] and x4[n] are real and symmetric,
not antisymmetric.

(c) Consider a real symmetric sequence x3[n]. Show that the sequence

u3[n] = x3[((n + 1))N] − x3[((n − 1))N]
is an antisymmetric sequence; i.e., u3[n] = −u3[N − n] for n = 1, 2, . . . , N − 1 and
u3[0] = 0.

Chapter 9 Problems 787

(d) Let U3[k] denote the N -point DFT of u3[n]. Determine an expression for U3[k] in
terms of X3[k].

(e) By using the procedure of part (c), we can form the real sequence y1[n] = x1[n] +
u3[n], where x1[n] is the symmetric part and u3[n] is the antisymmetric part of y1[n].
Determine how X1[k] and X3[k] can be recovered from Y1[k].

(f) Now let y3[n] = y1[n] + jy2[n], where

y1[n] = x1[n] + u3[n], y2[n] = x2[n] + u4[n],
with

u3[n] = x3[((n + 1))N] − x3[((n − 1))N],
u4[n] = x4[((n + 1))N] − x4[((n − 1))N],

for n = 0, 1, . . . , N − 1. Determine how to obtain X1[k], X2[k], X3[k], and X4[k] from
Y3[k]. (Note that X3[0] and X4[0] cannot be recovered from Y3[k], and if N is even,
X3[N/2] and X4[N/2] also cannot be recovered from Y3[k].)

9.55. The input and output of a linear time-invariant system satisfy a difference equation of the
form

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k].

Assume that an FFT program is available for computing the DFT of any finite-length
sequence of length L = 2ν . Describe a procedure that utilizes the available FFT program
to compute

H(ej (2π/512)k) for k = 0, 1, . . . , 511,

where H(z) is the system function of the system.

9.56. Suppose that we wish to multiply two very large numbers (possibly thousands of bits long)
on a 16-bit computer. In this problem, we will investigate a technique for doing this using
FFTs.

(a) Let p(x) and q(x) be the two polynomials

p(x) =
L−1∑
i=0

aix
i , q(x) =

M−1∑
i=0

bix
i .

Show that the coefficients of the polynomial r(x) = p(x)q(x) can be computed using
circular convolution.

(b) Show how to compute the coefficients of r(x) using a radix-2 FFT program. For what
orders of magnitude of (L + M) is this procedure more efficient than direct computa-
tion? Assume that L + M = 2ν for some integer ν.

(c) Now suppose that we wish to compute the product of two very long positive binary
integers u and v. Show that their product can be computed using polynomial multipli-
cation, and describe an algorithm for computing the product using an FFT algorithm.
If u is an 8000-bit number and v is a 1000-bit number, approximately how many real
multiplications and additions are required to compute the product u · v using this
method?

(d) Give a qualitative discussion of the effect of finite-precision arithmetic in implementing
the algorithm of part (c).

788 Chapter 9 Computation of the Discrete Fourier Transform

9.57. The discrete Hartley transform (DHT) of a sequence x[n] of length N is defined as

XH [k] =
N−1∑
n=0

x[n]HN [nk], k = 0, 1, . . . , N − 1,

where

HN [a] = CN [a] + SN [a],
with

CN [a] = cos(2πa/N), SN [a] = sin(2πa/N).

Problem 8.68 explores the properties of the discrete Hartley transform in detail, particularly
its circular convolution property.

(a) Verify that HN [a] = HN [a + N], and verify the following useful property of HN [a]:
HN [a + b] = HN [a]CN [b] + HN [−a]SN [b]

= HN [b]CN [a] + HN [−b]SN [a].
(b) By decomposing x[n] into its even-numbered points and odd-numbered points, and

by using the identity derived in part (a), derive a fast DHT algorithm based on the
decimation-in-time principle.

9.58. In this problem, we will write the FFT as a sequence of matrix operations. Consider the
8-point decimation-in-time FFT algorithm shown in Figure P9.58. Let a and f denote the
input and output vectors, respectively. Assume that the input is in bit-reversed order and
that the output is in normal order (compare with Figure 9.11). Let b, c, d, and e denote the
intermediate vectors shown on the flow graph.

a [0] f [0]

f [1]

f [2]

f [3]

f [4]

f [5]

f [6]

f [7]

b [0] c [0] d [0] e[0]

b [1] c [1] d [1] e [1]

b [2] c [2] d [2] e[2]

b [3] c [3] d [3] e[3]

b [4] c [4] d [4] e4]

b [5] c [5] d [5] e[5]

b [6] c [6] d [6] e[6]

b [7] c [7] d [7] e[7]W8

a [1]

a [2]

a [3]

a [4]

a [5]

a [6]

a [7]

–1

–1

–1

–1

–1

–1

–1

–1 –1

–1

–1

–1

3

W8
2

W8
2

W8
2

W8
1

W8
0

W8
0

W8
0

Figure P9.58

Chapter 9 Problems 789

(a) Determine the matrices F1, T1, F2, T2, and F3 such that

b = F1a,

c = T1b,

d = F2c,

e = T2d,

f = F3e.

(b) The overall FFT, taking input a and yielding output f can be described in matrix notation
as f = Qa, where

Q = F3T2F2T1F1.

Let QH be the complex (Hermitian) transpose of the matrix Q. Draw the flow graph
for the sequence of operations described by QH . What does this structure compute?

(c) Determine (1/N)QH Q.

9.59. In many applications, there is a need to convolve long sequences x[n] and h[n] whose sam-
ples are integers. Since the sequences have integer coefficients, the result of the convolution
y[n] = x[n] ∗ h[n] will naturally also have integer coefficients as well.

A major drawback of computing the convolution of integer sequences with FFTs is
that floating-point arithmetic chips are more expensive than integer arithmetic chips. Also,
rounding noise introduced during a floating-point computation may corrupt the result. In
this problem, we consider a class of FFT algorithms known as number-theoretic transforms
(NTTs), which overcome these drawbacks.

(a) Let x[n] and h[n] be N -point sequences and denote their DFTs by X[k] and H [k],
respectively. Derive the circular convolution property of the DFT. Specifically, show
that Y [k] = X[k]H [k], where y[n] is the N -point circular convolution of x[n] and h[n].
Show that the circular convolution property holds as long as WN in the DFT satisfies

N−1∑
n=0

Wnk
N =
{

N, k = 0,

0, k �= 0.
(P9.59-1)

The key to defining NTTs is to find an integer-valued WN that satisfies Eq. (P9.59-
1). This will enforce the orthogonality of the basis vectors required for the DFT to
function properly. Unfortunately, no integer-valued WN exists that has this property
for standard integer arithmetic.
In order to overcome this problem, NTTs use integer arithmetic defined modulo some
integer P . Throughout the current problem, we will assume that P = 17. That is,
addition and multiplication are defined as standard integer addition and multiplication,
followed by modulo P = 17 reduction. For example, ((23+18))17 = 7, ((10+7))17 = 0,

((23×18))17 = 6, and ((10×7))17 = 2. (Just compute the sum or product in the normal
way, and then take the remainder modulo 17.)

(b) Let P = 17, N = 4, and WN = 4. Verify that⎛⎝⎛⎝N−1∑
n=0

Wnk
N

⎞⎠⎞⎠
P

=
{

N, k = 0,

0, k �= 0.

(c) Let x[n] and h[n] be the sequences

x[n] = δ[n] + 2δ[n − 1] + 3δ[n − 2],
h[n] = 3δ[n] + δ[n − 1].

790 Chapter 9 Computation of the Discrete Fourier Transform

Compute the 4-point NTT X[k] of x[n] as follows:

X[k] =
⎛⎝⎛⎝N−1∑

n=0

x[n]Wnk
N

⎞⎠⎞⎠
P

.

Compute H [k] in a similar fashion. Also, compute Y [k] = H [k]X[k]. Assume the values
of P , N , and WN given in part (a). Be sure to use modulo 17 arithmetic for each operation
throughout the computation, not just for the final result!

(d) The inverse NTT of Y [k] is defined by the equation

y[n] =
⎛⎝⎛⎝(N)−1

N−1∑
k=0

Y [k]W−nk
N

⎞⎠⎞⎠
P

. (P9.59-2)

In order to compute this quantity properly, we must determine the integers (1/N)−1

and W−1
N

such that ((
(N)−1N

))
P

= 1,((
WNW−1

N

))
P

= 1.

Use the values of P , N , and WN given in part (a), and determine the aforesaid integers.
(e) Compute the inverse NTT shown in Eq. (P9.59-2) using the values of (N)−1 and W−1

N
determined in part (d). Check your result by manually computing the convolution
y[n] = x[n] ∗ h[n].

9.60. Sections 9.2 and 9.3 focus on the fast Fourier transform for sequences where N is a power
of 2. However, it is also possible to find efficient algorithms to compute the DFT when
the length N has more than one prime factor, i.e., cannot be expressed as N = mν for
some integer m. In this problem, you will examine the case where N = 6. The techniques
described extend easily to other composite numbers. Burrus and Parks (1985) discuss such
algorithms in more detail.

(a) The key to decomposing the FFT for N = 6 is to use the concept of an index map,
proposed by Cooley and Tukey (1965) in their original paper on the FFT. Specifically,
for the case of N = 6, we will represent the indices n and k as

n = 3n1 + n2 for n1 = 0, 1; n2 = 0, 1, 2; (P9.60-1)

k = k1 + 2k2 for k1 = 0, 1; k2 = 0, 1, 2; (P9.60-2)

Verify that using each possible value of n1 and n2 produces each value of n = 0, . . . , 5
once and only once. Demonstrate that the same holds for k with each choice of k1
and k2.

(b) Substitute Eqs. (P9.60-1) and (P9.60-2) into the definition of the DFT to get a new
expression for the DFT in terms of n1, n2, k1, and k2. The resulting equation should
have a double summation over n1 and n2 instead of a single summation over n.

(c) Examine the W6 terms in your equation carefully. You can rewrite some of these as
equivalent expressions in W2 and W3.

(d) Based on part (c), group the terms in your DFT such that the n2 summation is outside
and the n1 summation is inside. You should be able to write this expression so that
it can be interpreted as three DFTs with N = 2, followed by some “twiddle” factors
(powers of W6), followed by two N = 3 DFTs.

Chapter 9 Problems 791

(e) Draw the signal flow graph implementing your expression from part (d). How many
complex multiplications does this require? How does this compare with the number
of complex multiplications required by a direct implementation of the DFT equation
for N = 6?

(f) Find an alternative indexing similar to Eqs. (P9.60-1) and (P9.60-2) that results in a
signal flow graph that is two N = 3 DFTs followed by three N = 2 DFTs.

10
Fourier Analysis

of Signals Using the

Discrete Fourier Transform

10.0 INTRODUCTION

In Chapter 8, we developed the discrete Fourier transform (DFT) as a Fourier repre-
sentation of finite-length signals. Because the DFT can be computed efficiently, it plays
a central role in a wide variety of signal-processing applications, including filtering and
spectrum analysis. In this chapter, we take an introductory look at Fourier analysis of
signals using the DFT.

In applications and algorithms based on explicit evaluation of the Fourier trans-
form, it is ideally the discrete-time Fourier transform (DTFT) that is desired, although
it is the DFT that can actually be computed. For finite-length signals, the DFT provides
frequency-domain samples of the DTFT, and the implications of this sampling must
be clearly understood and accounted for. For example, as considered in Section 8.7, in
linear filtering or convolution implemented by multiplying DFTs rather than DTFTs,
a circular convolution is implemented, and special care must be taken to ensure that
the results will be equivalent to a linear convolution. In addition, in many filtering and
spectrum analysis applications, the signals do not inherently have finite length. As we
will discuss, this inconsistency between the finite-length requirement of the DFT and
the reality of indefinitely long signals can be accommodated exactly or approximately
through the concepts of windowing, block processing, and the time-dependent Fourier
transform.

792

Section 10.1 Fourier Analysis of Signals Using the DFT 793

Haa(jΩ)

x [n]

w [n]

[n] V [k]sc(t) xc(t)
DFT

Continuous-to-
discrete-time
conversion

Antialiasing
lowpass filter

Figure 10.1 Processing steps in the discrete-time Fourier analysis of a
continuous-time signal.

10.1 FOURIER ANALYSIS OF SIGNALS USING THE DFT

One of the major applications of the DFT is in analyzing the frequency content of
continuous-time signals. For example, as we describe in Section 10.4.1, in speech analysis
and processing, frequency analysis is particularly useful in identifying and modeling
the resonances of the vocal cavity. Another example, introduced in Section 10.4.2, is
Doppler radar, in which the velocity of a target is represented by the frequency shift
between the transmitted and received signals.

The basic steps in applying the DFT to continuous-time signals are indicated in
Figure 10.1. The antialiasing filter is incorporated to eliminate or minimize the effect
of aliasing when the continuous-time signal is converted to a sequence by sampling.
The need for multiplication of x[n] by w[n], i.e., windowing, is a consequence of the
finite-length requirement of the DFT. In many cases of practical interest, sc(t) and, con-
sequently, x[n] are very long or even indefinitely long signals (such as with speech or
music). Therefore, a finite-duration window w[n] is applied to x[n] prior to computation
of the DFT. Figure 10.2 illustrates the Fourier transforms of the signals in Figure 10.1.
Figure 10.2(a) shows a continuous-time spectrum that tapers off at high frequencies but
is not bandlimited. It also indicates the presence of some narrowband signal energy,
represented by the narrow peaks. The frequency response of an antialiasing filter is il-
lustrated in Figure 10.2(b). As indicated in Figure 10.2(c), the resulting continuous-time
Fourier transform Xc(j�) contains little useful information about Sc(j�) for frequen-
cies above the cutoff frequency of the filter. Since Haa(j�) cannot be ideal, the Fourier
components of the input in the passband and the transition band also will be modified
by the frequency response of the filter.

The conversion of xc(t) to the sequence of samples x[n] is represented in the fre-
quency domain by periodic replication, frequency normalization, and amplitude scaling
i.e.,

X (ejω) = 1
T

∞∑
r=−∞

Xc

(
j

ω

T
+ j

2πr

T

)
. (10.1)

This is illustrated in Figure 10.2(d). In a practical implementation, the antialiasing filter
cannot have infinite attenuation in the stopband. Therefore, some nonzero overlap of
the terms in Eq. (10.1), i.e., aliasing, can be expected; however, this source of error can
be made negligibly small either with a high-quality continuous-time filter or through the
use of initial oversampling followed by more effective discrete-time lowpass filtering
and decimation, as discussed in Section 4.8.1. If x[n] is a digital signal, so that A/D
conversion is incorporated in the second system in Figure 10.1, then quantization error
is also introduced. As we have seen in Section 4.8.2, this error can be modeled as a

–Ω

0

Ω0

−Ω0 Ω0 Ω

Ω

(a)

Sc(jΩ)

Xc(jΩ)

Haa(jΩ)

0− �

(b)

1

T
�

T

Ω0 �

(c) T

−�0 �0 =Ω0T

X(e j�)

�0 � 2�

(d)

−2�

− �

T

−�

W(e j�)

�0 � 2�

2�(e)

−2� −�

V(e j�), V[k]

N

�0 � 2�

(f)

−2� −�

Figure 10.2 Illustration of the Fourier transforms of the system of Figure 10.1.
(a) Fourier transform of continuous-time input signal. (b) Frequency response of
antialiasing filter. (c) Fourier transform of output of antialiasing filter. (d) Fourier
transform of sampled signal. (e) Fourier transform of window sequence. (f) Fourier
transform of windowed signal segment and frequency samples obtained using DFT
samples.

794

Section 10.1 Fourier Analysis of Signals Using the DFT 795

noise sequence added to x[n]. The noise can be made negligible through the use of
fine-grained quantization.

The sequence x[n] is typically multiplied by a finite-duration window w[n], since
the input to the DFT must be of finite duration. This produces the finite-length sequence
v[n] = w[n]x[n]. The effect in the frequency domain is a periodic convolution, i.e.,

V (ejω) = 1
2π

∫ π

−π

X (ejθ)W(ej (ω−θ))dθ. (10.2)

Figure 10.2(e) illustrates the Fourier transform of a typical window sequence. Note that
the main lobe is assumed to be concentrated around ω = 0, and, in this illustration, the
side lobes are very small, suggesting that the window tapers at its edges. The properties
of windows such as the Bartlett, Hamming, Hanning, Blackman, and Kaiser windows
are discussed in Chapter 7 and in Section 10.2. At this point, it is sufficient to observe that
convolution of W(ejω) with X (ejω) will tend to smooth sharp peaks and discontinuities
in X (ejω). This is depicted by the continuous curve plotted in Figure 10.2(f).

The final operation in Figure 10.1 is the computation of the DFT. The DFT of the
windowed sequence v[n] = w[n]x[n] is

V [k] =
N−1∑
n=0

v[n]e−j (2π/N)kn, k = 0, 1, . . . , N − 1, (10.3)

where we assume that the window length L is less than or equal to the DFT length N .
V [k], the DFT of the finite-length sequence v[n], corresponds to equally spaced samples
of the DTFT of v[n]; i.e.,

V [k] = V (ejω)
∣∣
ω=2πk/N

. (10.4)

Figure 10.2(f) also shows V [k] as the samples of V (ejω). Since the spacing between
DFT frequencies is 2π/N , and the relationship between the normalized discrete-time
frequency variable and the continuous-time frequency variable is ω = �T , the DFT
frequencies correspond to the continuous-time frequencies

�k = 2πk

NT
. (10.5)

The use of this relationship between continuous-time frequencies and DFT frequencies
is illustrated by Examples 10.1 and 10.2.

Example 10.1 Fourier Analysis Using the DFT

Consider a bandlimited continuous-time signal xc(t) such that Xc(j�) = 0 for |�| ≥
2π(2500). We wish to use the system of Figure 10.1 to estimate the continuous-time
spectrum Xc(j�). Assume that the antialiasing filter Haa(j�) is ideal, and the sampling
rate for the C/D converter is 1/T = 5000 samples/s. If we want the DFT samples V [k]
to be equivalent to samples of Xc(j�) that are at most 2π(10) rad/s or 10 Hz apart,
what is the minimum value that we should use for the DFT size N?

From Eq. (10.5), we see that adjacent samples in the DFT correspond to
continuous-time frequencies separated by 2π/(NT). Therefore, we require that

2π

NT
≤ 20π,

796 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

which implies that

N ≥ 500

satisfies the condition. If we wish to use a radix-2 FFT algorithm to compute the DFT
in Figure 10.1, we would choose N = 512 for an equivalent continuous-time frequency
spacing of 	� = 2π(5000/512) = 2π(9.77) rad/s.

Example 10.2 Relationship Between DFT Values

Consider the problem posed in Example 10.1, in which 1/T = 5000, N = 512, and xc(t)

is real-valued and is sufficiently bandlimited to avoid aliasing with the given sampling
rate. If it is determined that V [11] = 2000(1 + j), what can be said about other values
of V [k] or about Xc(j�)?

Referring to the symmetry properties of the DFT given in Table 8.2, V [k] =
V ∗[((−k))N], k = 0, 1, . . . , N − 1, and consequently, V [N − k] = V ∗[k], so it follows
in this case that

V [512 − 11] = V [501] = V ∗[11] = 2000(1 − j).

We also know that the DFT sample k = 11 corresponds to the continuous-time fre-
quency �11 = 2π(11)(5000)/512 = 2π(107.4), and similarly, k = 501 corresponds to
the frequency −2π(11)(5000)/512 = −2π(107.4). Although windowing smooths the
spectrum, we can say that

Xc(j�11) = Xc(j2π(107.4)) ≈ T · V [11] = 0.4(1 + j).

Note that the factor T is required to compensate for the factor 1/T introduced by
sampling, as in Eq. (10.1). We can again exploit symmetry to conclude that

Xc(−j�11) = Xc(−j2π(107.4)) ≈ T · V ∗[11] = 0.4(1 − j).

Many commercial real-time spectrum analyzers are based on the principles em-
bodied in Figures 10.1 and 10.2. It should be clear from the preceding discussion, how-
ever, that numerous factors affect the interpretation the DFT of a windowed segment
of the sampled signal in terms of the continuous-time Fourier transform of the original
input sc(t). To accommodate and mitigate the effects of these factors, care must be taken
in filtering and sampling the input signal. Furthermore, to interpret the results correctly,
the effects of the time-domain windowing and of the frequency-domain sampling in-
herent in the DFT must be clearly understood. For the remainder of the discussion,
we will assume that the issues of antialiasing filtering and continuous-to-discrete-time
conversion have been satisfactorily handled and are negligible. In the next section, we
concentrate specifically on the effects of windowing and of the frequency-domain sam-
pling imposed by the DFT. We choose sinusoidal signals as the specific class of examples
to discuss, because sinusoids are perfectly bandlimited and they are easily computed.
However, most of the issues raised by the examples apply more generally.

Section 10.2 DFT Analysis of Sinusoidal Signals 797

10.2 DFT ANALYSIS OF SINUSOIDAL SIGNALS

The DTFT of a sinusoidal signal A cos(ω0n + φ) (existing for all n) is a pair of impulses
at +ω0 and −ω0 (repeating periodically with period 2π). In analyzing sinusoidal signals
using the DFT, windowing and spectral (frequency-domain) sampling have important
effects. As we will see in Section 10.2.1, windowing smears or broadens the impulses of
the Fourier representation, thus, the exact frequency is less sharply defined. Windowing
also reduces the ability to resolve sinusoidal signals that are close together in frequency.
The spectral sampling inherent in the DFT has the effect of potentially giving a mis-
leading or inaccurate picture of the true spectrum of the sinusoidal signal. This effect is
discussed in Section 10.2.3.

10.2.1 The Effect of Windowing

Consider a continuous-time signal consisting of the sum of two sinusoidal components;
i.e.,

sc(t) = A0 cos(�0t + θ0) + A1 cos(�1t + θ1), −∞ < t < ∞. (10.6)

Assuming ideal sampling with no aliasing and no quantization error, we obtain the
discrete-time signal

x[n] = A0 cos(ω0n + θ0) + A1 cos(ω1n + θ1), −∞ < n < ∞, (10.7)

where ω0 = �0T and ω1 = �1T . The windowed sequence v[n] in Figure 10.1 is then

v[n] = A0w[n] cos(ω0n + θ0) + A1w[n] cos(ω1n + θ1). (10.8)

To obtain the DTFT of v[n], we can expand Eq. (10.8) in terms of complex exponentials
and use the frequency-shifting property of Eq. (2.158) in Section 2.9.2. Specifically, we
rewrite v[n] as

v[n] = A0

2
w[n]ejθ0ejω0n + A0

2
w[n]e−jθ0e−jω0n

+ A1

2
w[n]ejθ1ejω1n + A1

2
w[n]e−jθ1e−jω1n,

(10.9)

from which, with Eq. (2.158), it follows that the Fourier transform of the windowed
sequence is

V (ejω) = A0

2
ejθ0W(ej(ω−ω0)) + A0

2
e−jθ0W(ej(ω+ω0))

+ A1

2
ejθ1W(ej(ω−ω1)) + A1

2
e−jθ1W(ej(ω+ω1)).

(10.10)

According to Eq. (10.10), the Fourier transform of the windowed signal consists of the
Fourier transform of the window, shifted to the frequencies ±ω0 and ±ω1 and scaled
by the complex amplitudes of the individual complex exponentials that make up the
signal.

798 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

Example 10.3 Effect of Windowing on Fourier Analysis of
Sinusoidal Signals

In this example, we consider the system of Figure 10.1 and, in particular, W(ejω)

and V (ejω) for sc(t) of the form of Eq. (10.6), a sampling rate 1/T = 10 kHz and a
rectangular window w[n] of length 64. The signal amplitude and phase parameters are
A0 = 1, A1 = 0.75, and θ0 = θ1 = 0, respectively. To illustrate the essential features,
we specifically display only the magnitudes of the Fourier transforms.

− 2�

3
2�

3
− 2�

6
2�

6

|W(e j�)|

�0

32

64

�

(a)

−�

|V(e j�)|

�0

16

32

�

(b)

−�

Figure 10.3 Illustration of Fourier analysis of windowed cosines with a rectangu-
lar window. (a) Fourier transform of window. (b)–(e) Fourier transform of windowed
cosines as �1 − �0 becomes progressively smaller. (b) �0 = (2π/6) × 104,
�1 = (2π/3) × 104.

Section 10.2 DFT Analysis of Sinusoidal Signals 799

– 4�

15
4�

15
– 2�

14
2�

14

2�

14

|V(e j�)|

�

�0 =

2�

12
�1 =

2�

14
�0 =

4�

25
�1 =

0

16

32

�

(c)

−�

|V(e j�)|

�0

15

30

�

(d)

−�

|V(e j�)|

�0

20

40

�

(e)

−�

Figure 10.3 (continued) (c) �0 = (2π/14) × 104, �1 = (4π/15) × 104.
(d) �0 = (2π/14) × 104, �1 = (2π/12) × 104. (e) �0 = (2π/14) × 104,

�1 = (4π/25) × 104.

800 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

In Figure 10.3(a), we show |W(ejω)|, and in Figures 10.3(b), (c), (d), and (e), we
show |V (ejω)| for several choices of �0 and �1 in Eq. (10.6) or, equivalently, ω0 and
ω1 in Eq. (10.7). In Figure 10.3(b), �0 = (2π/6) × 104 and �1 = (2π/3) × 104, or,
equivalently, ω0 = 2π/6 and ω1 = 2π/3. In Figure 10.3(c)–(e), the frequencies become
progressively closer. For the parameters in Figure 10.3(b), the frequency and amplitude
of the individual components are evident. Specifically, Eq. (10.10) suggests that, with
no overlap between the replicas of W(ejω) at ω0 and ω1, there will be a peak of height
32A0 at ω0 and 32A1 at ω1, since W(ejω) has a peak height of 64. In Figure 10.3(b), the
two peaks are at approximately ω0 = 2π/6 and ω1 = 2π/3, with peak amplitudes in
the correct ratio. In Figure 10.3(c), there is more overlap between the window replicas
at ω0 and ω1, and while two distinct peaks are present, the amplitude of the spectrum
at ω = ω0 is affected by the amplitude of the sinusoidal signal at frequency ω1 and vice
versa. This interaction is called leakage: The component at one frequency leaks into
the vicinity of another component owing to the spectral smearing introduced by the
window. Figure 10.3(d) shows the case where the leakage is even greater. Notice how
side lobes adding out of phase can reduce the heights of the peaks. In Figure 10.3(e),
the overlap between the spectrum windows at ω0 and ω1 is so significant that the two
peaks visible in (b)–(d) have merged into one. In other words, with this window, the
two frequencies corresponding to Figure 10.3(e) will not be resolved in the spectrum.

10.2.2 Properties of the Windows

Reduced resolution and leakage are the two primary effects on the spectrum as a result
of applying a window to the sinusoidal signal. The resolution is influenced primarily by
the width of the main lobe of W(ejω), whereas the degree of leakage depends on the
relative amplitude of the main lobe to the side lobes of W(ejω). In Chapter 7, in a filter
design context, we showed that the width of the main lobe and the relative side-lobe
amplitude depend primarily on the window length L and the shape (amount of tapering)
of the window. The rectangular window, which has Fourier transform

Wr(e
jω) =

L−1∑
n=0

e−jωn = e−jω(L−1)/2 sin(ωL/2)

sin(ω/2)
, (10.11)

has the narrowest main lobe for a given length (ml = 4π/L), but it has the largest side
lobes of all the commonly used windows. Other windows discussed in Chapter 7 include
the Bartlett, Hann, and Hamming windows. The DTFTs of all these windows have
main-lobe width 	ml = 8π/(L−1), which is approximately twice that of the rectangular
window, but they have significantly smaller side-lobe amplitudes. The problem with all
these windows is that there is no possibility of trade-off between main-lobe width and
side-lobe amplitude, since the window length is the only variable parameter.

As we saw in Chapter 7, the Kaiser window is defined by

wK [n] =
⎧⎨⎩ I0[β(1 − [(n − α)/α]2)1/2]

I0(β)
, 0 ≤ n ≤ L − 1,

0, otherwise,

(10.12)

where α = (L − 1)/2 and I0(·) is the zeroth-order modified Bessel function of the first
kind. (Note that the notation of Eq. (10.12) differs slightly from that of Eq. (7.72) in

Section 10.2 DFT Analysis of Sinusoidal Signals 801

that L denotes the length of the window in Eq. (10.12), whereas the length of the filter
design window in Eq. (7.72) is denoted M + 1.) We have already seen in the context of
the filter design problem that this window has two parameters, β and L, which can be
used to trade between main-lobe width and relative side-lobe amplitude. (Recall that
the Kaiser window reduces to the rectangular window when β = 0.) The main-lobe
width 	ml is defined as the symmetric distance between the central zero-crossings. The
relative side-lobe level Asl is defined as the ratio in dB of the amplitude of the main lobe
to the amplitude of the largest side lobe. Figure 10.4, which is a duplicate of Figure 7.32,
shows Fourier transforms of Kaiser windows for different lengths and different values
of β. In designing a Kaiser window for spectrum analysis, we want to specify a desired
value of Asl and determine the required value of β. Figure 10.4(c) shows that the relative
side-lobe amplitude is essentially independent of the window length and thus depends
only on β. This was confirmed by Kaiser and Schafer (1980), who obtained the following
least squares approximation to β as a function of Asl:

β =
⎧⎨⎩

0, Asl ≤ 13.26,

0.76609(Asl − 13.26)0.4 + 0.09834(Asl − 13.26), 13.26 < Asl ≤ 60,

0.12438(Asl + 6.3), 60 < Asl ≤ 120.

(10.13)

Using values of β from Eq. (10.13) gives windows with actual side-lobe values that
differ by less than 0.36 from the value of Asl used in Eq. (10.13) for the entire range of
13.26 < Asl < 120. (Note that the value 13.26 is the relative side-lobe amplitude of the
rectangular window, to which the Kaiser window reduces for β = 0.)

Figure 10.4(c) also shows that the main-lobe width is inversely proportional to
the length of the window. The trade-off between main-lobe width, relative side-lobe
amplitude, and window length is displayed by the approximate relationship

L � 24π(Asl + 12)

155	ml
+ 1, (10.14)

which was also given by Kaiser and Schafer (1980).
Equations (10.12), (10.13), and (10.14) are the necessary equations for determin-

ing a Kaiser window with desired values of main-lobe width and relative side-lobe
amplitude. To design a window for prescribed values of Asl and 	ml requires simply
the computation of β from Eq. (10.13), the computation of L from Eq. (10.14), and the
computation of the window using Eq. (10.12). Many of the remaining examples of this
chapter use the Kaiser window. Other spectrum analysis windows are considered by
Harris (1978).

10.2.3 The Effect of Spectral Sampling

As mentioned previously, the DFT of the windowed sequence v[n] provides samples of
V (ejω) at the N equally spaced discrete-time frequencies ωk = 2πk/N, k = 0, 1, . . . ,

N − 1. These are equivalent to the continuous-time frequencies �k = (2πk)/(NT),
for k = 0, 1, . . . , N/2 (assuming that N is even). The indices k = N/2 + 1, . . . , N − 1
correspond to the negative continuous-time frequencies −2π(N − k)/(NT). Spectral
sampling, as imposed by the DFT, can sometimes produce misleading results. This effect
is best illustrated by example.

A
m

pl
it

ud
e

Samples

(a)

0 5 10

0.2� 0.4� 0.6� 0.8� �0

15 20

0.3

0.6

0.9

1.2

dB

Radian frequency (�)

(b)

−100

−75

−50

−25

0

0.2� 0.4� 0.6� 0.8� �0

dB

Radian frequency (�)

(c)

−100

−75

−50

−25

0

� = 0

� = 3

� = 6

� = 0

� = 3

� = 6

L = 11

L = 21

L = 41

Figure 10.4 (a) Kaiser windows for β = 0, 3, and 6 and L = 21. (b) Fourier trans-
form corresponding to windows in (a). (c) Fourier transforms of Kaiser windows
with β = 6 and L = 11, 21, and 41.

802

Section 10.2 DFT Analysis of Sinusoidal Signals 803

Example 10.4 Illustration of the Effect of Spectral Sampling

Consider the same parameters as in Figure 10.3(c) in Example 10.3, i.e., A0 = 1,

A1 = 0.75, ω0 = 2π/14, ω1 = 4π/15, and θ1 = θ2 = 0 in Eq. (10.8). w[n] is a
rectangular window of length 64. Then

v[n] =
⎧⎨⎩ cos
(

2π

14
n

)
+ 0.75 cos

(
4π

15
n

)
, 0 ≤ n ≤ 63,

0, otherwise.

(10.15)

Figure 10.5(a) shows the windowed sequence v[n]. Figures 10.5(b), (c), (d), and (e)
show the corresponding real part, imaginary part, magnitude, and phase, respectively,
of the DFT of length N = 64. Observe that since x[n] is real, X[N − k] = X∗[k] and

0 32 64
−2

−1

0

1

2

(a)

A
m

pl
it

ud
e

n

0 32 64
−10

0

10

20

30

40

(b)

A
m

pl
it

ud
e

0 32 64

−20

0

20

(c)

A
m

pl
it

ud
e

Re{V[k]}, Re{V(ej�)}

Im{|V[k]|}, Im{V(ej�)}

k,�N/2�

k,�N/2�

v[n]

Figure 10.5 Cosine sequence and DFT with a rectangular window for N = 64.
(a) Windowed signal. (b) Real part of DFT. (c) Imaginary part of DFT. Note that the
DTFT is superimposed as the light continuous line.

804 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

0 32 64
−10

0

10

20

30

40

(d)
A

m
pl

it
ud

e

0 32 64
−4

−2

0

2

4

(e)

A
m

pl
it

ud
e

ARG{V[k]}, ARG{V[(ej�)}

|V[k]|, |V(ej�)|

k,�N/2�

k,�N/2�

Figure 10.5 (continued) (d) Magnitude of DFT. (e) Phase of DFT.

X(ej (2π−ω)) = X∗(ejω); i.e., the real part and the magnitude are even functions and
the imaginary part and phase are odd functions of k and ω.

In Figures 10.5(b)–(e), the horizontal (frequency) axis is labeled in terms of the
DFT index or frequency sample number k. The value k = 32 corresponds to ω = π

or, equivalently, � = π/T . As is the usual convention in displaying the DFT of a
time sequence, we display the DFT values in the range from k = 0 to k = N − 1,
corresponding to displaying samples of the DTFT in the frequency range 0 to 2π .
Because of the inherent periodicity of the DTFT, the first half of this range corresponds
to the positive continuous-time frequencies, i.e., � between zero and π/T , and the
second half of the range to the negative frequencies, i.e., � between −π/T and zero.
Note the even periodic symmetry of the real part and the magnitude and the odd
periodic symmetry of the imaginary part and the phase.

Recall that the DFT V [k] is a sampled version of the DTFT V (ejω). Superim-
posed on each DFT with a light gray line in Figures 10.5(b)–(e) is the corresponding
DTFT, i.e., Re{V (ejω)}, Im{V (ejω)}, |V (ejω)|, and ARG{V (ejω)} respectively. The
frequency scale for these functions is the specially defined normalized scale denoted
ωN/(2π); i.e., N on the DFT index scale corresponds to ω = 2π on the conventional
frequency scale of the DTFT. We also follow this convention of superimposing the
DTFT in Figures 10.6, 10.7, 10.8, and 10.9.

The magnitude of the DFT in Figure 10.5(d) corresponds to samples of |V (ejω)|
(the light continuous line), which shows the expected concentration around ω1 =
2π/7.5 and ω0 = 2π/14, the frequencies of the two sinusoidal components of the
input. Specifically, the frequency ω1 = 4π/15 = 2π(8.533 . . .)/64 lies between the DFT
samples corresponding to k = 8 and k = 9. Likewise, the frequency ω0 = 2π/14 =
2π(4.5714 . . .)/64 lies between the DFT samples corresponding to k = 4 and k = 5.
Note that the frequency locations of the peaks of the gray curve in Figure 10.5(d)

Section 10.2 DFT Analysis of Sinusoidal Signals 805

are between spectrum samples obtained from the DFT. In general, the locations of
peaks in the DFT values do not necessarily coincide with the exact frequency locations
of the peaks in the DTFT, since the true spectrum peaks can lie between spectrum
samples. Correspondingly, as evidenced in Figure 10.5(d), the relative amplitudes of
peaks in the DFT will not necessarily reflect the relative amplitudes of the spectrum
peaks of |V (ejω)|.

Example 10.5 Signal Frequencies Matching DFT
Frequencies Exactly

Consider the sequence

v[n] =
⎧⎨⎩ cos
(

2π

16
n

)
+ 0.75 cos

(
2π

8
n

)
, 0 ≤ n ≤ 63,

0, otherwise,

(10.16)

as shown in Figure 10.6(a). Again, a rectangular window is used with N = L = 64. This
is very similar to the previous example, except that in this case, the frequencies of the
cosines coincide exactly with two of the DFT frequencies. Specifically, the frequency
ω1 = 2π/8 = 2π8/64 corresponds exactly to the DFT sample k = 8 and the frequency
ω0 = 2π/16 =2π4/64 to the DFT sample k = 4.

The magnitude of the 64-point DFT of v[n] for this example is shown in Fig-
ure 10.6(b) and corresponds to samples of |V (ejω)| (which again is superimposed

0 32 64
−2

−1

0

1

2

(a)

A
m

pl
it

ud
e

n

0 32 64
−10

0

10

20

30

40

(b)

A
m

pl
it

ud
e

|V[k]|, |V(ej�)|

v[n]

k,�N/2�

Figure 10.6 Discrete Fourier analysis of the sum of two sinusoids for a case
in which the Fourier transform is zero at all DFT frequencies except those cor-
responding to the frequencies of the two sinusoidal components. (a) Windowed
signal. (b) Magnitude of DFT. Note that (|V(ejω)|) is superimposed as the light
continuous line.

806 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

with a light line) at a frequency spacing of 2π/64. Although the signal parameters in
Example 10.4 are very similar, the appearance of the DFT is for this example and strik-
ingly different. In particular, for this example, the DFT has two strong spectral lines at
the samples corresponding to the frequencies of the two sinusoidal components in the
signal and no frequency content at the other DFT values. In fact, this clean appear-
ance of the DFT in Figure 10.6(b) is largely an illusion resulting from the sampling of
the spectrum. Comparing Figures 10.6(b) and (c), we can see that the reason for the
clean appearance of Figure 10.6(b) is that for this choice of parameters, the Fourier
transform is exactly zero at the frequencies that are sampled by the DFT, except those
corresponding to k = 4, 8, 64 − 8, and 64 − 4. Although the signal of Figure 10.6(a)
has significant content at almost all frequencies, as evidenced by the gray curve in
Figure 10.6(b), we do not see this in the DFT, because of the sampling of the spectrum.
Another way of viewing this is to note that the 64-point rectangular window selects
exactly an integer number of periods of the two sinusoidal components in Eq. (10.16).
The 64-point DFT then corresponds to the DFS of this signal replicated with period
64. This replicated signal will have only four nonzero DFS coefficients corresponding
to the two sinusoidal components on Eq. (10.16). This is an example of how the inher-
ent assumption of periodicity gives a correct answer to a different problem. We are
interested in the finite-length case and the results are quite misleading from that point
of view.

To illustrate this point further, we can extend v[n] in Eq. (10.16) by zero-padding
to obtain a 128-point sequence. The corresponding 128-point DFT is shown in Fig-
ure 10.7. With this finer sampling of the spectrum, the presence of significant content
at other frequencies becomes apparent. In this case, the windowed signal is not natu-
rally periodic with period 128.

0 64 128
0

10

20

30

40

A
m

pl
it

ud
e

|V[k]|, |V(ej�)|

k,�N/2�

Figure 10.7 DFT of the signal as in Figure 10.6(a), but with twice the number of
frequency samples used in Figure 10.6(b).

In Figures 10.5, 10.6, and 10.7, the windows were rectangular. In the next set of
examples, we illustrate the effect of different choices for the window.

Example 10.6 DFT Analysis of Sinusoidal Signals Using
a Kaiser Window

In this example we return to the frequency, amplitude, and phase parameters of Ex-
ample 10.4, but now with a Kaiser window applied, so that

v[n] = wK [n] cos
(

2π

14
n

)
+ 0.75wK [n] cos

(
4π

15
n

)
, (10.17)

Section 10.2 DFT Analysis of Sinusoidal Signals 807

where wK [n] is the Kaiser window as given by Eq. (10.12). We will select the Kaiser
window parameter β to be equal to 5.48, which, according to Eq. (10.13), results in a
window for which the relative side-lobe amplitude is Asl = 40 dB. Figure 10.8(a) shows

0 32 64
−2

−1

0

1

2

(a)

A
m

pl
it

ud
e

n

0 32 64
0

5

10

15

20

(b)

A
m

pl
it

ud
e

|V[k]|, |V(ej�)|

v[n]

k,�N/2�

0 32
−2

−1

0

1

2

(c)

A
m

pl
it

ud
e

n

0 16 32
0

5

10

(d)

A
m

pl
it

ud
e

|V[k]|, |V(ej�)|

v[n]

k,�N/2�

Figure 10.8 Discrete Fourier analysis with Kaiser window. (a) Windowed se-
quence for L = 64. (b) Magnitude of DFT for L = 64. (c) Windowed sequence for
L = 32. (d) Magnitude of DFT for L = 32.

808 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

the windowed sequence v[n] for a window length of L = 64, and Figure 10.8(b) shows
the magnitude of the corresponding DFT. From Eq. (10.17), we see that the difference
between the two frequencies is ω1 −ω0 = 2π/7.5−2π/14 = 0.389. From Eq. (10.14), it
follows that the width of the main lobe of the Fourier transform of the Kaiser window
with L = 64 and β = 5.48 is 	ml = 0.401. Thus, the main lobes of the two replicas
of WK(ejω) centered at ω0 and ω1 will just slightly overlap in the frequency interval
between the two frequencies. This is evident in Figure 10.8(b), where we see that the
two frequency components are clearly resolved.

Figure 10.8(c) shows the same signal, multiplied by a Kaiser window with L = 32
and β = 5.48. Since the window is half as long, we expect the width of the main
lobe of the Fourier transform of the window to double, and Figure 10.8(d) confirms
this. Specifically, Eqs. (10.13) and (10.14) confirm that for L = 32 and β = 5.48,
the main-lobe width is 	ml = 0.815. Now, the main lobes of the two copies of the
Fourier transform of the window overlap throughout the region between the two
cosine frequencies, and we do not see two distinct peaks.

In all the previous examples except in Figure 10.7, the DFT length N was equal
to the window length L. In Figure 10.7, zero-padding was applied to the windowed
sequence before computing the DFT to obtain the Fourier transform on a more finely
divided set of frequencies. However, we must realize that this zero-padding will not
improve the ability to resolve close frequencies, which depends on the length and shape
of the window. This is illustrated by the next example.

Example 10.7 DFT Analysis with 32-point Kaiser Window
and Zero-Padding

In this example, we repeat Example 10.6 using the Kaiser window with L = 32 and
β = 5.48, and with the DFT length varying. Figure 10.9(a) shows the DFT magnitude
for N = L = 32 as in Figure 10.8(d), and Figures 10.9(b) and (c) show the DFT
magnitude again with window length L = 32, but with DFT lengths N = 64 and N =
128, respectively. As with Example 10.5, this zero-padding of the 32-point sequence
results in finer spectral sampling of the DTFT. As shown by the light continuous
curve, the underlying envelope of each DFT magnitude in Figure 10.9 is the same.
Consequently, increasing the DFT size by zero-padding does not change the ability to
resolve the two sinusoidal frequency components, but it does change the spacing of the
frequency samples. If N were increased beyond 128, the dots denoting the DFT sample

0 16 32
0

5

10

(a)

A
m

pl
it

ud
e

|V[k]|, |V(ej�)|

k,�N/2�

Figure 10.9 Illustration of effect of DFT length for Kaiser window of length L = 32.
(a) Magnitude of DFT for N = 32.

Section 10.2 DFT Analysis of Sinusoidal Signals 809

0 32 64
0

5

10

(b)

A
m

pl
it

ud
e

0 64 128
0

5

10

(c)

A
m

pl
it

ud
e

|V[k]|, |V(ej�)|

|V[k]|, |V(ej�)|

k,�N/2�

k,�N/2�

Figure 10.9 (continued) (b) Magnitude of DFT for N = 64. (c) Magnitude of DFT
for N = 128.

values would tend to merge together and become indistinct. Consequently, DFT values
are often plotted by connecting consecutive points by straight-line segments without
indicating each individual point. For example, in Figures 10.5 through 10.8, we have
shown a light continuous line as the DTFT |V (ejω)| of the finite-length sequence
v[n]. In fact, this curve is a plot of the DFT of the sequence after zero-padding to
N = 2048. In these examples, this sampling of the DTFT is sufficiently dense so as to
be indistinguishable from the function of the continuous variable ω.

For a complete representation of a sequence of length L, the L-point DFT is suf-
ficient, since the original sequence can be recovered exactly from it. However, as we
saw in the preceding examples, simple examination of the L-point DFT can result in
misleading interpretations. For this reason, it is common to apply zero-padding, so that
the spectrum is sufficiently oversampled and important features are therefore read-
ily apparent. With a high degree of time-domain zero-padding or frequency-domain
oversampling, simple interpolation (e.g., linear interpolation) between the DFT val-
ues provides a reasonably accurate picture of the Fourier spectrum, which can then be
used, for example, to estimate the locations and amplitudes of spectrum peaks. This is
illustrated in the following example.

Example 10.8 Oversampling and Linear Interpolation for
Frequency Estimation

Figure 10.10 shows how a 2048-point DFT can be used to obtain a finely spaced eval-
uation of the Fourier transform of a windowed signal and how increasing the window
width improves the ability to resolve closely spaced sinusoidal components. The signal

810 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

of Example 10.6 having frequencies 2π/14 and 4π/15 was windowed with Kaiser win-
dows of lengths L = 32, 42, 54, and 64 with β = 5.48. First, note that in all cases, the
2048-point DFT gives a smooth result when the points are connected by straight lines.
In Figure 10.10(a), where L = 32, the two sinusoidal components are not resolved,
and, of course, increasing the DFT length will only result in a smoother curve. As the
window length increases from L = 32 to L = 42, however, we see improvement in our
ability to distinguish the two frequencies and the approximate relative amplitudes of
each sinusoidal component. The dashed lines in all the figures indicate the DFT indices
k0 = 146 ≈ 2048/14 and k1 = 273 ≈ 4096/15, which correspond to the nearest DFT
frequencies (N = 2048) for the cosine components. Note that the 2048-point DFT in
Figure 10.10(c) would be much more effective for precisely locating the peak of the
windowed Fourier transform than the coarsely sampled DFT in Figure 10.8(b), which
is also computed with a 64-point Kaiser window. Note also that the amplitudes of the
two peaks in Figure 10.10 are very close to being in the correct ratio of 0.75 to 1.

0 1024 2048
0

5

10

15

20

(a)

A
m

pl
it

ud
e

k,�N/2�

k0 k1

k0 k1

k0 k10 1024 2048

(b)

0 1024 2048

(c)

0

5

10

15

20

A
m

pl
it

ud
e

k,�N/2�

0

5

10

15

20

A
m

pl
it

ud
e

k,�N/2�

Figure 10.10 Illustration of the computation of the DFT for N 	 L with linear
interpolation to create a smooth curve: (a) N = 1024, L = 32. (b) N = 1024,
L = 42. (c) N = 1024, L = 64. (The values k0 = 146 ≈ 2048/14 and
k1 = 273 ≈ 4096/15 are the closest DFT frequencies to ω0 = 2π/14 and
ω1 = 4π/15 when the DFT length is N = 2048.)

Section 10.3 The Time-Dependent Fourier Transform 811

10.3 THE TIME-DEPENDENT FOURIER TRANSFORM

In Section 10.2, we illustrated the use of the DFT for obtaining a frequency-domain
representation of a signal composed of sinusoidal components. In that discussion, we
assumed that the frequencies of the cosines did not change with time, so that no mat-
ter how long the window, the signal properties (amplitudes, frequencies, and phases)
would be the same from the beginning to the end of the window. Long windows give
better frequency resolution, but in practical applications of sinusoidal signal models,
the signal properties (e.g., amplitude, frequency) often change with time. For example,
nonstationary signal models of this type are required to describe radar, sonar, speech,
and data communication signals. This conflicts with the use of long analysis windows.
A single DFT estimate is not sufficient to describe such signals, and as a result, we
are led to the concept of the time-dependent Fourier transform, also referred to as the
short-time Fourier transform.1

We define the time-dependent Fourier transform of a signal x[n] as

X[n, λ) =
∞∑

m=−∞
x[n + m]w[m]e−jλm, (10.18)

where w[n] is a window sequence. In the time-dependent Fourier representation, the
one-dimensional sequence x[n], a function of a single discrete variable, is converted into
a two-dimensional function of the time variable n, which is discrete, and the frequency
variable λ, which is continuous.2 Note that the time-dependent Fourier transform is
periodic in λ with period 2π ; therefore, we need consider only values of λ for 0 ≤ λ < 2π

or any other interval of length 2π .
Equation (10.18) can be interpreted as the DTFT of the shifted signal x[n+m], as

viewed through the window w[m]. The window has a stationary origin, and as n changes,
the signal slides past the window, so that at each value of n, a different portion of the
signal is extracted by the window for Fourier analysis. As an illustration, consider the
following example.

Example 10.9 Time-Dependent Fourier Transform of a
Linear Chirp Signal

A continuous-time linear chirp signal is defined as

xc(t) = cos(θ(t)) = cos(A0t2), (10.19)

1Further discussion of the time-dependent Fourier transform can be found in a variety of references,
including Allen and Rabiner (1977), Rabiner and Schafer (1978), Crochiere and Rabiner (1983) and Quatieri
(2002).

2We denote the frequency variable of the time-dependent Fourier transform by λ to maintain a dis-
tinction from the frequency variable of the conventional DTFT, which we always denote by ω. We use the
mixed bracket–parenthesis notation X[n, λ) as a reminder that n is a discrete variable, and λ is a continuous
variable.

812 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

where A0 has units of radians/s2. (Such signals are called chirps because, in the auditory
frequency range, short pulses sound like bird chirps.) The signal xc(t) in Eq. (10.19) is
a member of the more general class of frequency modulation (FM) signals for which
the instantaneous frequency is defined as the time derivative of the cosine argument
θ(t). Therefore, in this case, the instantaneous frequency is

�i(t) = dθ(t)

dt
= d

dt

(
A0t2
)

= 2A0t, (10.20)

which varies in proportion to time; hence, the designation as a linear chirp signal. If
we sample xc(t), we obtain the discrete-time linear chirp signal3

x[n] = xc(nT) = cos(A0T 2n2) = cos(α0n2), (10.21)

where α0 = A0T 2 has units of radians. The instantaneous frequency of the sampled
chirp signal is a frequency-normalized, sampled version of the instantaneous frequency
of the continuous-time signal; i.e.,

ωi [n] = �i(nT) · T = 2A0T 2n = 2α0n, (10.22)

which displays the same proportional increase with sample index n, with α0 controlling
the rate of increase. Figure 10.11 shows two 1201-sample segments of the sampled chirp
signal in Eq. (10.21) with α0 = 15π × 10−6. (The samples are connected by straight
lines for plotting.) Observe that over a short interval, the signal looks sinusoidal, but
the spacing between peaks becomes smaller and smaller as time progresses, indicating
increasing frequency with time.

x[320 + m]

x[720 + m]

0 1200
m

w[m]

0 1200
m

w[m]

(a)

(b)

Figure 10.11 Two segments of the linear chirp signal x [n] = cos(α0n2) for
α0 = 15π×10−6 with a 400-sample Hamming window superimposed. (a) X [n, λ)
at n = 320 would be the DTFT of the top trace multiplied by the window. (b)X [720, λ)
would be the DTFT of the bottom trace multiplied by the window.

3We have seen discrete-time linear complex exponential chirp signals in Chapter 9 in the context of
the chirp transform algorithm.

Section 10.3 The Time-Dependent Fourier Transform 813

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

100

200

M
ag

ni
tu

de
(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150
M

ag
ni

tu
de

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

M
ag

ni
tu

de

(c)
� / (2�)

Figure 10.12 DTFTs of segments of a linear chirp signal: (a) DTFT of 20,000
samples of the signal x [n] = cos(α0n2). (b) DTFT of x [5000 + m]w [m] where
w [m] is a Hamming window of length L = 401; i.e., X [5000, λ). (c) DTFT of
x [15,000 + m]w [m] where w [m] is a Hamming window of length L = 401; i.e.,
X [15,000, λ).

The relationship of the shifted signal to the window in time-dependent Fourier
analysis is also illustrated in Figure 10.11. Typically, w[m] in Eq. (10.18) has finite
length around m = 0, so that X[n, λ) displays the frequency characteristics of the
signal around time n. Figure 10.11(a) shows x[320 + m] as a function of m for 0 ≤
m ≤ 1200 together with a Hamming window w[m] of length L = 401 samples. The
time-dependent transform at time n = 320 is the DTFT of w[m]x[320 + m]. Similarly,
Figure 10.11(b) shows the window and a later segment of the chirp signal beginning at
sample n = 720.

Figure 10.12 illustrates the importance of the window in discrete-time Fourier
analysis of time-varying signals. Figure 10.12(a) shows the DTFT of 20,000 samples
(with a rectangular window) of the discrete-time chirp. Over this interval, the normal-
ized instantaneous frequency of the chirp,

fi [n] = ωi [n]/(2π) = 2α0n/(2π),

goes from 0 to 0.00003π(20,000)/(2π) = 0.3. This variation of the instantaneous fre-
quency forces the DTFT representation, which involves only fixed frequencies acting
over all n, to include all frequencies in that range and beyond as is evident in Fig-
ure 10.12(a). Thus, the DTFT of a long segment of the signal shows only that the

814 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

signal has a wide bandwidth in the conventional DTFT sense. On the other hand, Fig-
ures 10.12(b) and (c) show DTFTs using a 401 sample Hamming window for segments
of the chirp waveform at n = 5000 and 15,000, respectively. Thus, Figures 10.12(b)
(c) are plots [as functions of λ/(2π)] of the time-dependent Fourier transform values
|X[5000, λ)| and |X[15,000, λ)|, respectively. Since the window length L = 401 is such
that the signal does not change frequency very much across the window interval, the
time-dependent Fourier transform tracks the frequency variation very well. Note that
at samples 5000 and 15,000, we would expect a peak in the time-dependent transform
at λ/(2π) = 0.00003π(5000)/(2π) = 0.075 and λ/(2π) = 0.00003π(15,000)/(2π) =
0.225, respectively. This is confirmed by examination of Figures 10.12(b) and (c).

Example 10.10 Plotting X[n,λ): The Spectrogram

In Figure 10.13, we show a display as a function of both time index n and frequency
λ/(2π) of the magnitude of the time-dependent Fourier transform, |Y [n, λ)|, for the
signal

y[n] =

⎧⎪⎪⎨⎪⎪⎩
0 n < 0
cos(α0n2) 0 ≤ n ≤ 20,000
cos(0.2πn) 20,000 < n ≤ 25,000
cos(0.2πn) + cos(0.23πn) 25,000 < n.

(10.23)

0 5000 10000 15000 20000 25000 30000
0

0.1

0.2

0.3

0.4

0.5

sample index n

sample index n

Spectrogram for Window Length L = 101

Spectrogram for Window Length L = 401

0 5000 10000 15000 20000 25000 30000
0

0.1

0.2

0.3

0.4

0.5

Figure 10.13 The magnitude of the time-dependent Fourier transform of y [n] in
Eq. (10.23): (a) Using a Hamming window of length L = 401. (b) Using a Hamming
window of length L = 101.

Section 10.3 The Time-Dependent Fourier Transform 815

Note that the signal y[n] is equal to x[n] in Eq. (10.21) in Example 10.9 for
0 ≤ n ≤ 20,000, and then it abruptly changes to cosine components with fixed fre-
quencies for n > 20,000. This signal was designed to make several important points
about time-dependent Fourier analysis. First, consider Figure 10.13(a), which shows
the time-dependent Fourier transform of y[n] over the interval 0 ≤ n ≤ 30,000 with
a Hamming window of length L = 401. This display, which shows 20 log10 |Y [n, λ)| as
a function of λ/2π in the vertical dimension, and the time index n in the horizontal
dimension is called a spectrogram. The value 20 log10 |Y [n, λ)| over a restricted range
of 50 dB is represented by the darkness of the marking at [n, λ). The plots in Fig-
ures 10.12(b) and (c) are vertical slices (shown in Figure 10.12 as magnitude) through
the image at n = 5000 and n = 15,000 respectively at the locations of the dashed
lines in Figure 10.13(a). Note the linear progression during the chirp interval. Also,
note that during the constant-frequency intervals, the dark line remains horizontal.
The width of the dark features in Figure 10.13(a) is dependent on the width of the
main lobe 	ml of the DTFT of the window. Table 7.2 indicates that for the Hamming
window, this width is approximately 	ml = 8π/M wherein M +1 is the window length.
For a 401-point window, 	ml/(2π) = 0.01. Thus, the two close-in-frequency cosines
are clearly resolved in the interval 25,000 < n ≤ 30,000, because their normalized fre-
quency difference is (0.23π − 0.2π)/(2π) = 0.015, which is significantly greater than
the main-lobe width 0.01. Note that the vertical width of the dark sloping bar for the
chirp interval is wider than the horizontal bars representing the constant-frequency
intervals. This extra broadening is caused by the frequency variation across the window
and is a small-scale version of the effect seen in Figure 10.12(a), wherein the variation
across the 20,000-sample window is much greater.

The image in Figure 10.13(a) illustrates another important aspect of time-de-
pendent Fourier analysis. The 401-sample window provides good frequency resolu-
tion at almost all points in time. However, note that at n = 20,000 and 25,000 the
signal properties change abruptly, so that for an interval of about 401 samples around
these times, the window contains samples from both sides of the change. This leads to
the fuzzy area wherein the signal properties are much less clearly represented by the
spectrogram. We can improve the ability to resolve events in the time dimension by
shortening the window. This is illustrated in Figure 10.13(b) wherein the window length
is L = 101. The points of change are much better resolved with this window. How-
ever, the normalized main-lobe frequency width of a 101-sample Hamming window is
	ml/(2π) = 0.04, and the two constant-frequency cosines after n = 25,000 are only
separated by 0.015 in normalized frequency. Thus, as is clear from Figure 10.13(b), the
two frequencies are not resolved with the 101-sample window, although the location
of the abrupt changes in the signal are much more accurately resolved in time.

Examples 10.9 and 10.10 illustrate how the principles of discrete-time Fourier
analysis that were discussed in Sections 10.1 and 10.2 can be applied to signals whose
properties vary with time. Time-dependent Fourier analysis is widely used both as an
analysis tool for displaying signal properties and as a representation for signals. In the
latter use, it is important to develop a deeper understanding of the two-dimensional
representation in Eq. (10.18).

10.3.1 Invertibility of X[n,λ)

Since X[n, λ) is the DTFT of x[n + m]w[m], the time-dependent Fourier transform is
invertible if the window has at least one nonzero sample. Specifically, from the Fourier

816 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

transform synthesis equation (2.130),

x[n + m]w[m] = 1
2π

∫ 2π

0
X[n, λ)ejλmdλ, −∞ < m < ∞, (10.24)

or equivalently,

x[n + m] = 1
2πw[m]

∫ 2π

0
X[n, λ)dλ (10.25)

if w[m] �= 0.4 Thus with m chosen as any one value for which w[m] �= 0, x[n] for all
values of n can be recovered from X[n, λ) using Eq. (10.25).

While the above discussion shows that the time-dependent Fourier transform is an
invertible transformation, Eq. (10.24) and (10.25) do not provide a computable inverse,
since evaluating them requires knowing X[n, λ) at all λ and also requires evaluating
an integral. However, the inverse transform becomes a DFT when X[n, λ) is sampled
in both the time and frequency dimensions. We will discuss this matter more fully in
Section 10.3.4.

10.3.2 Filter Bank Interpretation of X[n,λ)

A rearrangement of the sum in Eq. (10.18) leads to another useful interpretation of
the time-dependent Fourier transform. If we make the substitution m′ = n + m in
Eq. (10.18), then X[n, λ) can be written as

X[n, λ) =
∞∑

m′=−∞
x[m′]w[−(n − m′)]ejλ(n−m′). (10.26)

Equation (10.26) can be interpreted as the convolution

X[n, λ) = x[n] ∗ hλ[n], (10.27a)

where

hλ[n] = w[−n]ejλn. (10.27b)

From Eq. (10.27a), we see that the time-dependent Fourier transform as a function
of n with λ fixed can be interpreted as the output of an LTI filter with impulse response
hλ[n] or, equivalently, with frequency response

Hλ(e
jω) = W(ej(λ−ω)). (10.28)

In general, a window that is nonzero for positive time will be called a noncausal
window, since the computation of X[n, λ) using Eq. (10.18) requires samples that follow
sample n in the sequence. Equivalently, in the linear-filtering interpretation, the impulse
response hλ[n] = w[−n]ejλn is noncausal if w[n] = 0 for n < 0. That is, a window that
is nonzero for n ≥ 0 gives a noncausal impulse response hλ[n] in Eq. (10.27b), whereas
if the window is nonzero for n ≤ 0, the linear filter is causal.

4Since X[n, λ) is periodic in λ with period 2π , the integration in Eqs. (10.24) and (10.25) can be over
any interval of length 2π .

Section 10.3 The Time-Dependent Fourier Transform 817

In the definition of Eq. (10.18), the time origin of the window is held fixed, and
the signal is considered to be shifted past the interval of support of the window. This
effectively redefines the time origin for Fourier analysis to be at sample n of the signal.
Another possibility is to shift the window as n changes, keeping the time origin for
Fourier analysis fixed at the original time origin of the signal. This leads to a definition
for the time-dependent Fourier transform of the form

X̌[n, λ) =
∞∑

m=−∞
x[m]w[m − n]e−jλm. (10.29)

The relationship between the definitions of Eqs. (10.18) and (10.29) is easily shown to
be

X̌[n, λ) = e−jλnX[n, λ). (10.30)

The definition of Eq. (10.18) is particularly convenient when we consider using
the DFT to obtain samples in λ of the time-dependent Fourier transform, since, if w[m]
is of finite length in the range 0 ≤ m ≤ (L − 1), then so is x[n + m]w[m]. On the other
hand, the definition of Eq. (10.29) has some advantages for the interpretation of Fourier
analysis in terms of filter banks. Since our primary interest is in applications of the DFT,
we will base most of our discussions on Eq. (10.18).

10.3.3 The Effect of the Window

The primary purpose of the window in the time-dependent Fourier transform is to limit
the extent of the sequence to be transformed, so that the spectral characteristics are
approximately constant over the duration of the window. The more rapidly the signal
characteristics change, the shorter the window should be. We saw in Section 10.2 that as
the window becomes shorter, frequency resolution decreases. The same effect is true,
of course, for X[n, λ). On the other hand, as the window length decreases, the ability
to resolve changes with time increases. Consequently, the choice of window length
becomes a trade-off between frequency resolution and time resolution. This trade-off
was illustrated in Example 10.10.

The effect of the window on the properties of the time-dependent Fourier trans-
form can be seen by assuming that the signal x[n] has a conventional DTFT X (ejω).
First, let us assume that the window is unity for all m; i.e., assume that there is no window
at all. Then, from Eq. (10.18),

X[n, λ) = X (ejλ)ejλn. (10.31)

Of course, a typical window for time-dependent spectrum analysis tapers to zero, so
as to select only a portion of the signal for analysis. On the other hand, as discussed
in Section 10.2, the length and shape of the window are chosen so that the Fourier
transform of the window is narrow in λ compared with variations in λ of the Fourier
transform of the signal. Thus, the need for good time resolution and good frequency
resolution often requires compromise. The Fourier transform of a typical window is
illustrated in Figure 10.14(a).

818 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

W(ej�)

�� 2�0

H�(ej�) = W(ej(� − �))

�� 2�0 � 2� + �

(a)

(b)

Figure 10.14 (a) Illustration of the Fourier transform of a Bartlett window for
time-dependent Fourier analysis. (b) Equivalent bandpass filter for time-dependent
Fourier analysis.

If we consider the time-dependent Fourier transform for fixed n, then it follows
from the properties of DTFTs that

X[n, λ) = 1
2π

∫ 2π

0
ejθnX (ejθ)W(ej (λ−θ))dθ; (10.32)

i.e., the Fourier transform of the shifted signal is convolved with the Fourier transform
of the window. This is similar to Eq. (10.2), except that in Eq. (10.2), we assumed that the
signal was not successively shifted relative to the window. Here, we compute a Fourier
transform for each value of n. In Section 10.2, we saw that the ability to resolve two
narrowband signal components depends on the width of the main lobe of the Fourier
transform of the window, whereas the degree of leakage of one component into the
vicinity of the other depends on the relative side-lobe amplitude. The case of no window
at all corresponds to w[n] = 1 for all n. In this case, W(ejω) = 2πδ(ω) for −π ≤ ω ≤ π ,
which gives precise frequency resolution but no time resolution.

In the linear-filtering interpretation of Eqs. (10.27a), (10.27b), and (10.28), W(ejω)

typically has the lowpass characteristics depicted in Figure 10.14(a), and consequently,
Hλ(e

jω) is a bandpass filter whose passband is centered at ω = λ, as depicted in Fig-
ure 10.14(b). Clearly, the width of the passband of this filter is approximately equal to the
width of the main lobe of the Fourier transform of the window. The degree of rejection
of adjacent frequency components depends on the relative side-lobe amplitude.

The preceding discussion suggests that if we are using the time-dependent Fourier
transform to obtain a time-dependent estimate of the frequency spectrum of a signal, it is
desirable to taper the window to lower the side lobes and to use as long a window as fea-
sible to improve the frequency resolution. This has already been illustrated in Examples
10.9 and 10.10, and we will consider other examples in Section 10.4. However, before
doing so, we discuss the use of the DFT in explicitly evaluating the time-dependent
Fourier transform.

Section 10.3 The Time-Dependent Fourier Transform 819

10.3.4 Sampling in Time and Frequency

Explicit computation of X[n, λ) can be done only on a finite set of values of λ, cor-
responding to sampling the time-dependent Fourier transform in the domain of its
frequency variable λ. Just as finite-length signals can be exactly represented through
samples of the DTFT, signals of indeterminate length can be represented through sam-
ples of the time-dependent Fourier transform, if the window in Eq. (10.18) has finite
length. As an example, suppose that the window has length L with samples beginning
at m = 0; i.e.,

w[m] = 0 outside the interval 0 ≤ m ≤ L − 1. (10.33)

If we sample X[n, λ) at N equally spaced frequencies λk = 2πk/N , with N ≥ L, then we
can recover the original windowed sequence from the sampled time-dependent Fourier
transform. Specifically, if we define X[n, k] to be

X[n, k] = X[n, 2πk/N) =
L−1∑
m=0

x[n + m]w[m]e−j (2π/N)km, 0 ≤ k ≤ N − 1, (10.34)

then X[n, k] with n fixed is the DFT of the windowed sequence x[n + m]w[m]. Using
the inverse DFT, we obtain

x[n + m]w[m] = 1
N

N−1∑
k=0

X[n, k]ej (2π/N)km, 0 ≤ m ≤ L − 1. (10.35)

Since we assume that the window w[m] �= 0 for 0 ≤ m ≤ L− 1, the sequence values can
be recovered in the interval from n through (n + L − 1) using the equation

x[n + m] = 1
Nw[m]

N−1∑
k=0

X[n, k]ej (2π/N)km, 0 ≤ m ≤ L − 1. (10.36)

The important point is that the window has finite length and that we can take at least
as many samples in the λ dimension as there are nonzero samples in the window; i.e.,
N ≥ L. While Eq. (10.33) corresponds to a noncausal window, we could have used a
causal window with w[m] �= 0 for −(L − 1) ≤ m ≤ 0 or a symmetric window such that
w[m] = w[−m] for |m| ≤ (L − 1)/2, with L an odd integer. The use of a noncausal
window in Eq. (10.34) is simply more convenient for our analysis, since it leads very
naturally to the interpretation of the sampled time-dependent Fourier transform as the
DFT of the windowed block of samples beginning with sample n.

Since Eq. (10.34) corresponds to sampling Eq. (10.18) in λ, it also corresponds
to sampling Eqs. (10.26), (10.27a), and (10.27b) in λ. Specifically, Eq. (10.34) can be
rewritten as

X[n, k] = x[n] ∗ hk[n], 0 ≤ k ≤ N − 1, (10.37a)

where

hk[n] = w[−n]ej (2π/N)kn. (10.37b)

Equations (10.37a) and (10.37b) can be viewed as a bank of N filters, as depicted in
Figure 10.15, with the kth filter having frequency response

Hk(e
jω) = W(ej [(2πk/N)−ω]). (10.38)

820 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

......

x [n]

X [n, N – 1]

X [n, 1]

X [n, 0]
h0[n]

h1[n]

hN – 1[n]

Figure 10.15 Filter bank
representation of the time-dependent
Fourier transform.

Our discussion suggests that x[n] for −∞ < n < ∞ can be reconstructed if X[n, λ)

or X[n, k] is sampled in the time dimension, as well. Specifically, using Eq. (10.36), we
can reconstruct the signal in the interval n0 ≤ n ≤ n0 + L − 1 from X[n0, k], and we
can reconstruct the signal in the interval n0 + L ≤ n ≤ n0 + 2L − 1 from X[n0 + L, k],
and so on. Thus, x[n] can be reconstructed exactly from the time-dependent Fourier
transform sampled in both the frequency and the time dimension. In general, for the
region of support of the window as specified in Eq. (10.33), we define this sampled
time-dependent Fourier transform as

X[rR, k] = X[rR, 2πk/N) =
L−1∑
m=0

x[rR + m]w[m]e−j (2π/N)km, (10.39)

where r and k are integers such that −∞ < r < ∞ and 0 ≤ k ≤ N − 1. To further
simplify our notation, we define

Xr [k] = X[rR, k] = X[rR, λk), −∞ < r < ∞, 0 ≤ k ≤ N − 1, (10.40)

where λk = 2πk/N . This notation denotes explicitly that the sampled time-dependent
Fourier transform is simply a sequence of N -point DFTs of the windowed signal seg-
ments

xr [m] = x[rR + m]w[m], −∞ < r < ∞, 0 ≤ m ≤ L − 1, (10.41)

with the window position moving in jumps of R samples in time. Figure 10.16 shows
lines in the [n, λ)-plane corresponding to the region of support of X[n, λ) and the grid
of sampling points in the [n, λ)-plane for the case N = 10 and R = 3. As we have shown,
it is possible to uniquely reconstruct the original signal from such a two-dimensional
discrete representation for appropriate choice of L.

Equation (10.39) involves the following integer parameters: the window length
L; the number of samples in the frequency dimension, or the DFT length N ; and the
sampling interval in the time dimension, R. Although not all choices of these parame-
ters will permit exact reconstruction of the signal, numerous combinations of N , R, and
w[n] and L can be used. The choice L ≤ N guarantees that it is possible to reconstruct
the windowed segments xr [m] from the block transforms Xr [k]. If R < L, the segments
overlap, but if R > L, some of the samples of the signal are not used and therefore
cannot be reconstructed from Xr [k]. Thus, as one possibility, if the three sampling pa-
rameters satisfy the relation R ≤ L ≤ N , then we can (in principle) recover R samples
of x[n] block-by-block for all n from Xr [k]. Notice that each block of R samples of the

Section 10.3 The Time-Dependent Fourier Transform 821

0 1 2 3 4 5 6 7 8 9 10
0

2�

n

k

�

X [3, �) X [6, �) X [9, �)

0

0

R

1

2R

2
(b)

(a)

3R

3 r

00

2�

2�

n

�

X1[k] = X [R, k] X2[k] = X [2R, k] X3[k] = X [3R, k]
N – 1

N

Figure 10.16 (a) Region of support for X [n, λ). (b) Grid of sampling points in
the [n, λ)-plane for the sampled time-dependent Fourier transform with N = 10
and R = 3.

signal is represented by N complex numbers in the sampled time-dependent Fourier
representation; or, if the signal is real, only N real numbers are required, due to the
symmetry of the DFT.

As a specific example, the signal can be reconstructed exactly from the sampled
time-dependent Fourier transform for the special case R = L = N . In this case, N

samples of a real signal are represented by N real numbers, and this is the minimum
that we could expect to achieve for an arbitrarily chosen signal. For R = L = N we can
recover xr [m] = x[rR + m]w[m] for 0 ≤ m ≤ N − 1 by computing the inverse DFT
of Xr [k]. Therefore, we can express x[n] for rR ≤ n ≤ [(r + 1)R − 1] in terms of the
windowed segments xr [m] as

x[n] = xr [n − rR]
w[n − rR] rR ≤ n ≤ [(r + 1)R − 1], (10.42)

822 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

i.e., we recover the N -point windowed segments, remove the effect of the window, and
then abut the segments together to reconstruct the original sequence.

10.3.5 The Overlap–Add Method of Reconstruction

While the previous discussion verifies the possibility of theoretically exact reconstruc-
tion of the signal from its time- and frequency-sampled time-dependent Fourier trans-
form, the demonstration proof is not a viable reconstruction algorithm when modifica-
tions are made to the time-dependent Fourier transform as is common, for example, in
applications such as audio coding and noise reduction. In these applications, division by
a tapering window as required in Eq. (10.42) can greatly enhance errors at the edges;
therefore, the signal blocks may not fit together smoothly. In such applications, it is
helpful to make R smaller than L and N so that the blocks of samples overlap. Then,
if the window is properly chosen, it will not be necessary to undo the windowing as in
Eq. (10.42).

Suppose that R ≤ L ≤ N . Then we can write

xr [m] = x[rR + m]w[m] = 1
N

N−1∑
k=0

Xr [k]ej (2πk/N)m 0 ≤ m ≤ L − 1. (10.43)

The recovered segments are shaped by the window, and their time origin is at the
beginning of the window. A different approach to putting the signal back together that
is more robust to changes in Xr [k] is to shift the windowed segments to their original
time locations rR and then simply add them together; i.e.,

x̂[n] =
∞∑

r=−∞
xr [n − rR]. (10.44)

If we can show that x̂[n] = x[n] for all n, then Eqs. (10.43) and (10.44) together comprise
a method for time-dependent Fourier synthesis having the capability of perfect recon-
struction. Substituting Eq. (10.43) into Eq. (10.44) leads to the following representation
of x̂[n]:

x̂[n] =
∞∑

r=−∞
x[rR + n − rR]w[n − rR]

= x[n]
∞∑

r=−∞
w[n − rR] (10.45)

If we define

w̃[n] =
∞∑

r=−∞
w[n − rR], (10.46a)

then the reconstructed signal in Eq. (10.45) can be expressed as

x̂[n] = x[n]w̃[n]. (10.46b)

It follows from Eq. (10.46b) that the condition for perfect reconstruction is

w̃[n] =
∞∑

r=−∞
w[n − rR] = C − ∞ < n < ∞, (10.47)

Section 10.3 The Time-Dependent Fourier Transform 823

i.e., the shifted-by-R copies of the window must add to a constant reconstruction gain
C for all n.

Note that the sequence w̃[n] is a periodic sequence (with period R) comprised of
time-aliased window sequences. As a simple example, consider a rectangular window
wrect[n] of length L samples. If R = L, the windowed segments simply fit together
block-by-block with no overlap. In this case, the condition of Eq. (10.47) is satisfied
with C = 1, because the shifted windows fit together with no overlap and no gaps. (A
simple sketch will confirm this.) If L for the rectangular window is even, and R = L/2
a simple analysis or sketch will again verify that the condition of Eq. (10.47) is satisfied
with C = 2. In fact, if L = 2ν , the signal x[n] can be perfectly reconstructed from Xr [k]
by the overlap–add method of Eq. (10.44) when L ≤ N and R = L, L/2, . . . , 1. The
corresponding reconstruction gains would be C = 1, 2, . . . , L. While this demonstrates
that the overlap–add method can perfectly reconstruct the original signal for some rect-
angular windows, and some window spacings R, the rectangular window is rarely used in
time-dependent Fourier analysis/synthesis because of its poor leakage properties. Other
tapered windows such as the Bartlett, Hann, Hamming, and Kaiser windows are more
commonly used. Fortunately, these windows with their superior spectral isolation prop-
erties, can also produce perfect or near-perfect reconstruction from the time-dependent
Fourier transform.

Two windows with which perfect reconstruction can be achieved are the Bartlett
and Hann windows, which were introduced in Chapter 7 in the context of FIR filter
design. They are defined again here in Eqs (10.48) and (10.49), respectively:

Bartlett (triangular)

wBart[n] =

⎧⎪⎨⎪⎩
2n/M, 0 ≤ n ≤ M/2,

2 − 2n/M, M/2 < n ≤ M,

0, otherwise

(10.48)

Hann

wHann[n] =
{

0.5 − 0.5 cos(2πn/M), 0 ≤ n ≤ M,

0, otherwise
(10.49)

As these windows are defined, the window length is L = M + 1 with the two end
samples equal to zero.5 With M even and R = M/2, then it is easily shown for the
Bartlett window that the condition of Eq. (10.47) is satisfied with C = 1. Figure 10.17(a)
shows overlapping Bartlett windows of length M + 1 (first and last samples zero) when
R = M/2. It is clear that these shifted windows add up to the reconstruction gain
constant C = 1. Figure 10.17(b) shows the same choice of L = M + 1 and R = M/2 for
the Hann window. Although it is less obvious from this plot, it is also true that these
shifted windows add up for all n to the constant C = 1. A similar statement is also true
for the Hamming window and many other windows.

5With these definitions, the actual number of nonzero samples is M −1 for both the Bartlett and Hann
windows, but the inclusion of the zero samples leads to convenient mathematical simplifications.

824 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

0 R M n

(a)

(b)

0 R M n

w[n] w[n − R] w[n − 2R]

Figure 10.17 (a) Shifted M + 1-point
Bartlett windows with R = M/2.
(b) Shifted M + 1-point Hann windows
with R = M/2. The dashed line is the
periodic sequence w̃ [n].

Figure 7.30 gives a comparison of the DTFT of the rectangular, Bartlett and Hann
windows. Note that the main-lobe width of the Bartlett and Hann windows is twice that
of the rectangular window of the same length L, but the side lobes are significantly lower
in amplitude for both the Bartlett and Hann windows. Thus, they and the other windows
in Figure 7.30 are much preferred over the rectangular window for time-dependent
Fourier analysis/synthesis.

While Figure 10.17 is intuitively plausible, it is less obvious that the Bartlett and
Hann windows for M = 2ν can provide perfect reconstruction for values of
R = M/2, M/4, . . . , 1 with corresponding reconstruction gains of M/(2R). To see this,
it is helpful to recall that the envelope sequence w̃[n] is inherently periodic with period
R, so it can be represented by an inverse DFT as

w̃[n] =
∞∑

r=−∞
w[n − rR] = 1

R

R−1∑
k=0

W(ej(2πk/R))ej (2πk/R)n, (10.50)

where W(ej(2πk/R)) is the DTFT of w[n] sampled at frequencies (2πk/R), k = 0, 1,

. . . , R − 1. From Eq. (10.50) it is clear that a condition for perfect reconstruction is

W(ej(2πk/R)) = 0 k = 1, 2, . . . , R − 1, (10.51a)

and if Eq. (10.51a) holds, then it follows from Eq. (10.50) that the reconstruction gain is

C = W(ej0)

R
. (10.51b)

Problem 7.43 of Chapter 7 explores the notion that the commonly used Bartlett,
Hann, Hamming, and Blackman windows can be represented in terms of rectangular
windows for which it is relatively easy to obtain a closed-form expression for the DTFT
of the window. In particular, Problem 7.43 gives the result that for M even, the Bartlett
window defined as in Eq. (10.48) has DTFT

WBart(e
jω) =

(
2
M

)(
sin(ωM/4)

sin(ω/2)

)2

e−jωM/2. (10.52)

From Eq. (10.52) it follows that the Bartlett window Fourier transform has equally
spaced zeros at frequencies 4πk/M , for k = 1, 2, . . . , M − 1. Therefore, if we choose R

Section 10.3 The Time-Dependent Fourier Transform 825

so that 2πk/R = 4πk/M or R = M/2, the condition Eq. (10.51a) is satisfied. Substituting
ω = 0 into Eq. (10.52) gives WBart(e

0) = M/2, so it follows that perfect reconstruction
results with C = M/(2R) = 1 if R = M/2. Choosing R = M/2 aligns the frequencies
2πk/R with all the zeros of WBart(e

jω). If M is divisible by 4, we can use R = M/4 and
the frequencies 2πk/R will still align with zeros of WBart(e

jω), and the reconstruction
gain will be C = M/(2R) = 2. If M is a power of two, R can be smaller with concomitant
increase in C.

The DTFT WHann(ejω) also has zeros equally spaced at integer multiples of 4π/M ,
so exact reconstruction is also possible with the Hann window defined as in Eq. (10.49).
The equally spaced zeros of WBart(e

jω) and WHann(ejω) are evident in the plots in
Figure 7.30(b) and (c), respectively. Figure 7.30(d) shows the Hamming window, which
is a version of the Hann window that is optimized to minimize the side-lobe levels. As
a result of the adjustment of the coefficients from 0.5 and 0.5 to 0.54 and 0.46, the zeros
of WHamm(ejω) are slightly displaced, so it is no longer possible to choose R so that
the frequencies 2πk/R fall precisely on zeros of WHamm(ejω). However, as shown in
Table 7.2, the maximum side-lobe level for frequencies above 4π/M is -41 dB. Thus, the
condition of Eq. (10.51a) is satisfied approximately at each of the frequencies 2πk/R.
Equation 10.50 shows that if Eq. (10.51a) is not satisfied exactly, w̃[n]will tend to oscillate
around C with period R imparting a slight amplitude modulation to the reconstructed
signal.

10.3.6 Signal Processing Based on the Time-Dependent
Fourier Transform

A general framework for signal processing based on the time-dependent Fourier trans-
form is depicted in Figure 10.18. This system is based on the fact that a signal x[n] can
be reconstructed exactly from its time- and frequency-sampled time-dependent Fourier
transform Xr [k] if the window and sampling parameters are appropriately chosen, as
discussed above. If the processing shown in Figure 10.18 is done so that Yr [k] maintains
its integrity as a time-dependent Fourier transform, then a processed signal y[n] can be
reconstructed by a technique of time-dependent Fourier synthesis, such as the overlap–
add method or a technique involving a bank of bandpass filters. For example, if x[n]
is an audio signal, Xr [k] can be quantized for signal compression. The time-dependent
Fourier representation provides a natural and convenient framework, wherein auditory
masking phenomena can be exploited to “hide” the quantization noise. (See, for exam-
ple, Bosi and Goldberg, 2003 and Spanias, Painter and Atti, 2007.) Time-dependent
Fourier synthesis is then used to reconstruct a signal y[n] for listening. This is the basis
for MP3 audio coding, for example. Another application is audio noise suppression,

Y[r,k]X[r,k]x[n] Frequency
Domain

Processing

y[n]
Time

Dependent
Fourier

Analysis

Time
Dependent

Fourier
Synthesis

Figure 10.18 Signal processing based on time-dependent Fourier analysis/
synthesis.

826 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

wherein the acoustic noise spectrum is estimated and then either subtracted from the
time-dependent Fourier spectrum of the input signal or used as the basis for Wiener
filtering applied to the Xr [k]. (See Quatieri, 2002.) These and many other applications
are greatly facilitated by the FFT algorithms that are available for efficient computation
of the discrete-time-dependent Fourier transform.

A discussion of applications of this type would take us too far afield; however, these
kinds of block-processing techniques for discrete-time signals were also introduced in
Chapter 8, when we discussed the use of the DFT for implementing the convolution of
a finite-length impulse response with an input signal of indefinite length. This method
of implementation of LTI systems has a useful interpretation in terms of the definitions
and concepts of time-dependent Fourier analysis and synthesis, as discussed so far.

Specifically, assume that x[n] = 0 for n < 0, and suppose that we compute the
time-dependent Fourier transform for R = L and a rectangular window. In other words,
the sampled time-dependent Fourier transform Xr [k] consists of a set of N -point DFTs
of segments of the input sequence

xr [m] = x[rL + m], 0 ≤ m ≤ L − 1. (10.53)
Since each sample of the signal x[n] is included, and the blocks do not overlap, it follows
that

x[n] =
∞∑

r=0

xr [n − rL]. (10.54)

Now, suppose that we define a new time-dependent Fourier transform
Yr [k] = H [k]Xr [k], 0 ≤ k ≤ N − 1, (10.55)

where H [k] is the N -point DFT of a finite-length unit sample sequence h[n] such that
h[n] = 0 for n < 0 and for n > P −1. If we compute the inverse DFT of Yr [k], we obtain

yr [m] = 1
N

N−1∑
k=0

Yr [k]ej (2π/N)km =
N−1∑

=0

xr [
]h[((m −
))N]. (10.56)

That is, yr [m] is the N -point circular convolution of h[m] and xr [m]. Since h[m] has length
P samples and xr [m] has length L samples, it follows from the discussion of Section 8.7
that if N ≥ L+P − 1, then yr [m] will be identical to the linear convolution of h[m] with
xr [m] in the interval 0 ≤ m ≤ L + P − 2, and it will be zero, otherwise. Thus, it follows
that if we construct an output signal

y[n] =
∞∑

r=0

yr [n − rL], (10.57)

then y[n] is the output of an LTI system with impulse response h[n]. The procedure just
described corresponds exactly to the overlap–add method of block convolution. The
overlap–save method discussed in Section 8.7 can also be applied within the framework
of the time-dependent Fourier transform.

10.3.7 Filter Bank Interpretation of the Time-Dependent
Fourier Transform

Another way to see that the time-dependent Fourier transform can be sampled in the
time dimension is to recall that for fixed λ (or for fixed k if the analysis frequencies are
λk = 2πk/N) the time-dependent Fourier transform is a one-dimensional sequence in
time that is the output of a bandpass filter with frequency response as in Eq. (10.28).

Section 10.3 The Time-Dependent Fourier Transform 827

0

0

0

(a)

(b)

10

8

6

4

2

0

5

10

|H5(e j�)| |H6(e j�)|

15

10�

16
12�

16
�2��

�2��

Figure 10.19 Filterbank frequency response. (a) Rectangular window. (b) Kaiser
window.

This is illustrated in Figure 10.19. Figure 10.19(a) shows the equivalent set of bandpass
filters corresponding to a rectangular window with L = N = 16. Figure 10.19 illustrates
the filter bank interpretation, even for the case where L and N are much larger. When
N increases, the filter bands become narrower, and the side lobes overlap with adjacent
channels in the same way. Note that the passbands of the filters corresponding to the
rectangular window overlap significantly, and their frequency selectivity is not good by
any standard. In fact, the side lobes of any one of the bandpass filters overlap completely
with several of the passbands on either side. This suggests that, in general, we might
encounter a problem with aliasing in the time dimension, since the Fourier transform
of any other finite-length tapering window will not be an ideal filter response either.
Our discussion in Section 10.3.5, however, shows that even the rectangular window can
provide perfect reconstruction with overlapping windows, in spite of the poor frequency
selectivity. Although aliasing occurs in the individual bandpass filter outputs, it can be
argued that the aliasing distortion cancels out when all channels are recombined in the
overlap–add synthesis. This notion of alias cancellation is one of the important concepts
to result from a detailed investigation of the filter bank interpretation.

If a tapering window is used, the side lobes are greatly reduced. Figure 10.19(b)
shows the case for a Kaiser window of the same length as the rectangular window used

828 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

in Figure 10.19(a), i.e., L = N = 16. The side lobes are much smaller, but the main
lobe is much wider, so the filters overlap even more. Again, the previous argument
based on block processing ideas shows conclusively that we can reconstruct the original
signal almost exactly from the time- and frequency-sampled time-dependent Fourier
transform if R is small enough. Thus, for a Kaiser window such as in Figure 10.19(b),
the sampling rate of the sequences representing each of the bandpass analysis channels
could be 2π/R = 	ml, where 	ml is the width of the main lobe of the Fourier transform
of the window.6 In the example of Figure 10.19(b), the main lobe width is approxi-
mately 	ml = 0.4π , which implies that the time sampling interval could be R = 5 for
nearly perfect reconstruction of the signal from X[rR, λk) by the overlap–add method.
More generally, in the case of the Hamming window of length L = M + 1 samples, for
example, 	ml = 8π/M so nominally, the time sampling interval should be R = M/4.
With this sampling rate in time, our discussion above shows that the signal x[n] could
be reconstructed nearly perfectly from X[rR, λk) using a Hamming window and the
overlap–add method of synthesis with R = L/4 and L ≤ N .

When using the overlap–add method of analysis/synthesis, the parameters gener-
ally satisfy the relation R ≤ L ≤ N . This implies that (taking account of symmetries) the
effective total number of samples (numbers) per second of the time-dependent Fourier
representation X[rR, λk) is a factor of N/R greater than the sample rate of x[n] itself.
This may not be an issue in some applications, but it presents a significant problem in
data compression applications, such as audio coding. Fortunately, the filter bank point
of view is the basis for showing that it is possible to choose these parameters to sat-
isfy R = N < L and still achieve nearly perfect reconstruction of the signal from its
time-dependent Fourier transform. An example of such an analysis/synthesis system
was discussed in Section 4.7.6, where R = N = 2, and the lowpass and highpass filters
have impulse responses of length L, which can be as large as desired to achieve sharp
cutoff filters. The two-channel filter bank can be generalized to a higher number of
channels with R = N , and, as in the example of Section 4.7.6, polyphase techniques can
be employed to increase computational efficiency. The advantage of requiring R = N

is that the total number of samples/s remains the same as for the input x[n]. As an
example, Figure 10.20 shows the first few bandpass channels of the basic analysis filter
bank specified by the MPEG-II audio coding standard. This filter bank performs time-
dependent Fourier analysis with offset center frequencies λk = (2k + 1)π/64 using 32
real bandpass filters. Since the real bandpass filters have a pair of passbands centered at
frequencies ±λk , this is equivalent to 64 complex bandpass filters. In this case, the length
of the impulse responses (equivalent to the window length) is L = 513 with the first and
last samples being equal to zero. The downsampling factor is R = 32. Observe that the
filters overlap significantly at their band edges, and downsampling by R = 32 causes
significant aliasing distortion. However, a more detailed analysis of the complete anal-
ysis/synthesis system shows that the aliasing distortion due to the nonideal frequency
responses cancels in the reconstruction process.

6Since, for our definition, the time-dependent Fourier transform channel signals, X[n, λk), are bandpass
signals centered on frequency λk , they can be frequency-downshifted by λk , so that the result is a lowpass
signal in the band ±	ml. The resulting lowpass signals have highest frequency 	ml/2, so the lowest sampling
rate would be 2π/R = 	ml. If R = N , the frequency-downshifting occurs automatically as a result of the
downsampling operation.

Section 10.4 Examples of Fourier Analysis of Nonstationary Signals 829

−140

−120

−100

−80

−60

−40

−20

20
First Four Channels of MPEG Analysis Filter Bank

normalized frequency �

ga
in

 in
 d

B
0

0 �/64 �/16�/32 3�/64 5�/64 �/83�/32 7�/64

k = 0 k = 1 k = 2 k = 3

Figure 10.20 Several bandpass channels for the MPEG-II analysis filter bank.

A full-scale discussion of analysis and synthesis filter banks is beyond our scope
in this chapter. An outline of such a discussion is given as the basis for Problem 10.46,
and detailed discussions can be found in Rabiner and Schafer (1978), Crochiere and
Rabiner (1983) and Vaidyanathan (1993).

10.4 EXAMPLES OF FOURIER ANALYSIS OF
NONSTATIONARY SIGNALS

In Section 10.3.6, we considered a simple example of how the time-dependent Fourier
transform can be used to implement linear filtering. In such applications, we are not
so much interested in spectral resolution as in whether it is possible to reconstruct
a modified signal from the modified time-dependent Fourier transform. On the other
hand, the concept of the time-dependent Fourier transform is often used as a framework
for a variety of techniques for obtaining spectrum estimates for nonstationary discrete-
time signals, and in these applications spectral resolution, time variation, and other
issues are the most important.

A nonstationary signal is a signal whose properties vary with time, for example, a
sum of sinusoidal components with time-varying amplitudes, frequencies, or phases. As
we will illustrate in Section 10.4.1 for speech signals and in Section 10.4.2 for Doppler

830 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

radar signals, the time-dependent Fourier transform often provides a useful description
of how the signal properties change with time.

When we apply time-dependent Fourier analysis to a sampled signal, the entire
discussion of Section 10.1 holds for each DFT that is computed. In other words, for
each segment xr [n] of the signal, the sampled time-dependent Fourier transform Xr [k]
would be related to the Fourier transform of the original continuous-time signal by
the processes described in Section 10.1. Furthermore, if we were to apply the time-
dependent Fourier transform to sinusoidal signals with constant (i.e., nontime-varying)
parameters, the discussion of Section 10.2 should also apply to each of the DFTs that we
compute. When the signal frequencies do not change with time, it is tempting to assume
that the time-dependent Fourier transform would vary only in the frequency dimension
in the manner described in Section 10.2, but this would be true only in very special
cases. For example, the time-dependent Fourier transform will be constant in the time
dimension if the signal is periodic with period Np and L =
0Np and R = r0Np, where

0 and r0 are integers; i.e., the window includes exactly
0 periods, and the window is
moved by exactly r0 periods between computations of the DFT. In general, even if the
signal is exactly periodic, the varying phase relationships that would result as different
segments of the waveform are shifted into the analysis window would cause the time-
dependent Fourier transform to vary in the time dimension. However, for stationary
signals, if we use a window that tapers to zero at its ends, the magnitude |Xr [k]| will
vary only slightly from segment to segment, with most of the variation of the complex
time-dependent Fourier transform occurring in the phase.

10.4.1 Time-Dependent Fourier Analysis of Speech
Signals

Speech is produced by excitation of an acoustic tube, the vocal tract, which is terminated
on one end by the lips and on the other end by the glottis. There are three basic classes
of speech sounds:

• Voiced sounds are produced by exciting the vocal tract with quasi-periodic pulses
of airflow caused by the opening and closing of the glottis.

• Fricative sounds are produced by forming a constriction somewhere in the vocal
tract and forcing air through the constriction so that turbulence is created, thereby
producing a noise-like excitation.

• Plosive sounds are produced by completely closing off the vocal tract, building up
pressure behind the closure, and then abruptly releasing the pressure.

Detailed discussions of models for the speech signal and applications of the time-
dependent Fourier transform are found in texts such as Flanagan (1972), Rabiner and
Schafer (1978), O’Shaughnessy (1999), Parsons (1986) and Quatieri (2002).

With a constant vocal tract shape, speech can be modeled as the response of an LTI
system (the vocal tract) to a quasiperiodic pulse train for voiced sounds or wideband
noise for unvoiced sounds. The vocal tract is an acoustic transmission system character-
ized by its natural frequencies, called formants, which correspond to resonances in its
frequency response. In normal speech, the vocal tract changes shape relatively slowly
with time as the tongue and lips perform the gestures of speech, and thus it can be

Section 10.4 Examples of Fourier Analysis of Nonstationary Signals 831

modeled as a slowly time-varying filter that imposes its frequency-response properties
on the spectrum of the excitation. A typical speech waveform is shown in Figure 10.21.

From this brief description of the process of speech production and from Fig-
ure 10.21, we see that speech is definitely a nonstationary signal. However, as illustrated

0

0.17

0.34

0.51

0.68
I n

l

s

I

z
0.85

1.02

1.19

1.36

1.53

1.70

t
0.17

0.34

0.51

0.68

0.85

1.02

1.19

1.36

1.53

1.70

1.87

lp

s

u
..

^

^

I
II n

n

t

Figure 10.21 Waveform of the speech
utterance “Two plus seven is less than
ten.” Each line is 0.17 s in duration. The
time-aligned phonemic transcript is
indicated below the waveform. The
sampling rate is 16,000 samples/s, so
each line represents 2720 samples.

832 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

in the figure, the characteristics of the signal can be assumed to remain essentially con-
stant over time intervals on the order of 30 or 40 ms. The frequency content of the speech
signal may range up to 15 kHz or higher, but speech is highly intelligible even when
bandlimited to frequencies below about 3 kHz. Commercial telephone systems, for ex-
ample, typically limit the highest transmitted frequency to about 3 kHz. A standard
sampling rate for digital telephone communication systems is 8000 samples/s.

Figure 10.21 shows that the waveform consists of a sequence of quasiperiodic
voiced segments interspersed with noise-like unvoiced segments. This figure suggests
that if the window length L is not too long, the properties of the signal will not change
appreciably from the beginning of the segment to the end. Thus, the DFT of a windowed
speech segment should display the frequency-domain properties of the signal at the
time corresponding to the window location. For example, if the window length is long
enough so that the fundamental frequency and its harmonics are resolved, the DFT of a
windowed segment of voiced speech should show a series of peaks at integer multiples
of the fundamental frequency of the signal in that interval. This would normally require
that the window span several periods of the waveform. If the window is too short, then
the harmonics will not be resolved, but the general spectrum shape will still be evident.
This is typical of the trade-off between frequency resolution and time resolution that is
required in the analysis of nonstationary signals. We saw this before in Example 10.9. If
the window is too long, the signal properties may change too much across the window;
if the window is too short, resolution of narrowband components will be sacrificed. This
trade-off is illustrated in the following example.

Example 10.11 Spectrogram Display of the Time-Dependent
Fourier Transform of Speech

Figure 10.22(a) shows a spectrogram display of the time-dependent Fourier transform
of the speech signal in Figure 10.21. The time waveform is also shown on the same
time scale, below the spectrogram. More specifically, Figure 10.22(a) is a wideband
spectrogram. A wideband spectrogram representation results from a window that is
relatively short in time and is characterized by poor resolution in the frequency dimen-
sion and good resolution in the time dimension. The frequency axis is labeled in terms
of continuous-time frequency. Since the sampling rate of the signal was 16,000 sam-
ples/s, it follows that the frequency λ = π corresponds to 8 kHz. The specific window
used in Figure 10.22(a) was a Hamming window of duration 6.7 ms, corresponding to
L = 108. The value of R was 16, representing 1-ms time increments.7 The broad, dark
bars that move horizontally across the spectrogram correspond to the resonance fre-
quencies of the vocal tract, which, as we see, change with time. The vertically striated
appearance of the spectrogram is due to the quasiperiodic nature of voiced portions of
the waveform, as is evident by comparing the variations in the waveform display and
the spectrogram. Since the length of the analysis window is on the order of the length
of a period of the waveform, as the window slides along in time, it alternately covers
high-energy segments of the waveform and then lower energy segments in between,
thereby producing the vertical striations in the plot during voiced intervals.

In a narrowband time-dependent Fourier analysis, a longer window is used to
provide higher frequency resolution, with a corresponding decrease in time resolution.

7In plotting spectrograms, it is common to use relatively small values of R so that a smoothly varying
display is obtained.

Section 10.4 Examples of Fourier Analysis of Nonstationary Signals 833

Such a narrowband analysis of speech is illustrated by the display in Figure 10.22(b).
In this case, the window was a Hamming window of duration 45 ms. This corresponds
to L = 720. The value of R was again 16.

0

1

2

3

Fr
eq

ue
nc

y
(k

H
z)

4

5

6

7

8

0

1

2

3

Fr
eq

ue
nc

y
(k

H
z)

4

5

6

7

8

Two plus seven is less than ten.

Two plus seven is less than ten.

1.91.81.71.61.51.41.31.21.11.0
Time (s)

(a)

0.90.80.70.60.50.40.30.20.10.0

1.91.81.71.61.51.41.31.21.11.0
Time (s)

(b)

0.90.80.70.60.50.40.30.20.10.0

Figure 10.22 (a) Wideband spectrogram of waveform of Figure 10.21.
(b) Narrowband spectrogram.

834 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

This example only hints at the many reasons that the time-dependent Fourier
transform is so important in speech analysis and processing. Indeed, the concept is
used directly and indirectly as the basis for acoustic–phonetic analysis and for many
fundamental speech-processing applications, such as digital coding, noise and reverber-
ation removal, speech recognition, speaker verification, and speaker identification. For
present purposes, our discussion simply serves as an introductory illustration.

10.4.2 Time-Dependent Fourier Analysis of Radar
Signals

Another application area in which the time-dependent Fourier transform plays an im-
portant role is radar signal analysis. The following are elements of a typical radar system
based on the Doppler principle:

• Antennas for transmitting and receiving (often the same).

• A transmitter that generates an appropriate signal at microwave frequencies. In
our discussion, we will assume that the signal consists of sinusoidal pulses. While
this is often the case, other signals may be used, depending on the specific radar
objectives and design.

• A receiver that amplifies and detects echoes of the transmitted pulses that have
been reflected from objects illuminated by the antenna.

In such a radar system, the transmitted sinusoidal signal propagates at the speed of
light, reflects off the object, and returns at the speed of light to the antenna, thereby
undergoing a time delay of the round-trip travel time from the antenna to the object.
If we assume that the transmitted signal is a sinusoidal pulse of the form cos(�0t) and
the distance from the antenna to the object is ρ(t), then the received signal is a pulse of
the form

s(t) = cos[�0(t − 2ρ(t)/c)], (10.58)
where c is the velocity of light. If the object is not moving relative to the antenna, then
ρ(t) = ρ0, where ρ0 is the range. Since the time delay between the transmitted and
received pulses is 2ρ0/c, a measurement of the time delay may be used to estimate
the range. If, however, ρ(t) is not constant, the received signal is an angle-modulated
sinusoid and the phase difference contains information about both the range and the
relative motion of the object with respect to the antenna. Specifically, let us represent
the time-varying range in a Taylor’s series expansion as

ρ(t) = ρ0 + ρ̇0t + 1
2! ρ̈0t

2 + · · · , (10.59)

where ρ0 is the nominal range, ρ̇0 is the velocity, ρ̈0 is the acceleration, and so on.
Assuming that the object moves with constant velocity (i.e., ρ̈0 = 0), and substituting
Eq. (10.59) into Eq. (10.58), we obtain

s(t) = cos[(�0 − 2�0ρ̇0/c)t − 2�0ρ0/c]. (10.60)
In this case, the frequency of the received signal differs from the frequency of the
transmitted signal by the Doppler frequency, defined as

�d = −2�0ρ̇0/c. (10.61)

Section 10.4 Examples of Fourier Analysis of Nonstationary Signals 835

Thus, the time delay can still be used to estimate the range, and we can determine the
speed of the object relative to the antenna if we can determine the Doppler frequency.

In a practical setting, the received signal is generally very weak, and thus a noise
term should be added to Eq. (10.60). We will neglect the effects of noise in the simple
analysis of this section. Also, in most radar systems, the signal of Eq. (10.60) would be
frequency shifted to a lower nominal frequency in the detection process. However, the
Doppler shift will still satisfy Eq. (10.61), even if s(t) is demodulated to a lower center
frequency.

To apply time-dependent Fourier analysis to such signals, we first bandlimit the
signal to a frequency band that includes the expected Doppler frequency shifts and then
sample the resulting signal with an appropriate sampling period T , thereby obtaining a
discrete-time signal of the form

x[n] = cos[(ω0 − 2ω0ρ̇0/c)n − 2ω0ρ0/c], (10.62)

where ω0 = �0T . In many cases, the object’s motion would be more complicated than we
have assumed, requiring the incorporation of higher order terms from Eq. (10.59) and
thereby producing a more complicated angle modulation in the received signal. Another
way to represent this more complicated variation of the frequency of the echoes is to
use the time-dependent Fourier transform with a window that is short enough, so that
the assumption of constant Doppler-shifted frequency is valid across the entire window
interval, but not so short as to sacrifice adequate resolution when two or more moving
objects create Doppler-shifted return signals that are superimposed at the receiver.

Example 10.12 Time-Dependent Fourier Analysis
of Doppler Radar Signals

An example of time-dependent Fourier analysis of Doppler radar signals is shown in
Figure 10.23. (See Schaefer, Schafer and Mersereau, 1979.) The radar data had been
preprocessed to remove low-velocity Doppler shifts, leaving the variations displayed in
the figure. The window for the time-dependent Fourier transform was a Kaiser window
with N = L = 64 and β = 4. In the figure, |Xr [k]| is plotted with time as the vertical di-
mension (increasing upward) and frequency as the horizontal dimension.8 In this case,
the successive DFTs are plotted close together. A hidden-line elimination algorithm
is used to create a two-dimensional view of the time-dependent Fourier transform. To
the left of the center line is a strong peak that moves in a smooth path through the
time-frequency plane. This corresponds to a moving object whose velocity varies in a
regular manner. The other broad peaks in the time-dependent Fourier transform are
due to noise and spurious returns called clutter in radar terminology. An example of
motion that might create such a variation of the Doppler frequency is a rocket moving
at constant velocity but rotating about its longitudinal axis. A peak moving through the
time-dependent Fourier transform might correspond to reflections from a fin on the
rocket that is alternately moving toward and then away from the antenna because of
the spinning of the rocket. Figure 10.23(b) shows an estimate of the Doppler frequency
as a function of time. This estimate was obtained simply by locating the highest peak
in each DFT.

8The plot shows the negative frequencies on the left of the line through the center of the plot and
positive frequencies on the right. This can be achieved by computing the DFT of (−1)nxr [n] and noting that
the computation effectively shifts the origin of the DFT index to k = N/2. Alternatively, the DFT of xr [n]
can be computed and then reindexed.

836 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

Short-time Fourier analysis

T
im

e

R
ad

ia
n

fr
eq

ue
nc

y

0

0

Radian frequency

(a)

0 60
Time

(b)

Figure 10.23 Illustration of time-dependent Fourier analysis of Doppler radar signal.
(a) Sequence of Fourier transforms of Doppler radar signal. (b) Doppler frequency estimated
by picking the largest peak in the time-dependent Fourier transform.

10.5 FOURIER ANALYSIS OF STATIONARY RANDOM
SIGNALS: THE PERIODOGRAM

In previous sections, we discussed and illustrated Fourier analysis for sinusoidal signals
with stationary (nontime-varying) parameters and for nonstationary signals such as
speech and radar. In cases where the signal can be modeled by a sum of sinusoids or a
linear system excited by a periodic pulse train, the Fourier transforms of finite-length
segments of the signal have a convenient and natural interpretation in terms of Fourier
transforms, windowing, and linear system theory. However, more noise-like signals,
such as the example of unvoiced speech in Section 10.4.1, are best modeled as random
signals.

As we discussed in Section 2.10 and as shown in Appendix A, random processes are
often used to model signals when the process that generates the signal is too complex
for a reasonable deterministic model. Typically, when the input to an LTI system is
modeled as a stationary random process, many of the essential characteristics of the
input and output are adequately represented by averages, such as the mean value (dc
level), variance (average power), autocorrelation function, or power density spectrum.

Section 10.5 Fourier Analysis of Stationary Random Signals: the Periodogram 837

Consequently, it is of particular interest to estimate these for a given signal. As discussed
in Appendix A, an estimate of the mean value of a stationary random process from a
finite-length segment of data is the sample mean, defined as

m̂x = 1
L

L−1∑
n=0

x[n]. (10.63)

Similarly, an estimate of the variance is the sample variance, defined as

σ̂ 2
x = 1

L

L−1∑
n=0

(x[n] − m̂x)
2. (10.64)

The sample mean and the sample variance, which are themselves random variables, are
unbiased and asymptotically unbiased estimators, respectively; i.e., the expected value
of m̂x is the true mean mx and the expected value of σ̂ 2

x approaches the true variance σ 2
x

as L approaches ∞. Furthermore, they are both consistent estimators; i.e., they improve
with increasing L, since their variances approach zero as L approaches ∞.

In the remainder of this chapter, we study the estimation of the power spectrum9

of a random signal using the DFT. We will see that there are two basic approaches
to estimating the power spectrum. One approach, which we develop in this section, is
referred to as periodogram analysis and is based on direct Fourier transformation of
finite-length segments of the signal. The second approach, developed in Section 10.6, is
to first estimate the autocovariance sequence and then compute the Fourier transform of
this estimate. In either case, we are typically interested in obtaining unbiased consistent
estimators. Unfortunately, the analysis of such estimators is very difficult, and generally,
only approximate analyses can be accomplished. Even approximate analyses are beyond
the scope of this text, and we refer to the results of such analyses only in a qualitative
way. Detailed discussions are given in Blackman and Tukey (1958), Hannan (1960),
Jenkins and Watts (1968), Koopmans (1995), Kay and Marple (1981), Marple (1987),
Kay (1988) and Stoica and Moses (2005).

10.5.1 The Periodogram

Let us consider the problem of estimating the power density spectrum Pss(�) of a
continuous-time signal sc(t). An intuitive approach to the estimation of the power spec-
trum is suggested by Figure 10.1 and the associated discussion in Section 10.1. Based
on that approach, we now assume that the input signal sc(t) is a stationary random sig-
nal. The antialiasing lowpass filter creates a new stationary random signal whose power
spectrum is bandlimited, so that the signal can be sampled without aliasing. Then, x[n]
is a stationary discrete-time random signal whose power density spectrum Pxx(ω) is
proportional to Pss(�) over the bandwidth of the antialiasing filter; i.e.,

Pxx(ω) = 1
T

Pss

(ω
T

)
, |ω| < π, (10.65)

where we have assumed that the cutoff frequency of the antialiasing filter is π/T and that
T is the sampling period. (See Problem 10.39 for a further consideration of sampling of

9The term power spectrum is commonly used interchangeably with the more precise term power density
spectrum.

838 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

random signals.) Consequently, a good estimate of Pxx(ω) will provide a useful estimate
of Pss(�). The window w[n] in Figure 10.1 selects a finite-length segment (L samples)
of x[n], which we denote v[n], the Fourier transform of which is

V (ejω) =
L−1∑
n=0

w[n]x[n]e−jωn. (10.66)

Consider as an estimate of the power spectrum the quantity

I (ω) = 1
LU

|V (ejω)|2, (10.67)

where the constant U anticipates a need for normalization to remove bias in the spec-
trum estimate. When the window w[n] is the rectangular window sequence, this estima-
tor for the power spectrum is called the periodogram. If the window is not rectangular,
I (ω) is called the modified periodogram. Clearly, the periodogram has some of the basic
properties of the power spectrum. It is nonnegative, and for real signals, it is a real and
even function of frequency. Furthermore, it can be shown (Problem 10.33) that

I (ω) = 1
LU

L−1∑
m=−(L−1)

cvv[m]e−jωm, (10.68)

where

cvv[m] =
L−1∑
n=0

x[n]w[n]x[n + m]w[n + m]. (10.69)

We note that the sequence cvv[m] is the aperiodic correlation sequence for the finite-
length sequence v[n] = w[n]x[n]. Consequently, the periodogram is in fact the Fourier
transform of the aperiodic correlation of the windowed data sequence.

Explicit computation of the periodogram can be carried out only at discrete fre-
quencies. From Eqs. (10.66) and (10.67), we see that if the DTFT of w[n]x[n] is re-
placed by its DFT, we will obtain samples at the DFT frequencies ωk = 2πk/N for
k = 0, 1, . . . , N − 1. Specifically, samples of the periodogram are given by

I [k] = I (ωk) = 1
LU

|V [k]|2, (10.70)

where V [k] is the N -point DFT of w[n]x[n]. If we want to choose N to be greater than the
window length L, appropriate zero-padding would be applied to the sequence w[n]x[n].

If a random signal has a nonzero mean, its power spectrum has an impulse at
zero frequency. If the mean is relatively large, this component will dominate the spec-
trum estimate, causing low-amplitude, low-frequency components to be obscured by
leakage. Therefore, in practice the mean is often estimated using Eq. (10.63), and the
resulting estimate is subtracted from the random signal before computing the power
spectrum estimate. Although the sample mean is only an approximate estimate of the
zero-frequency component, subtracting it from the signal often leads to better estimates
at neighboring frequencies.

Section 10.5 Fourier Analysis of Stationary Random Signals: the Periodogram 839

10.5.2 Properties of the Periodogram

The nature of the periodogram estimate of the power spectrum can be determined by
recognizing that, for each value of ω, I (ω) is a random variable. By computing the mean
and variance of I (ω), we can determine whether the estimate is biased and whether it
is consistent.

From Eq. (10.68), the expected value of I (ω) is

E{I (ω)} = 1
LU

L−1∑
m=−(L−1)

E{cvv[m]}e−jωm. (10.71)

The expected value of cvv[m] can be expressed as

E{cvv[m]} =
L−1∑
n=0

E{x[n]w[n]x[n + m]w[n + m]}

=
L−1∑
n=0

w[n]w[n + m]E{x[n]x[n + m]}.
(10.72)

Since we are assuming that x[n] is stationary,

E{x[n]x[n + m]} = φxx[m], (10.73)

and Eq. (10.72) can then be rewritten as

E{cvv[m]} = cww[m]φxx[m], (10.74)

where cww[m] is the aperiodic autocorrelation of the window, i.e.,

cww[m] =
L−1∑
n=0

w[n]w[n + m]. (10.75)

That is, the mean of the aperiodic autocorrelation of the windowed signal is equal to the
aperiodic autocorrelation of the window multiplied by the true autocorrelation function;
i.e., in an average sense, the autocorrelation function of the data window appears as a
window on the true autocorrelation function.

From Eq. (10.71), Eq. (10.74), and the modulation–windowing property of Fourier
transforms (Section 2.9.7), it follows that

E{I (ω)} = 1
2πLU

∫ π

−π

Pxx(θ)Cww(ej (ω−θ))dθ, (10.76)

where Cww(ejω) is the Fourier transform of the aperiodic autocorrelation of the window,
i.e.,

Cww(ejω) = |W(ejω)|2. (10.77)

According to Eq. (10.76), both the periodogram and the modified periodogram
are biased estimates of the power spectrum, since E{I (ω)} is not equal to Pxx(ω). Indeed,
we see that the bias arises as a result of convolution of the true power spectrum with the
Fourier transform of the aperiodic autocorrelation of the data window. If we increase
the window length, we expect that W(ejω) should become more concentrated around
ω = 0, and thus Cww(ejω) should look increasingly like a periodic impulse train. If
the scale factor 1/(LU) is correctly chosen, then E{I (ω)} should approach Pxx(ω) as

840 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

Cww(ejω) approaches a periodic impulse train. The scale can be adjusted by choosing
the normalizing constant U so that

1
2πLU

∫ π

−π

|W(ejω)|2dω = 1
LU

L−1∑
n=0

(w[n])2 = 1, (10.78)

or

U = 1
L

L−1∑
n=0

(w[n])2. (10.79)

For the rectangular window, we should choose U = 1, while other data windows would
require a value of 0 < U < 1 if w[n] is normalized to a maximum value of 1. Alter-
natively, the normalization can be absorbed into the amplitude of w[n]. Therefore, if
properly normalized, the periodogram and modified periodogram are both asymptoti-
cally unbiased; i.e., the bias approaches zero as the window length increases.

To examine whether the periodogram is a consistent estimate or becomes a consis-
tent estimate as the window length increases, it is necessary to consider the behavior of
the variance of the periodogram. An expression for the variance of the periodogram is
very difficult to obtain even in the simplest cases. However, it has been shown (see Jenk-
ins and Watts, 1968) that over a wide range of conditions, as the window length increases,

var[I (ω)] � P 2
xx(ω). (10.80)

That is, the variance of the periodogram estimate is approximately the same size as the
square of the power spectrum that we are estimating. Therefore, since the variance does
not asymptotically approach zero with increasing window length, the periodogram is
not a consistent estimate.

The properties of the periodogram estimate of the power spectrum just discussed
are illustrated in Figure 10.24, which shows periodogram estimates of white noise us-
ing rectangular windows of lengths L = 16, 64, 256, and 1024. The sequence x[n]

1

0
0 128 256 384 512

2

3

4

5

A
m

pl
it

ud
e

Sample number (k)
(a)

Figure 10.24 Periodograms of pseudorandom white-noise sequence. (a) Win-
dow length L = 16 and DFT length N = 1024.

512

Figure 10.24 (continued) (b) L = 64 and N = 1024. (c) L = 256 and N = 1024.
(d) L = 1024 and N = 1024.

841

842 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

was obtained from a pseudorandom-number generator whose output was scaled so
that |x[n]| ≤ √

3. A good random-number generator produces a uniform distribution of
amplitudes, and the measured sample-to-sample correlation is small. Thus, the power
spectrum of the output of the random-number generator could be modeled in this case
by Pxx(ω) = σ 2

x = 1 for all ω. For each of the four rectangular windows, the periodogram
was computed with normalizing constant U = 1 and at frequencies ωk = 2πk/N for
N = 1024 using the DFT. That is,

I [k] = I (ωk) = 1
L

|V [k]|2 = 1
L

∣∣∣∣∣∣
L−1∑
n=0

w[n]x[n]e−j (2π/N)kn

∣∣∣∣∣∣
2

. (10.81)

In Figure 10.24, the DFT values are connected by straight lines for purposes of display.
Recall that I (ω) is real and an even function of ω, so we only need to plot I [k] for
0 ≤ k ≤ N/2 corresponding to 0 ≤ ω ≤ π . Note that the spectrum estimate fluctuates
more rapidly as the window length L increases. This behavior can be understood by
recalling that, although we view the periodogram method as a direct computation of the
spectrum estimate, we have seen that the underlying correlation estimate of Eq. (10.69)
is, in effect, Fourier transformed to obtain the periodogram. Figure 10.25 illustrates a
windowed sequence, x[n]w[n], and a shifted version, x[n + m]w[n + m], as required in
Eq. (10.69). From this figure, we see that (L−m) signal values are involved in computing
a particular correlation lag value cvv[m]. Thus, when m is close to L, only a few values of
x[n] are involved in the computation, and we expect that the estimate of the correlation
sequence will be considerably more inaccurate for these values of m and consequently
will also show considerable variation between adjacent values of m. On the other hand,
when m is small, many more samples are involved, and the variability of cvv[m] with m

should not be as great. The variability at large values of m manifests itself in the Fourier
transform as fluctuations at all frequencies, and thus, for large L, the periodogram
estimate tends to vary rapidly with frequency. Indeed, it can be shown (see Jenkins

(a)

(b)

0

0

x [n] w[n]

x [n + m] w[n + m

−m

]

n

n Figure 10.25 Illustration of sequences
involved in Eq. (10.69). (a) A
finite-length sequence. (b) Shifted
sequence for m > 0.

Section 10.5 Fourier Analysis of Stationary Random Signals: the Periodogram 843

and Watts, 1968) that if N = L, the periodogram estimates at the DFT frequencies
2πk/N become uncorrelated. Since, as N increases, the DFT frequencies get closer
together, this behavior is inconsistent with our goal of obtaining a good estimate of
the power spectrum. We would prefer to obtain a smooth spectrum estimate without
random variations resulting from the estimation process. This can be accomplished by
averaging multiple independent periodogram estimates to reduce the fluctuations.

10.5.3 Periodogram Averaging

The averaging of periodograms in spectrum estimation was first studied extensively by
Bartlett (1953); later, after fast algorithms for computing the DFT were developed,
Welch (1970) combined these computational algorithms with the use of a data window
w[n] to develop the method of averaging modified periodograms. In periodogram aver-
aging, a data sequence x[n], 0 ≤ n ≤ Q−1, is divided into segments of length-L samples,
with a window of length L applied to each; i.e., we form the segments

xr [n] = x[rR + n]w[n], 0 ≤ n ≤ L − 1. (10.82)

If R < L the segments overlap, and for R = L the segments are contiguous. Note
that Q denotes the length of the available data. The total number of segments depends
on the values of, and relationship among, R, L, and Q. Specifically, there will be K full-
length segments, where K is the largest integer for which (K − 1)R + (L − 1) ≤ Q − 1.
The periodogram of the rth segment is

Ir (ω) = 1
LU

|Xr(e
jω)|2, (10.83)

where Xr(e
jω) is the DTFT of xr [n]. Each Ir (ω) has the properties of a periodogram, as

described previously. Periodogram averaging consists of averaging the K periodogram
estimates Ir (ω); i.e., we form the time-averaged periodogram defined as

Ī (ω) = 1
K

K−1∑
r=0

Ir (ω). (10.84)

To examine the bias and variance of Ī (ω), let us take L = R, so that the segments do
not overlap, and assume that φxx[m] is small for m > L; i.e., signal samples more than
L apart are approximately uncorrelated. If we assume that the periodograms Ir (ω) are
identically distributed independent random variables, then the expected value of Ī (ω) is

E{Ī (ω)} = 1
K

K−1∑
r=0

E{Ir (ω)}, (10.85)

or, since we assume that the periodograms are independent and identically distributed,

E{Ī (ω)} = E{Ir (ω)} for any r. (10.86)

From Eq. (10.76), it follows that

E{Ī (ω)} = E{Ir (ω)} = 1
2πLU

∫ π

−π

Pxx(θ)Cww(ej (ω−θ))dθ, (10.87)

844 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

where L is the window length. When the window w[n] is the rectangular window, the
method of averaging periodograms is called Bartlett’s procedure, and in this case it can
be shown that

cww[m] =
{

L − |m|, |m| ≤ (L − 1),

0 otherwise,
(10.88)

and, therefore,

Cww(ejω) =
(

sin(ωL/2)

sin(ω/2)

)2

. (10.89)

That is, the expected value of the average periodogram spectrum estimate is the convo-
lution of the true power spectrum with the Fourier transform of the triangular sequence
cww[n] that results as the autocorrelation of the rectangular window. Thus, the average
periodogram is also a biased estimate of the power spectrum.

To examine the variance, we use the fact that, in general, the variance of the aver-
age of K independent identically distributed random variables is 1/K times the variance
of each individual random variable. (See Bertsekas and Tsitsiklis, 2008.) Therefore, the
variance of the average periodogram is

var[Ī (ω)] = 1
K

var[Ir (ω)], (10.90)

or, with Eq. (10.80), it follows that

var[Ī (ω)] � 1
K

P 2
xx(ω). (10.91)

Consequently, the variance of Ī (ω) is inversely proportional to the number of peri-
odograms averaged, and as K increases, the variance approaches zero.

From Eq. (10.89), we see that as L, the length of the segment xr [n], increases,
the main lobe of Cww(ejω) decreases in width, and consequently, from Eq. (10.87),
E{Ī (ω)} more closely approximates Pxx(ω). However, for fixed total data length Q,
the total number of segments (assuming that L = R) is Q/L; therefore, as L increases,
K decreases. Correspondingly, from Eq. (10.91), the variance of Ī (ω) will increase. Thus,
as is typical in statistical estimation problems, for a fixed data length there is a trade
off between bias and variance. However, as the data length Q increases, both L and K

can be allowed to increase, so that as Q approaches ∞, the bias and variance of Ī (ω)

can approach zero. Consequently, periodogram averaging provides an asymptotically
unbiased, consistent estimate of Pxx(ω).

The preceding discussion assumed that nonoverlapping rectangular windows were
used in computing the time-dependent periodograms. Welch (1970) showed that if a
different window shape is used, the variance of the average periodogram still behaves,
as in Eq. (10.91). Welch also considered the case of overlapping windows and showed
that if the overlap is one-half the window length, the variance is further reduced by
almost a factor of 2, due to the doubling of the number of sections. Greater overlap
does not continue to reduce the variance, because the segments become decreasingly
independent as the overlap increases.

Section 10.5 Fourier Analysis of Stationary Random Signals: the Periodogram 845

10.5.4 Computation of Average Periodograms Using
the DFT

As with the periodogram, the average periodogram can be explicitly evaluated only
at a discrete set of frequencies. Because of the availability of the FFT algorithms for
computing the DFT, a particularly convenient and widely used choice is the set of
frequencies ωk = 2πk/N for an appropriate choice of N . From Eq. (10.84), we see that
if the DFT of xr [n] is substituted for the Fourier transform of xr [n] in Eq. (10.83), we
obtain samples of Ī (ω) at the DFT frequencies ωk = 2πk/N for k = 0, 1, . . . , N − 1.
Specifically, with Xr [k] denoting the DFT of xr [n],

Ir [k] = Ir (ωk) = 1
LU

|Xr [k]|2, (10.92a)

Ī [k] = Ī (ωk) = 1
K

K−1∑
r=0

Ir [k]. (10.92b)

It is worthwhile to note the relationship between periodogram averaging and
the time-dependent Fourier transform as discussed in detail in Section 10.3. Equation
(10.92a) shows that, except for the introduction of the normalizing constant 1/(LU),
each individual periodogram is simply the magnitude-squared of the time-dependent
Fourier transform at time rR and frequency 2πk/N . Thus, for each frequency index k,
the average power spectrum estimate at frequency corresponding to k is the time aver-
age of the time-sampled time-dependent Fourier transform. This can be visualized by
considering the spectrograms in Figure 10.22. The value Ī [k] is simply the average along
a horizontal line at frequency 2πk/N (or 2πk/(NT) in analog frequency).10 Averaging
the wideband spectrogram implies that the resulting power spectrum estimate will be
smooth when considered as a function of frequency, while the narrowband condition
corresponds to longer time windows and thus, less smoothness in frequency.

We denote Ir (2πk/N) as the sequence Ir [k] and Ī (2πk/N) as the sequence Ī [k].
According to Eqs. (10.92a) and (10.92b), the average periodogram estimate of the power
spectrum is computed at N equally spaced frequencies by averaging the magnitude of
the DFTs of the windowed data segments with the normalizing factor LU . This method
of power spectrum estimation provides a very convenient framework within which to
trade off between resolution and variance of the spectrum estimate. It is particularly
simple and efficient to implement using the FFT algorithms discussed in Chapter 9. An
important advantage of the method over those to be discussed in Section 10.6 is that
the spectrum estimate is always nonnegative.

10.5.5 An Example of Periodogram Analysis

Power spectrum analysis is a valuable tool for modeling signals, and it also can be used
to detect signals, particularly when it comes to finding hidden periodicities in sampled

10Note that the spectrogram is normally computed such that the windowed segments overlap con-
siderably as r varies, while in periodogram averaging R is normally equal to the window length or half the
window length.

846 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

A
m

pl
it

ud
e

Sample number (n)

0 20 40 60 80 100

−2

−3

−1

0

3

2

1

Figure 10.26 Cosine sequence with white noise, as in Eq. (10.93).

signals. As an example of this type of application of the average periodogram method,
consider the sequence

x[n] = A cos(ω0n + θ) + e[n], (10.93)

where θ is a random variable uniformly distributed between 0 and 2π , is independent of
e[n], and e[n] is a zero-mean white-noise sequence that has a constant power spectrum;
i.e., Pee(ω) = σ 2

e for all ω. In signal models of this form, the cosine is generally the
desired component and e[n] is an undesired noise component. Often, in practical signal
detection problems, we are interested in the case for which the power in the cosine
signal is small compared with the noise power. It can be shown (see Problem 10.40) that
over the base period of frequency |ω| ≤ π , the power spectrum for this signal is

Pxx(ω) = A2π

2
[δ(ω − ω0) + δ(ω + ω0)] + σ 2

e for |ω| ≤ π. (10.94)

From Eqs. (10.87) and (10.94), it follows that the expected value of the average peri-
odogram is

E{Ī (ω)} = A2

4LU
[Cww(ej (ω−ω0)) + Cww(ej (ω+ω0))] + σ 2

e . (10.95)

Figures 10.26 and 10.27 show the use of the averaging method for a signal of the form
of Eq. (10.93), with A = 0.5, ω0 = 2π/21, and random phase 0 ≤ θ < 2π . The noise
was uniformly distributed in amplitude such that −√

3 < e[n] ≤ √
3. Therefore, it is

easily shown that σ 2
e = 1. The mean of the noise component is zero. Figure 10.26 shows

101 samples of the sequence x[n]. Since the noise component e[n] has a maximum
amplitude

√
3, the cosine component in the sequence x[n] (having period 21) is not

visually apparent.
Figure 10.27 shows average periodogram estimates of the power spectrum for

rectangular windows with amplitude 1, so that U = 1, and of lengths L = 1024, 256, 64,
and 16, with the total record length Q = 1024 in all cases. Except for Figure 10.27(a),
the windows overlap by one-half the window length. Figure 10.27(a) is the periodogram
of the entire record, and Figures 10.27(b), (c), and (d) show the average periodogram

512384256

Sample number (k)

(a)

1280
0

10

20

30

40

50

60

A
m

pl
it

ud
e

512384256

Sample number (k)

(b)

1280
0

20

15

10

5

A
m

pl
it

ud
e

512384256

Sample number (k)

(c)

1280
0

1

2

3

4

5

6

A
m

pl
it

ud
e

Figure 10.27 Example of average periodogram for signal of length Q = 1024.
(a) Periodogram for window length L = Q = 1024 (only one segment). (b) K = 7
and L = 256 (overlap by L/2). (c) K = 31 and L = 64.

847

848 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

Sample number (k)

(d)

0 128 256 384 512
0

0.600
A

m
pl

it
ud

e

1.20

1.80

2.40

Figure 10.27 (continued) (d) K = 127 and L = 16.

for K = 7, 31, and 127 segments, respectively. In all cases, the average periodogram was
evaluated using 1024-point DFTs at frequencies ωk = 2πk/1024. (For window lengths
L < 1024, the windowed sequence was augmented with zero-samples before comput-
ing the DFT.) Therefore, the frequency ω0 = 2π/21 lies between DFT frequencies
ω48 = 2π48/1024 and ω49 = 2π49/1024.

In using such estimates of the power spectrum to detect the presence and/or the
frequency of the cosine component, we might search for the highest peaks in the spec-
trum estimate and compare their size with that of the surrounding spectrum values.
From Eqs. (10.89) and (10.95), the expected value of the average periodogram at the
frequency ω0 is

E{Ī (ω0)} = A2L

4
+ σ 2

e . (10.96)

Thus, if the peak due to the cosine component is to stand out against the variability of the
average periodogram, then in this special case, we must choose L so that A2L/4 � σ 2

e .
This is illustrated by Figure 10.27(a), where L is as large as it can be for the record length
Q. We see that L = 1024 gives a very narrow main lobe of the Fourier transform of
the autocorrelation of the rectangular window, so it would be possible to resolve very
closely spaced sinusoidal signals. Note that for the parameters of this example (A = 0.5,
σ 2

e = 1) and with L = 1024, the peak amplitude in the periodogram at frequency 2π/21
is close, but not equal, to the expected value of 65. We also observe additional peaks
in the periodogram with amplitudes greater than 10. Clearly, if the cosine amplitude
A had been smaller by only a factor of 2, it is possible that its peak would have been
confused with the inherent variability of the periodogram.

We have seen that the only sure way to reduce the variance of the spectrum esti-
mate is to increase the record length of the signal. This is not always possible, and even
if it is possible, longer records require more processing. We can reduce the variability

Section 10.6 Spectrum Analysis of Random Signals 849

of the estimate while keeping the record length constant if we use shorter windows and
average over more sections. The cost of doing this is illustrated by parts (b), (c), and
(d) of Figure 10.27. Note that as more sections are used, the variance of the spectrum
estimate decreases, but in accordance with Eq. (10.96), so does the amplitude of the
peak as a result of the cosine. Thus, we again face a trade-off. That the shorter windows
reduce variability is clear, especially if we compare the high-frequency regions away
from the peak in parts (a), (b) and (c) of Figure 10.27. Recall that the idealized power
spectrum of the model for the pseudorandom-noise generator is a constant (σ 2

e = 1)

for all frequencies. In Figure 10.27(a) there are peaks as high as about 10 when the true
spectrum is 1. In Figure 10.27(b), the variation away from 1 is less than about 3, and in
Figure 10.27(c), the variation around 1 is less than 0.5. However, shorter windows also
reduce the peak amplitude of any narrowband component, and they also degrade our
ability to resolve closely spaced sinusoids. This reduction in peak amplitude is also clear
from Figure 10.27. Again, if we were to reduce A by a factor of 2 in Figure 10.27(b),
the peak height would be approximately 4, which is not much different from many of
the other peaks in the high-frequency region. In Figure 10.27(c) a reduction of A by a
factor of 2 would make the peak approximately 1.25, which would be indistinguishable
from the other ripples in the estimate. In Figure 10.27(d), the window is very short, and
thus the fluctuations of the spectrum estimate are greatly reduced, but the spectrum
peak due to the cosine is very broad and barely above the noise even for A = 0.5. If
the length were any smaller, spectral leakage from the negative-frequency component
would cause there to be no distinct peak in the low-frequency region.

This example confirms that the average periodogram provides a straightforward
method of trading off between spectral resolution and reduction of the variance of the
spectrum estimate. Although the theme of the example was the detection of a sinusoid
in noise, the average periodogram could also be used in signal modeling. The spectrum
estimates of Figure 10.27 clearly suggest a signal model of the form of Eq. (10.93), and
most of the parameters of the model could be estimated from the average periodogram
power spectrum estimate.

10.6 SPECTRUM ANALYSIS OF RANDOM SIGNALS USING ESTIMATES
OF THE AUTOCORRELATION SEQUENCE

In the previous section, we considered the periodogram as a direct estimate of the
power spectrum of a random signal. The periodogram or the average periodogram is
a direct estimate in the sense that it is obtained directly by Fourier transformation
of the samples of the random signal. Another approach, based on the fact that the
power density spectrum is the Fourier transform of the autocorrelation function, is to
first obtain an estimate of the autocorrelation function φ̂xx[m] for a finite set of lag
values −M ≤ m ≤ M , and then apply a window wc[m] before computing the DTFT of
this estimate. This approach to power spectrum estimation is often referred to as the
Blackman–Tukey method. (See Blackman and Tukey, 1958.) In this section, we explore
some of the important facets of this approach and show how the DFT can be used to
implement it.

850 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

Let us assume, as before, that we are given a finite record of a random signal x[n].
This sequence is denoted

v[n] =
{

x[n] for 0 ≤ n ≤ Q − 1,

0 otherwise.
(10.97)

Consider an estimate of the autocorrelation sequence as

φ̂xx[m] = 1
Q

cvv[m], (10.98a)

where, since cvv[−m] = cvv[m],

cvv[m] =
Q−1∑
n=0

v[n]v[n + m] =

⎧⎪⎨⎪⎩
Q−|m|−1∑

n=0

x[n]x[n + |m|], |m| ≤ Q − 1,

0 otherwise,

(10.98b)

corresponding to the aperiodic correlation of a rectangularly windowed segment of x[n]
of length Q.

To determine the properties of this estimate of the autocorrelation sequence, we
consider the mean and variance of the random variable φ̂xx[m]. From Eqs. (10.98a) and
(10.98b), it follows that

E{φ̂xx[m]} = 1
Q

Q−|m|−1∑
n=0

E{x[n]x[n + |m|]} = 1
Q

Q−|m|−1∑
n=0

φxx[m], (10.99)

and since φxx[m] does not depend on n for a stationary random process,

E{φ̂xx[m]} =
⎧⎨⎩
(

Q − |m|
Q

)
φxx[m], |m| ≤ Q − 1,

0 otherwise.

(10.100)

From Eq. (10.100), we see that φ̂xx[m] is a biased estimate ofφxx[m], sinceE{φ̂xx[m]}
is not equal to φxx[m], but the bias is small if |m| � Q. We see also that an unbiased
estimator of the autocorrelation sequence for |m| ≤ Q − 1 is

φ̌xx[m] =
(

1
Q − |m|

)
cvv[m]; (10.101)

i.e., the estimator is unbiased if we divide by the number of nonzero terms in the sum
of lagged products involved in computing each value of cvv[m], rather than by the total
number of samples in the data record.

The variance of the autocorrelation function estimates is difficult to compute,
even with simplifying assumptions. However, approximate formulas for the variance of
both φ̂xx[m] and φ̌xx[m] can be found in Jenkins and Watts (1968). For our purposes
here, it is sufficient to observe from Eq. (10.98b) that as |m| approaches Q, fewer and
fewer samples of x[n] are involved in the computation of the autocorrelation estimate;
therefore, the variance of the autocorrelation estimate can be expected to increase
with increasing |m|. In the case of the periodogram, this increased variance affects
the spectrum estimate at all frequencies, because all the autocorrelation lag values
are implicitly involved in the computation of the periodogram. However, by explicitly
computing the autocorrelation estimate, we are free to choose which correlation lag

Section 10.6 Spectrum Analysis of Random Signals 851

values to include when estimating the power spectrum. Thus, we define the power
spectrum estimate

S(ω) =
M−1∑

m=−(M−1)

φ̂xx[m]wc[m]e−jωm, (10.102)

where wc[m] is a symmetric window of length (2M − 1) applied to the estimated auto-
correlation function. We require that the product of the autocorrelation sequence and
the window be an even sequence when x[n] is real, so that the power spectrum estimate
will be a real, even function of ω. Therefore, the correlation window must be an even
sequence. By limiting the length of the correlation window so that M � Q, we include
only autocorrelation estimates for which the variance is low.

The mechanism by which windowing the autocorrelation sequence reduces the
variance of the power spectrum estimate is best understood in the frequency domain.
From Eqs. (10.68), (10.69), and (10.98b), it follows that, with w[n] = 1 for 0 ≤ n ≤
(Q − 1), i.e., a rectangular window, the periodogram is the Fourier transform of the
autocorrelation estimate φ̂xx[m]; i.e.,

φ̂xx[m] = 1
Q

cvv[m] F←→ 1
Q

|V (ejω)|2 = I (ω). (10.103)

Therefore, from Eq. (10.102), the spectrum estimate obtained by windowing of φ̂xx[m]
is the convolution

S(ω) = 1
2π

∫ π

−π

I (θ)Wc(e
j (ω−θ))dθ. (10.104)

From Eq. (10.104), we see that the effect of applying the window wc[m] to the auto-
correlation estimate is to convolve the periodogram with the Fourier transform of the
autocorrelation window. This will smooth the rapid fluctuations of the periodogram
spectrum estimate. The shorter the correlation window, the smoother the spectrum
estimate will be, and vice versa.

The power spectrum Pxx(ω) is a nonnegative function of frequency, and the peri-
odogram and the average periodogram automatically have this property by definition.
In contrast, from Eq. (10.104), it is evident that nonnegativity is not guaranteed for
S(ω), unless we impose the further condition that

Wc(e
jω) ≥ 0 for − π < ω ≤ π. (10.105)

This condition is satisfied by the Fourier transform of the triangular (Bartlett) win-
dow, but it is not satisfied by the rectangular, Hanning, Hamming, or Kaiser windows.
Therefore, although these latter windows have smaller side lobes than the triangular
window, spectral leakage may cause negative spectrum estimates in low-level regions
of the spectrum.

The expected value of the smoothed periodogram is

E{S(ω)} =
M−1∑

m=−(M−1)

E{φ̂xx[m]}wc[m]e−jωm

=
M−1∑

m=−(M−1)

φxx[m]
(

Q − |m|
Q

)
wc[m]e−jωm.

(10.106)

852 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

If Q � M , the term (Q − |m|)/Q in Eq. (10.106) can be neglected,11 so we obtain

E{S(ω)} ∼=
M−1∑

m=−(M−1)

φxx[m]wc[m]e−jωm = 1
2π

∫ π

−π

Pxx(θ)Wc(e
j (ω−θ))dθ. (10.107)

Thus, the windowed autocorrelation estimate leads to a biased estimate of the power
spectrum. Just as with the average periodogram, it is possible to trade spectral resolution
for reduced variance of the spectrum estimate. If the length of the data record is fixed, we
can have lower variance if we are willing to accept poorer resolution of closely spaced
narrowband spectral components, or we can have better resolution if we can accept
higher variance. If we are free to observe the signal for a longer time (i.e., increase
the length Q of the data record), then both the resolution and the variance can be
improved. The spectrum estimate S(ω) is asymptotically unbiased if the correlation
window is normalized so that

1
2π

∫ π

−π

Wc(e
jω)dω = 1 = wc[0]. (10.108)

With this normalization, as we increase Q together with the length of the correlation
window, the Fourier transform of the correlation window approaches a periodic impulse
train and the convolution of Eq. (10.107) duplicates Pxx(ω).

The variance of S(ω) has been shown (see Jenkins and Watts, 1968) to be of the
form

var[S(ω)] �
⎛⎝ 1

Q

M−1∑
m=−(M−1)

w2
c [m]
⎞⎠P 2

xx(ω). (10.109)

Comparing Eq. (10.109) with the corresponding result in Eq. (10.80) for the peri-
odogram leads to the conclusion that, to reduce the variance of the spectrum esti-
mate, we should choose M and the window shape, possibly subject to the condition of
Eq. (10.105), so that the factor ⎛⎝ 1

Q

M−1∑
m=−(M−1)

w2
c [m]
⎞⎠ (10.110)

is as small as possible. Problem 10.37 deals with the computation of this variance reduc-
tion factor for several commonly used windows.

Estimation of the power spectrum based on the Fourier transform of an estimate
of the autocorrelation function is a clear alternative to the method of averaging peri-
odograms. It is not necessarily better in any general sense; it simply has different features,
and its implementation would be different. In some situations, it may be desirable to
compute estimates of both the autocorrelation sequence and the power spectrum, in
which case it would be natural to use the method of this section. Problem 10.43 explores
the issue of determining an autocorrelation estimate from the average periodogram.

11More precisely, we could define an effective correlation window we[m] = wc[m](Q − |m|)/Q.

Section 10.6 Spectrum Analysis of Random Signals 853

10.6.1 Computing Correlation and Power Spectrum
Estimates Using the DFT

The autocorrelation estimate

φ̂xx[m] = 1
Q

Q−|m|−1∑
n=0

x[n]x[n + |m|] (10.111)

is required for |m| ≤ M − 1 in the method of power spectrum estimation that we are
considering. Since φ̂xx[−m] = φ̂xx[m], it is necessary to compute Eq. (10.111) only for
nonnegative values of m, i.e., for 0 ≤ m ≤ M − 1. The DFT and its associated fast
computational algorithms can be used to advantage in the computation of φ̂xx[m], if we
observe that φ̂xx[m] is the aperiodic discrete convolution of the finite-length sequence
x[n] with x[−n]. If we compute X[k], the N -point DFT of x[n], and multiply by X∗[k],
we obtain |X[k]|2, which corresponds to the circular convolution of the finite-length
sequence x[n] with x[((−n))N], i.e., a circular autocorrelation. As our discussion in Sec-
tion 8.7 suggests, and as developed in Problem 10.34, it should be possible to augment
the sequence x[n] with zero-valued samples and force the circular autocorrelation to
be equal to the desired aperiodic autocorrelation over the interval 0 ≤ m ≤ M − 1.

To see how to choose N for the DFT, consider Figure 10.28. Figure 10.28(a) shows
the two sequences x[n] and x[n + m] as functions of n for a particular positive value of
m. Figure 10.28(b) shows the sequences x[n] and x[((n + m))N] that are involved in the
circular autocorrelation corresponding to |X[k]|2. Clearly, the circular autocorrelation
will be equal to Qφ̂xx[m] for 0 ≤ m ≤ M − 1 if x[((n + m))N] does not wrap around and
overlap x[n] when 0 ≤ m ≤ M − 1. From Figure 10.28(b), it follows that this will be the
case whenever N − (M − 1) ≥ Q or N ≥ Q + M − 1.

N0

(a)

(b)

x [((n + m))N]

x [n + m]

x [n]

Q − 1 − m N − m
Q − 1

n

0

x [n]

Q − 1 − m Q − 1
n−m

Figure 10.28 Computation of the
circular autocorrelation. (a) x [n] and
x [n + m] for a finite-length sequence of
length Q . (b) x [n] and x [((n + m))N] as
in circular correlation.

854 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

In summary, we can compute φ̂xx[m] for 0 ≤ m ≤ M−1 by the following procedure:

1. Form an N -point sequence by augmenting x[n] with (M − 1) zero-samples.

2. Compute the N -point DFT,

X[k] =
N−1∑
n=0

x[n]e−j (2π/N)kn for k = 0, 1, . . . , N − 1.

3. Compute

|X[k]|2 = X[k]X∗[k] for k = 0, 1, . . . , N − 1.

4. Compute the inverse DFT of |X[k]|2 to obtain

c̃vv[m] = 1
N

N−1∑
k=0

|X[k]|2ej (2π/N)km for m = 0, 1, . . . , N − 1.

5. Divide the resulting sequence by Q to obtain the autocorrelation estimate

φ̂xx[m] = 1
Q

c̃vv[m] for m = 0, 1, . . . , M − 1.

This is the desired set of autocorrelation values, which can be extended symmet-
rically for negative values of m.

If M is small, it may be more efficient simply to evaluate Eq. (10.111) directly. In
this case, the amount of computation is proportional to Q · M . In contrast, if the DFTs
in this procedure are computed using one of the FFT algorithms discussed in Chapter 9
with N ≥ Q+M −1, the amount of computation will be approximately proportional to
N log2 N for N a power of 2. Consequently, for sufficiently large values of M , use of the
FFT is more efficient than direct evaluation of Eq. (10.111). The exact break-even value
of M will depend on the particular implementation of the DFT computations; however,
as shown by Stockham (1966), this value would probably be less than M = 100.

To reduce the variance of the estimate of the autocorrelation sequence or the
power spectrum estimated from it, we must use large values of the record length Q. This
is not generally a problem with computers having large memories and fast processors.
However, since M is generally much less than Q, it is possible to section the sequence
x[n] in a manner similar to the procedures that were discussed in Section 8.7.3 for
convolution of a finite-length impulse response with an indefinitely long input sequence.
Rader (1970) presented a particularly efficient and flexible procedure that uses many
of the properties of the DFT of real sequences to reduce the amount of computation
required. The development of this technique is the basis for Problem 10.44.

Once the autocorrelation estimate has been computed, samples of the power
spectrum estimate S(ω) can be computed at frequencies ωk = 2πk/N by forming the
finite-length sequence

s[m] =
⎧⎨⎩

φ̂xx[m]wc[m], 0 ≤ m ≤ M − 1,

0, M ≤ m ≤ N − M,

φ̂xx[N − m]wc[N − m], N − M + 1 ≤ m ≤ N − 1,

(10.112)

where wc[m] is the symmetric correlation window. Then the DFT of s[m] is

S[k] = S(ω)|ω=2πk/N , k = 0, 1, . . . , N − 1, (10.113)

Section 10.6 Spectrum Analysis of Random Signals 855

e [n]Q [x[n]]x [n]
+

+

−

Quantizer
Q [·]

Figure 10.29 Procedure for obtaining
quantization noise sequence.

where S(ω) is the Fourier transform of the windowed autocorrelation sequence as de-
fined by Eq. (10.102). Note that N can be chosen as large as is convenient and practical,
thereby providing samples of S(ω) at closely spaced frequencies. However, as our dis-
cussions in this chapter have consistently shown, the frequency resolution is always
determined by the length and shape of the window wc[m].

10.6.2 Estimating the Power Spectrum of Quantization
Noise

In Chapter 4, we assumed that the error introduced by quantization has the properties of
a white-noise random process. The techniques discussed so far in this chapter were used
to compute the power spectrum estimates of Figure 4.60 that were used to suggest the
validity of this approximation. In this section, we provide additional examples of the use
of estimates of the autocorrelation sequence and power spectrum estimation in studying
the properties of quantization noise. The discussion will reinforce our confidence in the
white-noise model, and it will also offer an opportunity to point out some practical
aspects of power spectrum estimation.

Consider the experiment depicted in Figure 10.29. A lowpass-filtered speech sig-
nal xc(t) was sampled at a 16-KHz rate, yielding the sequence of samples x[n] that were
plotted in Figure 10.21.12 These samples were quantized with a 10-bit linear quantizer
(B = 9), and the corresponding error sequence e[n] = Q[x[n]] − x[n] was computed.
Figure 10.30 shows 2000 consecutive samples of the speech signal plotted on the first
and third lines of the graph. The second and fourth lines show the corresponding quan-
tization error sequence. Visual inspection and comparison of these two plots tends to
strengthen our belief in the previously assumed model; i.e., that the noise appears to
vary randomly throughout the range −2−(B+1) < e[n] ≤ 2−(B+1). However, such qual-
itative observations can be misleading. The flatness of the quantization noise spectrum
can be verified only by estimating the autocorrelation sequence and power spectrum of
the quantization noise e[n].

Figure 10.31 shows estimates of the autocorrelation and power spectrum of the
quantization noise for a record length of Q = 3000 samples. The autocorrelation se-
quence estimate was calculated over the range of lags |m| ≤ 100 using Eqs. (10.98a)
and (10.98b). The resulting estimate is shown in Figure 10.31(a). Over this range,
−1.45 × 10−8 ≤ φ̂[m] ≤ 1.39 × 10−8 except for φ̂[0] = 3.17 × 10−7. The autocorre-
lation estimate suggests that the sample-to-sample correlation of the noise sequence is
quite low. The resulting autocorrelation estimate was multiplied by Bartlett windows

12Although the samples were originally quantized to 12 bits by the A/D converter, for purposes of this
experiment, they were scaled to a maximum value of 1, and a small amount of random noise was added to the
samples. We assume that these samples are “unquantized,” i.e., we consider the 12-bit samples to effectively
be unquantized relative to the subsequent quantization that we are applying in this discussion.

856 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

0 100 200 300 400 500 600 700 800 900 1000
Sample index

Figure 10.30 Speech waveform (first and third lines) and the corresponding
quantization error (second and fourth lines) for 10-bit quantization (magnified 29

times). Each line corresponds to 1000 consecutive samples connected by straight
lines for convenience in plotting.

with M = 100 and M = 50. The windows are shown in Figure 10.31 superimposed
on φ̂[m] (with scaling so that they can be plotted on the same axes) and the corre-
sponding spectrum estimates, computed as discussed in Section 10.6.1, are shown in
Figure 10.31(b).

As seen in Figure 10.31(b), the Blackman–Tukey spectrum estimate for M = 100
(the thin continuous line) shows somewhat erratic fluctuations about the dashed line
plotted at the spectrum level 10 log10(2

−18/12) = −64.98 dB (the value of the white
power spectrum with σ 2

e = 2−2B/12 for B = 9). The heavy line shows the power
spectrum estimate for M = 50. We see from Figure 10.31(b) that the spectrum estimate
is within ±2 dB of the spectrum of the white-noise approximation for B + 1 = 10 for
all frequencies. As discussed in Section 10.6, the shorter window gives smaller variance
and a smoother spectrum estimate resulting from the lower frequency resolution of the
shorter window. In either case, the spectrum estimate seems to support the validity of
the white-noise model for quantization noise.

Although we have computed quantitative estimates of the autocorrelation and the
power spectrum, our interpretation of these measurements has been only qualitative. It

Section 10.6 Spectrum Analysis of Random Signals 857

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1

0

1

2

3

4
x10−7

Time index

A
ut

oc
or

re
la

ti
on

0 1000 2000 3000 4000 5000 6000 7000 8000
−68

−67

−66

−65

−64

−63

Frequency in Hz

P
ow

er
sp

ec
tr

um
 (

dB
)

Figure 10.31 (a) Autocorrelation estimate for 10-bit quantization noise for |m| ≤ 100
with record length Q = 3, 000. (b) Power spectrum estimates by the Blackman–Tukey
method using Bartlett windows with M = 100 and M = 50. (Dashed line shows level
of 10 log10(2−18/12).)

is reasonable now to wonder how small the autocorrelation would be if e[n] were really a
white-noise process. To give quantitative answers to such questions, confidence intervals
for our estimates could be computed and statistical decision theory applied. (See Jenkins
and Watts (1968), for some tests for white noise.) In many cases, however, this additional
statistical treatment is not necessary. In a practical setting, we are often comfortable and
content simply with the observation that the normalized autocorrelation is very small
everywhere, except at m = 0.

Among the many important insights of this chapter is that the estimate of the au-
tocorrelation and power spectrum of a stationary random process should improve if the
record length is increased. This is illustrated by Figure 10.32, which corresponds to Fig-
ure 10.31, except that Q was increased to 30,000 samples. Recall that the variance of the
autocorrelation estimate is proportional to 1/Q. Thus, increasing Q from 3000 to 30,000
should bring about a tenfold reduction in the variance of the estimate. A comparison
of Figures 10.31(a) and 10.32(a) seems to verify this result. For Q = 3000, the estimate

858 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1

0

1

2

3

4

Time index

A
ut

oc
or

re
la

ti
on

0 1000 2000 3000 4000 5000 6000 7000 8000
−65.5

65

−64.5

Frequency in Hz

(a)

(b)

P
w

er
sp

ec
tr

um
 (

dB
)

x10−7

Figure 10.32 (a) Autocorrelation estimate for 10-bit quantization noise; record length
Q = 30,000. (b) Power spectrum estimates by the Blackman–Tukey method using Bartlett
windows with M = 100 and M = 50.

falls between the limits −1.45 × 10−8 ≤ φ̂[m] ≤ 1.39 × 10−8, while for Q = 30,000, the
limits are −4.5 × 10−9 ≤ φ̂[m] ≤ 4.15 × 10−9. Comparing the range of variation for
Q = 3000 with the range for Q = 30,000 indicates that the reduction is consistent with
the tenfold reduction in variance that we expected.13 We note from Eq. (10.110) that
a similar reduction in variance of the spectrum estimate is also expected. This is again
evident in comparing Figure 10.31(b) with Figure 10.32(b). (Be sure to note that the
scales are different between the two sets of plots.) The variation about the white-noise
approximate spectrum level is only ±0.5 dB in the case of the longer record length.
Note that the spectrum estimates in Figure 10.32(b) display the same trade off between
variance and resolution.

In Chapter 4 we argued that the white-noise model was reasonable, as long as the
quantization step size was small. When the number of bits is small, this condition does

13Recall that a reduction in variance by a factor of 10 corresponds to a reduction in amplitude by a
factor of

√
10 ≈ 3.16.

Section 10.6 Spectrum Analysis of Random Signals 859

0 100 200 300 400 500 600 700 800 900 1000
Sample index

Figure 10.33 Speech waveform (first and third lines) and the corresponding
quantization error (second and fourth lines) for 4-bit quantization (magnified 23

times). Each line corresponds to 1000 consecutive samples connected by straight
lines for convenience in plotting.

not hold. To see the effect on the quantization noise spectrum, the previous experiment
was repeated using only 16 quantization levels, or 4 bits. Figure 10.33 shows the speech
waveform and quantization error for 4-bit quantization. Note that some portions of the
error waveform tend to look very much like the original speech waveform. We would
expect this to be reflected in the estimate of the power spectrum.

Figure 10.34 shows the autocorrelation and power spectrum estimates of the error
sequence for 4-bit quantization for a record length of 30,000 samples. In this case, the
autocorrelation shown in Figures 10.34(a) is much less like the ideal autocorrelation for
white noise. This is not surprising in view of the obvious correlation between the signal
and noise displayed in Figure 10.33. Figure 10.34(b) shows the power spectrum estimates
for Bartlett windows with M = 100 and M = 50, respectively. Clearly, the spectrum is
not flat, although the general level reflects the average noise power. In fact, as we shall
see, the quantization noise tends to have the general shape of the speech spectrum.
Thus, the white-noise model for quantization noise can be viewed only as a rather crude
approximation in this case, and it would be less valid for coarser quantization.

860 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

−100 −80 −60 −40 −20 0 20 40 60 80 100
−2

0

2

4

6

8

10

Time index

A
ut

oc
or

re
la

ti
on

0 1000 2000 3000 4000 5000 6000 7000 8000
−36

−34

−32

−30

−28

−26

−24

−22

Frequency in Hz

(a)

(b)

P
ow

er
sp

ec
tr

um
 (

dB
)

x10−4

Figure 10.34 (a) Autocorrelation estimate for 4-bit quantization noise; record length
Q = 30,000. (b) Power spectrum estimates by the Blackman–Tukey method using Bartlett
windows with M = 100 and M = 50. (Dashed line shows level of 10 log10(2−6/12).)

The example of this section illustrates how autocorrelation and power spectrum
estimates can be used to support theoretical models. Specifically, we have demonstrated
the validity of some of our basic assumptions in Chapter 4, and we have given an
indication of how these assumptions break down for very crude quantization. This is
only a rather simple, but useful, example that shows how the techniques of the current
chapter can be applied in practice.

10.6.3 Estimating the Power Spectrum of Speech

We have seen that the time-dependent Fourier transform is particularly well-suited to
the representation of speech signals, since it can track the time-varying nature of the
speech signal. However, in some cases, it is useful to take a different point of view. In
particular, even though the waveform of speech as in Figure 10.21 shows significant
variability in time, as does its time-dependent Fourier transform in Figure 10.22, it is
nevertheless possible to assume that it is a stationary random signal and apply our

Section 10.6 Spectrum Analysis of Random Signals 861

−50 −40 −30 −20 −10 0 10 20 30 40 50
−5

0

5

10

15

Time index

A
ut

oc
or

re
la

ti
on

0 1000 2000 3000 4000 5000 6000 7000 8000
−60

−50

−40

−30

−20

−10

0

Frequency in Hz

(a)

(b)

P
ow

er
sp

ec
tr

um
 (

dB
)

x10−3

Figure 10.35 (a) Autocorrelation estimate for speech signal of Figure 10.21; record length
Q = 30,000. (b) Power spectrum estimates by the Blackman–Tukey method using Bartlett
window (heavy line) and Hamming window (light line) with M = 50.

long-term spectrum analysis techniques. These methods average over a time interval
that is much longer than the changing events of speech. This gives a general spectrum
shape that can be useful in designing speech coders and in determining the bandwidth
requirements for speech transmission.

Figure 10.35 shows an example of estimating the power spectrum of speech us-
ing the Blackman–Tukey method. The autocorrelation sequence estimated from Q =
30,000 samples of the speech signal in Figure 10.21 is shown in Figure 10.35(a), together
with Bartlett and Hamming windows of length 2M + 1 = 101. Figure 10.35(b) shows
the corresponding power spectrum estimates. The two estimates are grossly similar but
dramatically different in detail. This is because of the nature of the DTFTs of the win-
dows. Both have the same main-lobe width 	ωm = 8π/M , however their side lobes
are very different. The side lobes of the Bartlett window are strictly nonnegative, while
those of the symmetric Hamming window (which are smaller than those of the Bartlett
window) are negative for some frequencies. When convolved with the periodogram

862 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

corresponding to the autocorrelation estimate, this yields the dramatically different
results shown.

The Bartlett window guarantees a positive spectrum estimate for all frequencies.
However, this is not true for the Hamming window. The effect of this is particularly
pronounced in regions of rapid variability of the periodogram, where side lobes due to
adjacent frequencies can cancel or interfere to produce negative spectrum estimates. The
dots in Figure 10.35(b) show the frequencies where the spectrum estimate was negative.
When plotting in dB, it is necessary to take the absolute value of the negative estimates.
Thus, while the Bartlett window and the Hamming window have the same main-lobe
width, the positive side lobes of the Bartlett window tend to fill in gaps between relatively
strong frequencies, while the lower side lobes of the Hamming window lead to less
leakage between frequencies, but the danger of negative spectrum estimates as positive
and negative side lobes interact.

The Hamming window (or other windows such as the Kaiser window) can be
used in spectrum estimation without danger of negative estimates if they are used
in the method of averaging periodograms that are discussed in Section 10.5.3. This
method guarantees positive estimates, because positive periodograms are averaged.
Figure 10.36 shows a comparison of the Blackman–Tukey estimates of Figure 10.35(b)
with an estimate obtained by the Welch method of averaging modified periodograms.
The heavy dashed line is the Welch estimate. Note that it follows the general shape of
the other two estimates, but it differs significantly in the high frequency region, where
the speech spectrum is naturally small, and where the frequency response of the analog
antialiasing filter causes the spectrum to be very small. Because of its superior ability
to deliver consistent resolution for spectra with wide dynamic range, and because it is
easily implemented using the DFT, the method of averaging periodograms is widely
used in many practical applications of spectrum estimation.

All the spectrum estimates in Figure 10.36 show that the speech signal is character-
ized by a peak below 500 Hz and a fall-off with increasing frequency by 30 to 40 dB at 6
KHz. Several prominent peaks between 3 KHz and 5 KHz could be due to higher vocal
tract resonances that do not vary with time. A different speaker or different speech
material would certainly produce a different spectrum estimate, but the general nature
of the spectrum estimates would be similar to those of Figure 10.36.

10.7 SUMMARY

One of the important applications of signal processing is spectrum analysis of signals.
Because of the computational efficiency of the FFT, many of the techniques for spec-
trum analysis of continuous-time or discrete-time signals use the DFT either directly or
indirectly. In this chapter, we explored and illustrated some of these techniques.

Many of the issues associated with spectrum analysis are best understood in the
context of the analysis of sinusoidal signals. Since the use of the DFT requires finite-
length signals, windowing must be applied in advance of the analysis. For sinusoidal
signals, the width of the spectral peak observed in the DFT is dependent on the win-
dow length, with an increasing window length resulting in the sharpening of the peak.
Consequently, the ability to resolve closely spaced sinusoids in the spectrum estimate

Section 10.7 Summary 863

0 1000 2000 3000 4000 5000 6000 7000 8000
−70

−60

−50

−40

−30

−20

−10

0

Frequency in Hz

P
ow

er
sp

ec
tr

um
 d

B

Figure 10.36 Power spectrum estimates by the Blackman–Tukey method using Bartlett
window (heavy line) and Hamming window (light line) with M = 50. The dashed line shows
the power spectrum obtained by averaging overlapping periodograms using a Hamming
window with M = 50.

decreases as the window becomes shorter. A second, independent effect inherent in
spectrum analysis using the DFT is the associated spectral sampling. Specifically, since
the spectrum can be computed only at a set of sample frequencies, the observed spec-
trum can be misleading if we are not careful in its interpretation. For example, important
features in the spectrum may not be directly evident in the sampled spectrum. To avoid
this, the spectral sample spacing can be reduced by increasing the DFT size in one of two
ways. One method is to increase the DFT size while keeping the window length fixed
(requiring zero-padding of the windowed sequence). This does not increase resolution.
The second method is to increase both the window length and the DFT size. In this case,
spectral sample spacing is decreased, and the ability to resolve closely spaced sinusoidal
components is increased.

While increased window length and resolution are typically beneficial in the spec-
trum analysis of stationary data, for time-varying data, it is generally preferable to keep
the window length sufficiently short, so that over the window duration, the signal char-
acteristics are approximately stationary. This leads to the concept of the time-dependent

864 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

Fourier transform, which, in effect, is a sequence of Fourier transforms obtained as the
signal slides past a finite-duration window. A common and useful interpretation of the
time-dependent Fourier transform is as a bank of filters, with the frequency response
of each filter corresponding to the transform of the window, frequency shifted to one
of the DFT frequencies. The time-dependent Fourier transform has important applica-
tions both as an intermediate step in filtering signals and for analyzing and interpreting
time-varying signals, such as speech and radar signals. Spectral analysis of nonstationary
signals typically involves a trade-off between time and frequency resolution. Specifically,
our ability to track spectral characteristics in time increases as the length of the analysis
window decreases. However, a shorter analysis window results in decreased frequency
resolution.

The DFT also plays an important role in the analysis of stationary random sig-
nals. An intuitive approach to estimating the power spectrum of random signals is to
compute the squared magnitude of the DFT of a segment of the signal. The resulting
estimate, called the periodogram, is asymptotically unbiased. The variance of the pe-
riodogram estimate, however, does not decrease to zero as the length of the segment
increases; consequently, the periodogram is not a good estimate. However, by dividing
the available signal sequence into shorter segments and averaging the associated peri-
odograms, we can obtain a well-behaved estimate. An alternative approach is to first
estimate the autocorrelation function. This can be done either directly or with the DFT.
If a window is then applied to the autocorrelation estimates followed by the DFT, the
result, referred to as the smoothed periodogram, is a good spectrum estimate.

Problems

Basic Problems with Answers

10.1. A real continuous-time signal xc(t) is bandlimited to frequencies below 5 kHz; i.e.,
Xc(j�) = 0 for |�| ≥ 2π(5000). The signal xc(t) is sampled with a sampling rate of
10,000 samples per second (10 kHz) to produce a sequence x[n] = xc(nT) with T = 10−4.
Let X[k] be the 1000-point DFT of x[n].
(a) To what continuous-time frequency does the index k = 150 in X[k] correspond?
(b) To what continuous-time frequency does the index k = 800 in X[k] correspond?

10.2. A continuous-time signalxc(t) is bandlimited to 5 kHz; i.e.,Xc(j�) = 0 for |�| ≥ 2π(5000).
xc(t) is sampled with period T , producing the sequence x[n] = xc(nT). To examine the
spectral properties of the signal, we compute the N -point DFT of a segment of N samples
of x[n] using a computer program that requires N = 2v , where v is an integer.

Determine the minimum value for N and the range of sampling rates

Fmin <
1
T

< Fmax

such that aliasing is avoided, and the effective spacing between DFT values is less than
5 Hz; i.e., the equivalent continuous-time frequencies at which the Fourier transform is
evaluated are separated by less than 5 Hz.

Chapter 10 Problems 865

10.3. A continuous-time signal xc(t) = cos(�0t) is sampled with period T to produce the se-
quencex[n] = xc(nT). AnN -point rectangular window is applied tox[n] for 0, 1, . . . , N−1,
and X[k], for k = 0, 1, . . . , N − 1, is the N -point DFT of the resulting sequence.

(a) Assuming that �0, N , and k0 are fixed, how should T be chosen so that X[k0] and
X[N − k0] are nonzero, and X[k] = 0 for all other values of k?

(b) Is your answer unique? If not, give another value of T that satisfies the conditions of
part (a).

10.4. Let xc(t) be a real-valued, bandlimited signal whose Fourier transform Xc(j�) is zero for
|�| ≥ 2π(5000). The sequence x[n] is obtained by sampling xc(t) at 10 kHz. Assume that
the sequence x[n] is zero for n < 0 and n > 999.

Let X[k] denote the 1000-point DFT of x[n]. It is known that X[900] = 1 and
X[420] = 5. Determine Xc(j�) for as many values of � as you can in the region |�| <

2π(5000).

10.5. Consider estimating the spectrum of a discrete-time signal x[n] using the DFT with a Ham-
ming window applied to x[n]. A conservative rule of thumb for the frequency resolution
of windowed DFT analysis is that the frequency resolution is equal to the width of the
main lobe of W(ejω). You wish to be able to resolve sinusoidal signals that are separated
by as little as π/100 in ω. In addition, your window length L is constrained to be a power
of 2. What is the minimum length L = 2ν that will meet your resolution requirement?

10.6. The following are three different signals xi [n] that are the sum of two sinusoids:

x1[n] = cos (πn/4) + cos (17πn/64) ,

x2[n] = cos (πn/4) + 0.8 cos (21πn/64) ,

x3[n] = cos (πn/4) + 0.001 cos (21πn/64) .

We wish to estimate the spectrum of each of these signals using a 64-point DFT with a
64-point rectangular window w[n]. Indicate which of the signals’ 64-point DFTs you would
expect to have two distinct spectral peaks after windowing.

10.7. Let x[n] be a 5000-point sequence obtained by sampling a continuous-time signal xc(t) at
T = 50 μs. Suppose X[k] is the 8192-point DFT of x[n]. What is the equivalent frequency
spacing in continuous time of adjacent DFT samples?

10.8. Assume that x[n] is a 1000-point sequence obtained by sampling a continuous-time signal
xc(t) at 8 kHz and that Xc(j�) is sufficiently bandlimited to avoid aliasing. What is the
minimum DFT length N such that adjacent samples of X[k] correspond to a frequency
spacing of 5 Hz or less in the original continuous-time signal?

10.9. Xr [k] denotes the time-dependent Fourier transform (TDFT) defined in Eq. (10.40). For
this problem, consider the TDFT when both the DFT length N = 36 and the sampling
interval R = 36. The window w[n] is a rectangular window of length L = 36. Compute the
TDFT Xr [k] for −∞ < r < ∞ and 0 ≤ k ≤ N − 1 for the signal

x[n] =
⎧⎨⎩

cos(πn/6), 0 ≤ n ≤ 35,

cos(πn/2), 36 ≤ n ≤ 71,

0, otherwise.

10.10. Figure P10.10 shows the spectrogram of a chirp signal of the form

x[n] = sin
(

ω0n + 1
2
λn2
)

.

Note that the spectrogram is a representation of the magnitude of X[n, k], as defined in
Eq. (10.34), where the dark regions indicate large values of |X[n, k]|. Based on the figure,
estimate ω0 and λ.

866 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n (samples)

|X [n,k]|

v
/p

Figure P10.10

10.11. A continuous-time signal is sampled at a sampling rate of 10 kHz, and the DFT of 1024
samples is computed. Determine the continuous-time frequency spacing between spectral
samples. Justify your answer.

10.12. Let x[n] be a signal with a single sinusoidal component. The signal x[n] is windowed with
an L-point Hamming window w[n] to obtain v1[n] before computing V1(ejω). The signal
x[n] is also windowed with an L-point rectangular window to obtain v2[n], which is used
to compute V2(ejω). Will the peaks in |V2(ejω)| and |V1(ejω)| have the same height? If so,
justify your answer. If not, which should have a larger peak?

10.13. It is desired to estimate the spectrum of x[n] by applying a 512-point Kaiser window to
the signal before computing X (ejω).

(a) The requirements for the frequency resolution of the system specify that the largest
allowable main lobe for the Kaiser window is π/100. What is the best side-lobe at-
tenuation expected under these constraints?

(b) Suppose that you know that x[n] contains two sinusoidal components at least π/50
apart, and that the amplitude of the stronger component is 1. Based on your answer
to part (a), give a threshold on the smallest value of the weaker component you would
expect to see over the side lobe of the stronger sinusoid.

10.14. A speech signal is sampled with a sampling rate of 16,000 samples/s (16 kHz). A window
of 20-ms duration is used in time-dependent Fourier analysis of the signal, as described
in Section 10.3, with the window being advanced by 40 samples between computations of
the DFT. Assume that the length of each DFT is N = 2v .

(a) How many samples are there in each segment of speech selected by the window?
(b) What is the “frame rate” of the time-dependent Fourier analysis; i.e., how many DFT

computations are done per second of input signal?

Chapter 10 Problems 867

(c) What is the minimum size N of the DFT such that the original input signal can be
reconstructed from the time-dependent Fourier transform?

(d) What is the spacing (in Hz) between the DFT samples for the minimum N from
part (c)?

10.15. A real-valued continuous-time segment of a signal xc(t) is sampled at a rate of 20,000
samples/s, yielding a 1000-point finite-length discrete-time sequence x[n] that is nonzero
in the interval 0 ≤ n ≤ 999. It is known that xc(t) is also bandlimited such that Xc(j�) = 0
for |�| ≥ 2π(10,000); i.e., assume that the sampling operation does not introduce any
distortion due to aliasing.

X[k] denotes the 1000-point DFT of x[n]. X[800] is known to have the value
X[800] = 1 + j .

(a) From the information given, can you determine X[k] at any other values of k? If so,
state which value(s) of k and what the corresponding value of X[k] is. If not, explain
why not.

(b) From the information given, state the value(s) of � for which Xc(j�) is known and
the corresponding value(s) of Xc(j�).

10.16. Let x[n] be a discrete-time signal whose spectrum you wish to estimate using a windowed
DFT. You are required to obtain a frequency resolution of at least π/25 and are also
required to use a window length N = 256. A safe estimate of the frequency resolution of
a spectral estimate is the main-lobe width of the window used. Which of the windows in
Table 7.2 will satisfy the criteria given for frequency resolution?

10.17. Let x[n] be a discrete-time signal obtained by sampling a continuous-time signal xc(t) with
some sampling period T so that x[n] = xc(nT). Assume xc(t) is bandlimited to 100 Hz, i.e,
Xc(j�) = 0 for |�| ≥ 2π(100). We wish to estimate the continuous-time spectrum Xc(j�)

by computing a 1024-point DFT of x[n], X[k]. What is the smallest value of T such that
the equivalent frequency spacing between consecutive DFT samples X[k] corresponds to
1 Hz or less in continuous-time frequency?

10.18. Figure P10.18 shows the magnitude |V [k]| of the 128-point DFT V [k] for a signal v[n].
The signal v[n] was obtained by multiplying x[n] by a 128-point rectangular window w[n];
i.e., v[n] = x[n]w[n]. Note that Figure P10.18 shows |V [k]| only for the interval 0 ≤ k ≤
64. Which of the following signals could be x[n]? That is, which are consistent with the
information shown in the figure?

x1[n] = cos(πn/4) + cos(0.26πn),

x2[n] = cos(πn/4) + (1/3) sin(πn/8),

x3[n] = cos(πn/4) + (1/3) cos(πn/8),

x4[n] = cos(πn/8) + (1/3) cos(πn/16),

x5[n] = (1/3) cos(πn/4) + cos(πn/8),

x6[n] = cos(πn/4) + (1/3) cos(πn/8 + π/3).

868 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

|V
[k

]|

DFT index k

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Figure P10.18

10.19. A signal x[n] is analyzed using the time-dependent Fourier transform Xr [k], as defined in
Eq. (10.40). Initially, the analysis is performed with an N = 128 DFT using an L = 128-
point Hamming window w[n]. The time-domain sampling of adjacent blocks is R = 128;
i.e., the windowed segments are offset by 128 samples in time. The frequency resolution
obtained with this analysis is not sufficient, and it is desired to improve the resolution.
Several methods of modifying the analysis are suggested to accomplish this goal. Which
of the following methods will improve the frequency resolution of the time-dependent
Fourier transform Xr [k]?

METHOD 1: Increase N to 256 while maintaining L and R at the same values.
METHOD 2: Increase both N and L to 256, while maintaining R the same.
METHOD 3: Decrease R to 64 while maintaining the same N and L.
METHOD 4: Decrease L to 64 while maintaining the same N and R.
METHOD 5: Maintain N , R and L the same, but change w[n] to be a rectangular

window.

10.20. Assume that you wish to estimate the spectrum of x[n] by applying a Kaiser window to the
signal before computing the DTFT. You require that the side lobe of the window be 30 dB
below the main lobe and that the frequency resolution be π/40. The width of the main
lobe of the window is a safe estimate of the frequency resolution. Estimate the minimum
window length L that will meet these requirements.

Basic Problems

10.21. Let x[n] = cos(2πn/5) and v[n] be the sequence obtained by applying a 32-point rectan-
gular window to x[n] before computing V (ejω). Sketch |V (ejω)| for −π ≤ ω ≤ π , labeling
the frequencies of all peaks and the first nulls on either side of the peak. In addition, label
the amplitudes of the peaks and the strongest side lobe of each peak.

10.22. In this problem we are interested in estimating the spectra of three very long real-valued
data sequences x1[n], x2[n], and x3[n], each consisting of the sum of two sinusoidal compo-
nents. However, we only have a 256-point segment of each sequence available for analysis.

Chapter 10 Problems 869

Let x̄1[n], x̄2[n], and x̄3[n] denote the 256-point segments of x1[n], x2[n], and x3[n], re-
spectively. We have some information about the nature of the spectra of the infinitely
long sequences, as indicated in Eqs. (P10.22-1) through (P10.22-3). Two different spec-
tral analysis procedures are being considered for use, one using a 256-point rectangular
window and the other a 256-point Hamming window. These procedures are described
below. In the descriptions, the signal RN [n] denotes the N -point rectangular window and
HN [n] denotes the N -point Hamming window. The operator DFT2048{·} indicates taking
the 2048-point DFT of its argument after zero-padding the end of the input sequence. This
will give a good interpolation of the DTFT from the frequency samples of the DFT.

X1(ejω) ≈ δ(ω + 17π

64
) + δ(ω + π

4
)

+δ(ω − π

4
) + δ(ω − 17π

64
) (P10.22-1)

X2(ejω) ≈ 0.017δ(ω + 11π

32
) + δ(ω + π

4
)

+δ(ω − π

4
) + 0.017δ(ω − 11π

32
) (P10.22-2)

X3(ejω) ≈ 0.01δ(ω + 257π

1024
) + δ(ω + π

4
)

+δ(ω − π

4
) + 0.01δ(ω − 257π

1024
) (P10.22-3)

Based on Eqs. (P10.22-1) through (P10.22-3), indicate which of the spectral analysis proce-
dures described below would allow you to conclude responsibly whether the anticipated
frequency components were present. A good justification at a minimum will include a
quantitative consideration of both resolution and side-lobe behavior of the estimators.
Note that it is possible that both or neither of the algorithms will work for any given
data sequence. Table 7.2 may be useful in deciding which algorithm(s) to use with which
sequence.

Spectral Analysis Algorithms
Algorithm 1: Use the entire data segment with a rectangular window.

v[n] = R256[n]x̄[n]∣∣∣V (ejω)

∣∣∣
ω= 2πk

2048

=
∣∣∣DFT2048{v[n]}

∣∣∣.
Algorithm 2: Use the entire data segment with a Hamming window.

v[n] = H256[n]x̄[n]∣∣∣V (ejω)

∣∣∣
ω= 2πk

2048

=
∣∣∣DFT2048{v[n]}

∣∣∣.
10.23. Sketch the spectrogram obtained by using a 256-point rectangular window and 256-point

DFTs with no overlap (R = 256) on the signal

x[n] = cos
[πn

4
+ 1000 sin

(πn

8000

)]
for the interval 0 ≤ n ≤ 16,000.

10.24. (a) Consider the system of Figure P10.24-1 with input x(t) = ej (3π/8)104t , sampling period
T = 10−4, and

w[n] =
{

1, 0 ≤ n ≤ N − 1,

0, otherwise.
What is the smallest nonzero value of N such that Xw[k] is nonzero at exactly one
value of k?

870 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

(b) Suppose now that N = 32, the input signal is x(t) = ej�0t , and the sampling period
T is chosen such that no aliasing occurs during the sampling process. Figures P10.24-2
and P10.24-3 show the magnitude of the sequence Xw[k] for k = 0, . . . , 31 for the
following two different choices of w[n]:

w1[n] =
{

1, 0 ≤ n ≤ 31,

0, otherwise,

w2[n] =
{

1, 0 ≤ n ≤ 7,

0, otherwise.

Indicate which figure corresponds to which choice of w[n]. State your reasoning
clearly.

+
xw[k]xw[n]x [t] x [n]

w [n]

N-point
DFTC/D

T
Figure P10.24-1

0 5 10 15
k

20 25 30 35
0

5

10

15

20

25

|X
w

[k
]|

Figure P10.24-2

0 5 10 15 20 25 30 35
0

2

4

6

8

k

|X
w

[k
]|

Figure P10.24-3

Chapter 10 Problems 871

(c) For the input signal and system parameters of part (b), we would like to estimate the
value of �0 from Figure P10.24-3 when the sampling period is T = 10−4. Assuming
that the sequence

w[n] =
{

1, 0 ≤ n ≤ 31,

0, otherwise,

and that the sampling period is sufficient to ensure that no aliasing occurs during
sampling, estimate the value of �0. Is your estimate exact? If it is not, what is the
maximum possible error of your frequency estimate?

(d) Suppose you were provided with the exact values of the 32-point DFT Xw[k] for the
window choices w1[n] and w2[n]. Briefly describe a procedure to obtain a precise
estimate of �0.

Advanced Problems

10.25. In Figure P10.25, a filter bank is shown for which

h0[n] = 3δ[n + 1] + 2δ[n] + δ[n − 1],
and

hq [n] = ej
2πqn

M h0[n], for q = 1, . . . , N − 1.

The filter bank consists of N filters, modulated by a fraction 1/M of the total frequency
band. Assume M and N are both greater than the length of h0[n].

↓ R

↓ R

↓ R

↓ R

vN − 1[n]

vq[n]

yq[n]

v1[n]

hN − 1[n]

hq[n]

h1[n]

v0[n]h0[n]

y0[n]

x[n]

Figure P10.25 Filter bank

(a) Express yq [n] in terms of the time-dependent Fourier transform X[n, λ) of x[n], and
sketch and label explicitly the values for the associated window in the time-dependent
Fourier transform.

For parts (b) and (c), assume that M = N . Since vq [n] depends on the two integer variables
q and n, we alternatively write it as the two-dimensional sequence v[q, n].
(b) For R = 2, describe a procedure to recover x[n] for all values of n if v[q, n] is available

for all integer values of q and n.
(c) Will your procedure in (b) work if R = 5? Clearly explain.

872 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

10.26. The system in Figure P10.26-1 uses a modulated filter bank for spectral analysis. (For
further illustration, Figure P10.26-2 shows how the frequency responses Hk(e

jω) relate.)
The impulse response of the prototype filter h0[n] is sketched in Figure P10.26-3.

hk[n] = e j�knh0[n], �k =
2�k

N
, where k = 0, 1, ... , N − 1

h0[n] = lowpass prototype filter Hk(z) = H0(e −j2�k/Nz)

h0[n]
v0[n]

hk[n]
vk[n]

hN−1[n]
vN−1[n]

x[n] ...
...

Figure P10.26-1

0

��� ���

Figure P10.26-2

h0[n] = {
0.9

0 n
Figure P10.26-3

An alternative system for spectral analysis is shown in Figure P10.26-4. Determine w[n]
so that G[k] = vk[0], for k = 0, 1, ..., N − 1.

Chapter 10 Problems 873

x[n]

w[n]

g[n] G[k] =
g[n]e −j (2�nk/N)

n = −�

� g[n]e −j (2�nk/N)

n = −�

�

Figure P10.26-4

10.27. We are interested in obtaining 256 equally spaced samples of the z-transform of xw[n].
xw[n] is a windowed version of an arbitrary sequence x[n] where xw[n] = x[n]w[n] and
w[n] = 1, 0 ≤ n ≤ 255 and w[n] = 0 otherwise. The z-transform of xw[n] is defined as

Xw(z) =
255∑
n=0

x[n]z−n.

The samples Xw[k] that we would like to compute are

Xw[k] = Xw(z)|
z=0.9e

j 2π
256 k

k = 0, 1, . . . , 255.

We would like to process the signal x[n] with a modulated filter bank, as indicated in
Figure P10.27.

Each filter in the filter bank has an impulse response that is related to the prototype
causal lowpass filter h0[n] as follows:

hk[n] = h0[n]e−jωkn k = 1, 2, . . . , 255.

Each output of the filter bank is sampled once, at time n = Nk , to obtain Xw[k], i.e.,

Xw[k] = vk[Nk].
Determine h0[n], ωk and Nk so that

Xw[k] = vk[Nk] = Xw(z)|
z=0.9e

j 2π
256 k

k = 0, 1, . . . , 255.

h0[n]
v0[n]

h1[n]
v1[n]

h255[n]
v255[n]

x[n]

...

Figure P10.27

874 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

10.28. (a) In Figure P10.28-1, we show a system for spectral analysis of a signal xc(t), where

Gk[n] =
N−1∑
l=0

gl[n]e−j 2π
N

lk ,

N = 512, and LR = 256.

For the most general choice of the multiplier coefficient al , determine the choice for
L and R which will result in the smallest number of multiplies per second.

xc(t) a0

a1

a2

aN − 1

x[n] g0[n]

g1[n]

g2[n]

gN − 1[n]

G0[n]

G1[n]

G2[n]

GN − 1[n]

T = 10−4

X0[n]

X1[n]

X2[n]

XN − 1[n]

C/D ↓ R

↓ R

↓ R

↓ R

↓ L

↓ L

↓ L

↓ L

z−1

z−1

z−1

N-pt

DFT

Figure P10.28-1

(b) In Figure P10.28-2, we show another system for spectral analysis of a signal xc(t),
where

h[n] =
{

(0.93)n 0 ≤ n ≤ 255
0 otherwise

,

hk[n] = h[n]e−jωkn, k = 0, 1, · · ·, N − 1, and N = 512.

Listed below are two possible choices for M , four possible choices for ωk , and six
possible choices for the coefficients al . From this set identify all combinations for
which Yk[n] = Xk[n], i.e., for which both systems will provide the same spectral
analysis. There may be more than one.

M : (a) 256 (b) 512

ωk : (a) 2πk
256 (b) 2πk

512 (c) −2πk
256 (d) −2πk

512

al : (a) (0.93)l l=0, 1, · · ·, 255, zero otherwise
(b) (0.93)−l l=0, 1, · · ·, 511
(c) (0.93)l l=0, 1, · · ·, 511
(d) (0.93)−l l=0, 1, · · ·, 255, zero otherwise
(e) (0.93)l l=256, 257, · · ·, 511, zero otherwise
(f) (0.93)−l l=256, 257, · · ·, 511, zero otherwise

Chapter 10 Problems 875

xc(t) x[n] Y0[n]

Y1[n]

Y2[n]

YN − 1[n]

T = 10−4

C/D ↓ M

↓ M

↓ M

↓ M

h0[n]

h1[n]

h2[n]

hN − 1[n]
Figure P10.28-2

10.29. The system shown in Figure P10.29 is proposed as a spectrum analyzer. The basic operation
is as follows: The spectrum of the sampled input is frequency-shifted; the lowpass filter
selects the lowpass band of frequencies; the downsampler “spreads” the selected frequency
band back over the entire range −π < ω < π ; and the DFT samples that frequency band
uniformly at N frequencies.

Assume that the input is bandlimited so that Xc(j�) = 0 for |�| ≥ π/T . The LTI
system with frequency response H(ejω) is an ideal lowpass filter with gain of one and
cutoff frequency π/M . Furthermore, assume that 0 < ω1 < π and the data window w[n]
is a rectangular window of length N .

(a) Plot the DTFTs, X(ejω), Y (ejω), R(ejω), and Rd(ejω) for the given Xc(j�) and for
ω1 = π/2 and M = 4. Give the relationship between the input and output Fourier
transforms for each stage of the process; e.g., in the fourth plot, you would indicate
R(ejω) = H(ejω)Y (ejω).

(b) Using your result in part (a), generalize to determine the band of continuous-time
frequencies in Xc(j�) that falls within the passband of the lowpass discrete-time
filter. Your answer will depend on M , ω1 and T . For the specific case of ω1 = π/2 and
M = 4, indicate this band of frequencies on the plot of Xc(j�) given for part (a).

(c) (i) What continuous-time frequencies in Xc(j�) are associated with the DFT values
V [k] for 0 ≤ k ≤ N/2?

(ii) What continuous-time frequencies in Xc(j�) do the values for N/2 < k ≤ N −1
correspond to? In each case, give a formula for the frequencies �k .

e −j�1n

y[n] r[n]xc(t) x[n]C/D
(T)

V[k]N-point
DFT

w[n]

v[n]rd[n]

= r[Mn]= xc(nT)
H(e j�) M

Figure P10.29

876 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

10.30. Consider a real time-limited continuous-time signal xc(t) whose duration is 100 ms. As-
sume that this signal has a bandlimited Fourier transform such that Xc(j�) = 0 for
|�| ≥ 2π(10, 000) rad/s; i.e., assume that aliasing is negligible. We want to compute samples
of Xc(j�) with 5-Hz spacing over the interval 0 ≤ � ≤ 2π(10,000). This can be done with
a 4000-point DFT. Specifically, we want to obtain a 4000-point sequence x[n] for which
the 4000-point DFT is related to Xc(j�) by

X[k] = αXc(j2π · 5 · k), k = 0, 1, . . . , 1999,

where α is a known scale factor. Three methods are proposed to obtain a 4000-point
sequence whose DFT gives the desired samples of Xc(j�).

METHOD 1: xc(t) is sampled with a sampling period T = 25 μs; i.e., we compute
X1[k], the DFT of the sequence

x1[n] =
{

xc(nT), n = 0, 1, . . . , 3999,

0, otherwise.

Since xc(t) is time limited to 100 ms, x1[n] is a finite-length sequence of length 4000
(100 ms/25 μs).
METHOD 2: xc(t) is sampled with a sampling period of T = 50 μs. Since xc(t) is
time limited to 100 ms, the resulting sequence will have only 2000 (100 ms/50 μs)
nonzero samples; i.e.,

x2[n] =
{

xc(nT), n = 0, 1, . . . , 1999,

0, otherwise.

In other words, the sequence is padded with zero-samples to create a 4000-point
sequence for which the 4000-point DFT X2[k] is computed.
METHOD 3: xc(t) is sampled with a sampling period of T = 50 μs, as in Method 2.
The resulting 2000-point sequence is used to form the sequence x3[n] as follows:

x3[n] =
⎧⎨⎩

xc(nT), 0 ≤ n ≤ 1999,

xc((n − 2000)T), 2000 ≤ n ≤ 3999,

0, otherwise.

The 4000-point DFT X3[k] of this sequence is computed.
For each of the three methods, determine how each 4000-point DFT is related to Xc(j�).
Indicate this relationship in a sketch for a “typical” Fourier transform Xc(j�). State ex-
plicitly which method(s) provide the desired samples of Xc(j�).

10.31. A continuous-time finite-duration signal xc(t) is sampled at a rate of 20,000 samples/s,
yielding a 1000-point finite-length sequencex[n] that is nonzero in the interval 0 ≤ n ≤ 999.
Assume for this problem that the continuous-time signal is also bandlimited such that
Xc(j�) = 0 for |�| ≥ 2π(10,000); i.e., assume that negligible aliasing distortion occurs
in sampling. Assume also that a device or program is available for computing 1000-point
DFTs and inverse DFTs.

(a) If X[k] denotes the 1000-point DFT of the sequence x[n], how is X[k] related to
Xc(j�)? What is the effective continuous-time frequency spacing between DFT sam-
ples?

The following procedure is proposed for obtaining an expanded view of the Fourier trans-
form Xc(j�) in the interval |�| ≤ 2π(5000), starting with the 1000-point DFT X[k].
Step 1. Form the new 1000-point DFT

W [k] =
⎧⎨⎩

X[k], 0 ≤ k ≤ 250,

0, 251 ≤ k ≤ 749,

X[k], 750 ≤ k ≤ 999.

Chapter 10 Problems 877

Step 2. Compute the inverse 1000-point DFT ofW [k], obtainingw[n] forn = 0, 1, . . . , 999.
Step 3. Decimate the sequence w[n] by a factor of 2 and augment the result with 500

consecutive zero samples, obtaining the sequence

y[n] =
{

w[2n], 0 ≤ n ≤ 499,

0, 500 ≤ n ≤ 999.

Step 4. Compute the 1000-point DFT of y[n], obtaining Y [k].
(b) The designer of this procedure asserts that

Y [k] = αXc(j2π · 10 · k), k = 0, 1, . . . , 500,

where α is a constant of proportionality. Is this assertion correct? If not, explain
why not.

10.32. An analog signal consisting of a sum of sinusoids was sampled with a sampling rate of
fs = 10000 samples/s to obtain x[n] = xc(nT). Four spectrograms showing the time-
dependent Fourier transform |X[n, λ)| were computed using either a rectangular or a
Hamming window. They are plotted in Figure P10.32. (A log amplitude scale is used, and
only the top 35 dB is shown.)

Figure P10.32

878 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

(a) Which spectrograms were computed with a rectangular window?
(a) (b) (c) (d)

(b) Which pair (or pairs) of spectrograms have approximately the same frequency reso-
lution?
(a&b) (b&d) (c&d) (a&d) (b&c)

(c) Which spectrogram has the shortest time window? (a) (b) (c) (d)
(d) To the nearest 100 samples, estimate the window length L (in samples) of the window

in spectrogram (b).
(e) Use the spectrographic data in Figure P10.32 to assist you in writing an equation (or

equations) for an analog sum of sinusoids xc(t), which when sampled at a sampling
rate of fs = 10000, would produce the above spectrograms. Be as complete as you
can in your description of the signal. Indicate any parameters that cannot be obtained
from the spectrogram.

10.33. The periodogram I (ω) of a discrete-time random signal x[n] was defined in Eq. (10.67) as

I (ω) = 1
LU

|V (ejω)|2,

where V (ejω) is the DTFT of the finite-length sequence v[n] = w[n]x[n], with w[n] a
finite-length window sequence of length L, and U is a normalizing constant. Assume that
x[n] and w[n] are real.

Show that the periodogram is also equal to 1/LU times the Fourier transform of the
aperiodic autocorrelation sequence of v[n]; i.e.,

I (ω) = 1
LU

L−1∑
m=−(L−1)

cvv[m]e−jωm,

where

cvv[m] =
L−1∑
n=0

v[n]v[n + m].

10.34. Consider a finite-length sequence x[n] such that x[n] = 0 for n < 0 and n ≥ L. Let X[k] be
the N -point DFT of the sequence x[n], where N > L. Define cxx [m] to be the aperiodic
autocorrelation function of x[n]; i.e.,

cxx [m] =
∞∑

n=−∞
x[n]x[n + m].

Define

c̃xx [m] = 1
N

N−1∑
m=0

|X[k]|2ej (2π/N)km, m = 0, 1, . . . , N − 1.

(a) Determine the minimum value of N that can be used for the DFT if we require that

cxx [m] = c̃xx [m], 0 ≤ m ≤ L − 1.

(b) Determine the minimum value of N that can be used for the DFT if we require that

cxx [m] = c̃xx [m], 0 ≤ m ≤ M − 1,

where M < L.

Chapter 10 Problems 879

10.35. The symmetric Bartlett window, which arises in many aspects of power spectrum estima-
tion, is defined as

wB [m] =
{

1 − |m|/M, |m| ≤ M − 1,

0, otherwise.
(P10.35-1)

The Bartlett window is particularly attractive for obtaining estimates of the power spec-
trum by windowing an estimated autocorrelation function, as discussed in Section 10.6.
This is because its Fourier transform is nonnegative, which guarantees that the smoothed
spectrum estimate will be nonnegative at all frequencies.

(a) Show that the Bartlett window as defined in Eq. (P10.35-1) is (1/M) times the aperi-
odic autocorrelation of the sequence (u[n] − u[n − M]).

(b) From the result of part (a), show that the Fourier transform of the Bartlett window is

WB(ejω) = 1
M

[
sin(ωM/2)

sin(ω/2)

]2
, (P10.35-2)

which is clearly nonnegative.
(c) Describe a procedure for generating other finite-length window sequences that have

nonnegative Fourier transforms.

10.36. Consider a signal

x[n] =
[
sin
(πn

2

)]2
u[n]

whose time-dependent discrete Fourier transform is computed using the analysis window

w[n] =
{

1, 0 ≤ n ≤ 13,

0, otherwise.

Let X[n, k] = X[n, 2πk/7) for 0 ≤ k ≤ 6, where X[n, λ) is defined as in Section 10.3.

(a) Determine X[0, k] for 0 ≤ k ≤ 6.
(b) Evaluate

∑6
k=0 X[n, k] for 0 ≤ n < ∞.

Extension Problems

10.37. In Section 10.6, we showed that a smoothed estimate of the power spectrum can be
obtained by windowing an estimate of the autocorrelation sequence. It was stated (see
Eq. (10.109)) that the variance of the smoothed spectrum estimate is

var[S(ω)] � FP2
xx(ω),

where F , the variance ratio or variance reduction factor, is

F = 1
Q

M−1∑
m=−(M−1)

(wc[m])2 = 1
2πQ

∫ π

−π
|Wc(e

jω)|2dω.

As discussed in Section 10.6, Q is the length of the sequence x[n] and (2M −1) is the length
of the symmetric window wc[m] that is applied to the autocorrelation estimate. Thus, if Q

is fixed, the variance of the smoothed spectrum estimate can be reduced by adjusting the
shape and duration of the window applied to the correlation function.

In this problem we will show that F decreases as the window length decreases, but
we also know from the previous discussion of windows in Chapter 7 that the width of
the main lobe of Wc(e

jω) increases with decreasing window length, so that the ability to

880 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

resolve two adjacent frequency components is reduced as the window width decreases.
Thus, there is a trade-off between variance reduction and resolution. We will study this
trade-off for the following commonly used windows:
Rectangular

wR[m] =
{

1, |m| ≤ M − 1,

0, otherwise.

Bartlett (triangular)

wB [m] =
{

1 − |m|/M, |m| ≤ M − 1,

0, otherwise.

Hanning/Hamming

wH [m] =
{

α + β cos[πm/(M − 1)], |m| ≤ M − 1,

0, otherwise.

(α = β = 0.5 for the Hanning window, and α = 0.54 and β = 0.46 for the Hamming
window.)

(a) Find the Fourier transform of each of the foregoing windows; i.e., compute WR(ejω),
WB(ejω), and WH (ejω). Sketch each of these Fourier transforms as functions of ω.

(b) For each of the windows, show that the entries in the following table are approximately
true when M � 1:

Approximate Approximate
Window Name Main-lobe Width Variance Ratio (F)

Rectangular 2π/M 2M/Q

Bartlett 4π/M 2M/(3Q)

Hanning/Hamming 3π/M 2M(α2 + β2/2)/Q

10.38. Show that the time-dependent Fourier transform, as defined by Eq. (10.18), has the fol-
lowing properties:

(a) Linearity:

If x[n] = ax1[n] + bx2[n], then X[n, λ) = aX1[n, λ) + bX2[n, λ).

(b) Shifting: If y[n] = x[n − n0], then Y [n, λ) = X[n − n0, λ).

(c) Modulation: If y[n] = ejω0nx[n], then Y [n, λ) = ejω0nX[n, λ − ω0).
(d) Conjugate Symmetry: If x[n] is real, then X[n, λ) = X∗[n, −λ).

10.39. Suppose that xc(t) is a real, continuous-time stationary random signal with autocorrelation
function

φc(τ) = E{xc(t)xc(t + τ)}
and power density spectrum

Pc(�) =
∫ ∞
−∞

φc(τ)e−j�τ dτ.

Consider a discrete-time stationary random signal x[n] that is obtained by sampling xc(t)

with sampling period T ; i.e., x[n] = xc(nT).

(a) Show that φ[m], the autocorrelation sequence for x[n], is

φ[m] = φc(mT).

Chapter 10 Problems 881

(b) What is the relationship between the power density spectrumPc(�) for the continuous-
time random signal and the power density spectrumP(ω) for the discrete-time random
signal?

(c) What condition is necessary such that

P(ω) = 1
T

Pc

(ω
T

)
, |ω| < π?

10.40. In Section 10.5.5, we considered the estimation of the power spectrum of a sinusoid plus
white noise. In this problem, we will determine the true power spectrum of such a signal.
Suppose that

x[n] = A cos(ω0n + θ) + e[n],
where θ is a random variable that is uniformly distributed on the interval from 0 to 2π

and e[n] is a sequence of zero-mean random variables that are independent of each other
and also independent of θ . In other words, the cosine component has a randomly selected
phase, and e[n] represents white noise.

(a) Show that for the preceding assumptions, the autocorrelation function for x[n] is

φxx [m] = E{x[n]x[m + n]} = A2

2
cos(ω0m) + σ 2

e δ[m],
where σ 2

e = E{(e[n])2}.
(b) From the result of part (a), show that over one period in frequency, the power spectrum

of x[n] is

Pxx(ω) = A2π

2
[δ(ω − ω0) + δ(ω + ω0)] + σ 2

e , |ω| ≤ π.

10.41. Consider a discrete-time signal x[n] of length N samples that was obtained by sampling a
stationary, white, zero-mean continuous-time signal. It follows that

E{x[n]x[m]} = σ 2
x δ[n − m],

E{x[n]} = 0.

Suppose that we compute the DFT of the finite-length sequence x[n], thereby obtaining
X[k] for k = 0, 1, . . . , N − 1.

(a) Determine the approximate variance of |X[k]|2 using Eqs. (10.80) and (10.81).
(b) Determine the cross-correlation between values of the DFT; i.e., determine

E{X[k]X∗[r]} as a function of k and r .

10.42. A bandlimited continuous-time signal has a bandlimited power spectrum that is zero for
|�| ≥ 2π(104) rad/s. The signal is sampled at a rate of 20,000 samples/s over a time
interval of 10 s. The power spectrum of the signal is estimated by the method of averaging
periodograms as described in Section 10.5.3.

(a) What is the length Q (number of samples) of the data record?
(b) If a radix-2 FFT program is used to compute the periodograms, what is the minimum

length N if we wish to obtain estimates of the power spectrum at equally spaced
frequencies no more than 10 Hz apart?

(c) If the segment length L is equal to the FFT length N in part (b), how many segments
K are available if the segments do not overlap?

(d) Suppose that we wish to reduce the variance of the spectrum estimates by a factor of
10 while maintaining the frequency spacing of part (b). Give two methods of doing
this. Do these two methods give the same results? If not, explain how they differ.

882 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

10.43. Suppose that an estimate of the power spectrum of a signal is obtained by the method of
averaging periodograms, as discussed in Section 10.5.3. That is, the spectrum estimate is

Ī (ω) = 1
K

K−1∑
r=0

Ir (ω),

where the K periodograms Ir (ω) are computed from L-point segments of the signal using
Eqs. (10.82) and (10.83). We define an estimate of the autocorrelation function as the
inverse Fourier transform of Ī (ω); i.e.,

φ̄[m] = 1
2π

∫ π

−π
Ī (ω)ejωmdω.

(a) Show that

E{φ̄[m]} = 1
LU

cww[m]φxx [m],
where L is the length of the segments, U is a normalizing factor given by Eq. (10.79),
and cww[m], given by Eq. (10.75), is the aperiodic autocorrelation function of the
window that is applied to the signal segments.

(b) In the application of periodogram averaging, we normally use an FFT algorithm to
compute Ī (ω) at N equally spaced frequencies; i.e.,

Ī [k] = Ī (2πk/N), k = 0, 1, . . . , N − 1,

where N ≥ L. Suppose that we compute an estimate of the autocorrelation function
by computing the inverse DFT of Ī [k], as in

φ̄p[m] = 1
N

N−1∑
k=0

Ī [k]ej (2π/N)km, m = 0, 1, . . . , N − 1.

Obtain an expression for E{φ̄p[m]}.
(c) How should N be chosen so that

E{φ̄p[m]} = E{φ̄[m]}, m = 0, 1, . . . , L − 1?

10.44. Consider the computation of the autocorrelation estimate

φ̂xx [m] = 1
Q

Q−|m|−1∑
n=0

x[n]x[n + |m|], (P10.44-1)

where x[n] is a real sequence. Since φ̂xx [−m] = φ̂xx [m], it is necessary only to evaluate
Eq. (P10.44-1) for 0 ≤ m ≤ M − 1 to obtain φ̂xx [m] for −(M − 1) ≤ m ≤ M − 1, as is
required to estimate the power density spectrum using Eq. (10.102).

(a) When Q � M , it may not be feasible to compute φ̂xx [m] using a single FFT computa-
tion. In such cases, it is convenient to express φ̂xx [m] as a sum of correlation estimates
based on shorter sequences. Show that if Q = KM ,

φ̂xx [m] = 1
Q

K−1∑
i=0

ci [m],

where

ci [m] =
M−1∑
n=0

x[n + iM]x[n + iM + m],

for 0 ≤ m ≤ M − 1.

Chapter 10 Problems 883

(b) Show that the correlations ci [m] can be obtained by computing the N -point circular
correlations

c̃i [m] =
N−1∑
n=0

xi [n]yi [((n + m))N],

where the sequences

xi [n] =
{

x[n + iM], 0 ≤ n ≤ M − 1,

0, M ≤ n ≤ N − 1,

and

yi [n] = x[n + iM], 0 ≤ n ≤ N − 1. (P10.44-2)

What is the minimum value of N (in terms of M) such that ci [m] = c̃i [m] for 0 ≤ m ≤
M − 1?

(c) State a procedure for computing φ̂xx [m] for 0 ≤ m ≤ M − 1 that involves the com-
putation of 2K N -point DFTs of real sequences and one N -point inverse DFT. How
many complex multiplications are required to compute φ̂xx [m] for 0 ≤ m ≤ M − 1 if
a radix-2 FFT is used?

(d) What modifications to the procedure developed in part (c) would be necessary to
compute the cross-correlation estimate

φ̂xy [m] = 1
Q

Q−|m|−1∑
n=0

x[n]y[n + m], −(M − 1) ≤ m ≤ M − 1,

where x[n] and y[n] are real sequences known for 0 ≤ n ≤ Q − 1?
(e) Rader (1970) showed that, for computing the autocorrelation estimate φ̂xx [m] for

0 ≤ m ≤ M − 1, significant savings of computation can be achieved if N = 2M . Show
that the N -point DFT of a segment yi [n] as defined in Eq. (P10.44-2) can be expressed
as

Yi [k] = Xi [k] + (−1)kXi+1[k], k = 0, 1, . . . , N − 1.

State a procedure for computing φ̂xx [m] for 0 ≤ m ≤ M − 1 that involves the compu-
tation of K N -point DFTs and one N -point inverse DFT. Determine the total number
of complex multiplications in this case if a radix-2 FFT is used.

10.45. In Section 10.3 we defined the time-dependent Fourier transform of the signal x[m] so that,
for fixed n, it is equivalent to the regular DTFT of the sequence x[n+m]w[m], where w[m]
is a window sequence. It is also useful to define a time-dependent autocorrelation function
for the sequence x[n] such that, for fixed n, its regular Fourier transform is the magnitude
squared of the time-dependent Fourier transform. Specifically, the time-dependent auto-
correlation function is defined as

c[n, m] = 1
2π

∫ π

−π
|X[n, λ)|2ejλmdλ,

where X[n, λ) is defined by Eq. (10.18).

(a) Show that if x[n] is real

c[n, m] =
∞∑

r=−∞
x[n + r]w[r]x[m + n + r]w[m + r];

i.e., for fixed n, c[n, m] is the aperiodic autocorrelation of the sequence x[n + r]w[r],
−∞ < r < ∞.

884 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

(b) Show that the time-dependent autocorrelation function is an even function of m for
n fixed, and use this fact to obtain the equivalent expression

c[n, m] =
∞∑

r=−∞
x[r]x[r − m]hm[n − r],

where

hm[r] = w[−r]w[−(m + r)]. (P10.45-1)

(c) What condition must the window w[r] satisfy so that Eq. (P10.45-1) can be used to
compute c[n, m] for fixed m and −∞ < n < ∞ by causal operations?

(d) Suppose that

w[−r] =
{

ar , r ≥ 0,

0, r < 0.
(P10.45-2)

Find the impulse response hm[r] for computing the mth autocorrelation lag value,
and find the corresponding system function Hm(z). From the system function, draw
the block diagram of a causal system for computing the mth autocorrelation lag value
c[n, m] for −∞ < n < ∞ for the window of Eq. (P10.45-2).

(e) Repeat part (d) for

w[−r] =
{

rar , r ≥ 0,

0, r < 0.

10.46. Time-dependent Fourier analysis is sometimes implemented as a bank of filters, and even
when FFT methods are used, the filter bank interpretation may provide useful insight.
This problem examines that interpretation, the basis of which is the fact that when λ is
fixed, the time-dependent Fourier transform X[n, λ), defined by Eq. (10.18), is simply a
sequence that can be viewed as the result of a combination of filtering and modulation
operations.

(a) Show that X[n, λ) is the output of the system of Figure P10.46-1 if the impulse response
of the LTI system is h0[n] = w[−n]. Show also that if λ is fixed, the overall system in
Figure P10.46-1 behaves as an LTI system, and determine the impulse response and
frequency response of the equivalent LTI system.

x [n] X(n, �) X(n, �)

e –j�n e j�n

h0[n]

Figure P10.46-1

(b) Assuming λ fixed in Figure P10.46-1, show that, for typical window sequences and for
fixed λ, the sequence s[n] = X̆[n, λ) has a lowpass DTFT. Show also that, for typical
window sequences, the frequency response of the overall system in Figure P10.46 is
a bandpass filter centered at ω = λ.

(c) Figure P10.46-2 shows a bank of N bandpass filter channels, where each channel
is implemented as in Figure P10.46-1. The center frequencies of the channels are
λk = 2πk/N , and h0[n] = w[−n] is the impulse response of a lowpass filter. Show that
the individual outputs yk[n] are samples (in the λ-dimension) of the time-dependent
Fourier transform. Show also that the overall output is y[n] = Nw[0]x[n]; i.e., show
that the system of Figure P10.46-2 reconstructs the input exactly (within a scale factor)
from the sampled time-dependent Fourier transform.

Chapter 10 Problems 885

e –j�0n e j�0n

h0[n]
y0[n] y0[n]

e –j�1n e j�1n

h0[n]
y1[n] y1[n] y [n]x [n]

+

e –j�N – 1n e j�N – 1n

h0[n]
yN – 1[n] yN – 1[n]

..
.

..
.

..
.

Figure P10.46-2

The system of Figure P10.46-2 converts the single input sequence x[n] into N se-
quences, thereby increasing the total number of samples per second by the factor N . As
shown in part (b), for typical window sequences, the channel signals y̆k[n] have lowpass
Fourier transforms. Thus, it should be possible to reduce the sampling rate of these sig-
nals, as shown in Figure P10.46-3. In particular, if the sampling rate is reduced by a factor
R = N , the total number of samples per second is the same as for x[n]. In this case, the filter
bank is said to be critically sampled. (See Crochiere and Rabiner, 1983.) Reconstruction
of the original signal from the decimated channel signals requires interpolation as shown.
Clearly, it is of interest to determine how well the original input x[n] can be reconstructed
by the system.

e –j�0n e j�0n

h0 [n]
y0[n] y0[n]

�

e –j�1n e j�1n

h0 [n]
y1[n] y1[n] y [n]

x [n]

� +

e –j�N – 1n e j�N – 1n

h0 [n]
yN – 1[n] yN – 1[n]

�

�

�

�

..
.

..
.

..
.

..
.

..
.

..
.

R

R

R

R

R

R

g0 [n]

g0 [n]

g0 [n]

Figure P10.46-3

886 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

(d) For the system of Figure P10.46-3, show that the regular DTFT of the output is given
by the relation

Y (ejω) = 1
R

R−1∑

=0

N−1∑
k=0

G0(ej (ω−λk))H0(ej (ω−λk−2π
/R))X (ej (ω−2π
/R)),

where λk = 2πk/N . This expression clearly shows the aliasing resulting from the
decimation of the channel signals y̆[n]. From the expression for Y (ejω), determine a
relation or set of relations that must be satisfied jointly by H0(ejω) and G0(ejω) such
that the aliasing cancels and y[n] = x[n].

(e) Assume that R = N and the frequency response of the lowpass filter is an ideal
lowpass filter with frequency response

H0(ejω) =
{

1, |ω| < π/N,

0, π/N < |ω| ≤ π.

For this frequency response H0(ejω), determine whether it is possible to find a fre-
quency response of the interpolation filter G0(ejω) such that the condition derived
in part (d) is satisfied. If so, determine G0(ejω).

(f) Optional: Explore the possibility of exact reconstruction when the frequency response
of the lowpass filter H0(ejω) (the Fourier transform of w[−n]) is nonideal and nonzero
in the interval |ω| < 2π/N .

(g) Show that the output of the system of Figure P10.46-3 is

y[n] = N

∞∑
r=−∞

x[n − rN]
∞∑

=−∞
g0[n −
R]h0[
R + rN − n].

From this expression, determine a relation or set of relations that must be satisfied
jointly by h0[n] and g0[n] such that y[n] = x[n].

(h) Assume that R = N and the impulse response of the lowpass filter is

h0[n] =
{

1, −(N − 1) ≤ n ≤ 0,

0, otherwise.

For this impulse response h0[n], determine whether it is possible to find an impulse
response of the interpolation filter g0[n] such that the condition derived in part (g) is
satisfied. If so, determine g0[n].

(i) Optional: Explore the possibility of exact reconstruction when the impulse response
of the lowpass filter h0[n] = w[−n] is a tapered window with length greater than N .

10.47. Consider a stable LTI system with a real input x[n], a real impulse response h[n], and
output y[n]. Assume that the input x[n] is white noise with zero mean and variance σ 2

x .
The system function is

H(z) =

M∑
k=0

bkz
−k

1 −
N∑

k=1

akz
−k

,

where we assume the aks and bks are real for this problem. The input and output satisfy
the following difference equation with constant coefficients:

y[n] =
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k].

Chapter 10 Problems 887

If all the aks are zero, y[n] is called a moving-average (MA) linear random process. If all
the bks are zero, except for b0, then y[n] is called an autoregressive (AR) linear random
process. If both N and M are nonzero, then y[n] is an autoregressive moving-average
(ARMA) linear random process.

(a) Express the autocorrelation of y[n] in terms of the impulse response h[n] of the linear
system.

(b) Use the result of part (a) to express the power density spectrum of y[n] in terms of
the frequency response of the system.

(c) Show that the autocorrelation sequence φyy [m] of an MA process is nonzero only in
the interval |m| ≤ M .

(d) Find a general expression for the autocorrelation sequence for an AR process.
(e) Show that if b0 = 1, the autocorrelation function of an AR process satisfies the

difference equation

φyy [0] =
N∑

k=1

akφyy [k] + σ 2
x ,

φyy [m] =
N∑

k=1

akφyy [m − k], m ≥ 1.

(f) Use the result of part (e) and the symmetry of φyy [m] to show that

N∑
k=1

akφyy [|m − k|] = φyy [m], m = 1, 2, . . . , N.

It can be shown that, given φyy [m] for m = 0, 1, . . . , N , we can always solve uniquely for
the values of the aks and σ 2

x for the random-process model. These values may be used in
the result in part (b) to obtain an expression for the power density spectrum of y[n]. This
approach is the basis for a number of parametric spectrum estimation techniques. (For
further discussion of these methods, see Gardner, 1988; Kay, 1988; and Marple, 1987.)

10.48. This problem illustrates the basis for an FFT-based procedure for interpolating the samples
(obtained at a rate satisfying the Nyquist theorem) of a periodic continuous-time signal.
Let

xc(t) = 1
16

4∑
k=−4

(
1
2

)|k|
ejkt

be a periodic signal that is processed by the system in Figure P10.48.

(a) Sketch the 16-point sequence G[k].
(b) Specify how you would change G[k] into a 32-point sequence Q[k] so that the 32-point

inverse DFT of Q[k] is a sequence

q[n] = αxc

(
n2π

32

)
, 0 ≤ n ≤ 31,

for some nonzero constant α. You need not specify the value of α.

G [k]g [n]xc[n] x [n]

u [n] – u [n – 16]

16-point
DFT

C/D

T =
2�

16 Figure P10.48

888 Chapter 10 Fourier Analysis of Signals Using the Discrete Fourier Transform

10.49. In many real applications, practical constraints do not allow long time sequences to be
processed. However, significant information can be gained from a windowed section of
the sequence. In this problem, you will look at computing the Fourier transform of an
infinite-duration signal x[n], given only a block of 256 samples in the range 0 ≤ n ≤ 255.
You decide to use a 256-point DFT to estimate the transform by defining the signal

x̂[n] =
{

x[n], 0 ≤ n ≤ 255,

0, otherwise,

and computing the 256-point DFT of x̂[n].
(a) Suppose the signal x[n] came from sampling a continuous-time signal xc(t) with sam-

pling frequency fs = 20 kHz; i.e.,

x[n] = xc(nTs),

1/Ts = 20 kHz.

Assume that xc(t) is bandlimited to 10 kHz. If the DFT of x̂[n] is written X̂ [k], k =
0, 1, . . . , 255, what are the continuous-time frequencies corresponding to the DFT
indices k = 32 and k = 231? Be sure to express your answers in Hertz.

(b) Express the DTFT of x̂[n] in terms of the DTFT of x[n] and the DTFT of a 256-point
rectangular window wR[n]. Use the notation X (ejω) and WR(ejω) to represent the
DTFTs of x[n] and wR[n], respectively.

(c) Suppose you try an averaging technique to estimate the transform for k = 32:

X avg[32] = αX̂ [31] + X̂ [32] + αX̂ [33].
Averaging in this manner is equivalent to multiplying the signal x̂[n] by a new window
wavg[n] before computing the DFT. Show that Wavg(ejω) must satisfy

Wavg(ejω) =
⎧⎨⎩

1, ω = 0,

α, ω = ±2π/L,

0, ω = 2πk/L, for k = 2, 3, . . . , L − 2,

where L = 256.
(d) Show that the DTFT of this new window can be written in terms of WR(ejω) and two

shifted versions of WR(ejω).
(e) Derive a simple formula for wavg[n], and sketch the window for α = −0.5 and

0 ≤ n ≤ 255.

10.50. It is often of interest to zoom in on a region of a DFT of a signal to examine it in more
detail. In this problem, you will explore two algorithms for implementing this process of
obtaining additional samples of X (ejω) in a frequency region of interest.

Suppose XN [k] is the N -point DFT of a finite-length signal x[n]. Recall that XN [k]
consists of samples of X (ejω) every 2π/N in ω. Given XN [k], we would like to compute N

samples of X (ejω) between ω = ωc − 	ω and ω = ωc + 	ω with spacing 2	ω/N , where

ωc = 2πkc

N

and

	ω = 2πk	

N
.

This is equivalent to zooming in on X (ejω) in the region ωc − 	ω < ω < ωc + 	ω. One
system used to implement the zoom is shown in Figure P10.50-1. Assume that xz[n] is
zero-padded as necessary before the N -point DFT and h[n] is an ideal lowpass filter with
a cutoff frequency 	ω.

Chapter 10 Problems 889

xl[n]XN[k] x [n]

e– j�cn

N-Point
IDFT

N-Point
DFT

xz[n] Xz[k]
Mh [n]

Figure P10.50-1

–� ��c – Δ� �c + Δ��c

X(e j�)

Figure P10.50-2

(a) In terms of k	 and the transform length N , what is the largest (possibly noninteger)
value of M that can be used if aliasing is to be avoided in the downsampler?

(b) Consider x[n] with the Fourier transform shown in Figure P10.50-2. Using the max-
imum value of M from part (a), sketch the Fourier transforms of the intermediate
signals x
[n] and xz[n] when ωc = π/2 and 	ω = π/6. Demonstrate that the system
provides the desired frequency samples.

Another procedure for obtaining the desired samples can be developed by viewing the
finite-length sequence XN [k] indexed on k as a discrete-time data sequence to be processed
as shown in Figure P10.50-3. The impulse response of the first system is

p[n] =
∞∑

r=−∞
δ[n + rN],

and the filter h[n] has the frequency response

H(ejω) =
{

1, |ω| ≤ π/M,

0, otherwise.

The zoomed output signal is defined as

Xz[n] = X̃NM [Mkc − Mk	 + n], 0 ≤ n ≤ N − 1,

for appropriate values of kc and k	. Assume that k	 is chosen so that M is an integer in
the following parts.

(c) Suppose that the ideal lowpass filter h[n] is approximated by a causal Type I linear-
phase filter of length 513 (nonzero for 0 ≤ n ≤ 512). Indicate which samples of
X̃NM [n] provide the desired frequency samples.

(d) Using sketches of a typical spectrum for XN [k] and X (ejω), demonstrate that the
system in Figure P10.50-3 produces the desired samples.

XN[n] XN[n]

Extract correct
portion of
sequence Xz[n]

M h [n]p [n] ~
XNM[n]
~

Figure P10.50-3

11

Parametric Signal

Modeling

11.0 INTRODUCTION

Throughout this text, we have found it convenient to use several different representa-
tions of signals and systems. For example, the representation of a discrete-time signal
as a sequence of scaled impulses was used in Eq. (2.5) of Chapter 2 to develop the
convolution sum for LTI systems. The representation as a linear combination of sinu-
soidal and complex exponential signals led to the Fourier series, the Fourier transform,
and the frequency domain characterization of signals and LTI systems. Although these
representations are particularly useful because of their generality, they are not always
the most efficient representation for signals with a known structure.

This chapter introduces another powerful approach to signal representation called
parametric signal modeling. In this approach. a signal is represented by a mathematical
model that has a predefined structure involving a limited number of parameters. A
given signal s[n] is represented by choosing the specific set of parameters that results in
the model output ŝ[n] being as close as possible in some prescribed sense to the given
signal. A common example is to model the signal as the output of a discrete-time linear
system as shown in Figure 11.1. Such models, which are comprised of the input signal
v[n] and the system function H(z) of the linear system, become useful with the addition
of constraints that make it possible to solve for the parameters of H(z) given the signal

ˆv[n] LTI
System
H(z)

s[n]

Figure 11.1 Linear system model for a
signal s[n].

890

Section 11.1 All-Pole Modeling of Signals 891

to be represented. For example, if the input v[n] is specified, and the system function is
assumed to be a rational function of the form

H(z) =

q∑
k=0

bkz
−k

1 −
p∑

k=1

akz
−k

, (11.1)

then the signal is modeled by the values of the aks and bks or equivalently, by the poles
and zeros of H(z), along with knowledge of the input. The input signal v[n] is generally
assumed to be a unit impulse δ[n] for deterministic signals, or white noise if the signal
s[n] is viewed as a random signal. When the model is appropriately chosen, it is possible
to represent a large number of signal samples by a relatively small set of parameters.

Parametric signal modeling has a wide range of applications, including data com-
pression, spectrum analysis, signal prediction, deconvolution, filter design, system iden-
tification, signal detection, and signal classification. In data compression, for example,
it is the set of model parameters that is transmitted or stored, and the receiver then uses
the model with those parameters to regenerate the signal. In filter design, the model pa-
rameters are chosen to best approximate, in some sense, the desired frequency response,
or equivalently, the desired impulse response, and the model with these parameters then
corresponds to the designed filter. The two key elements for success in all of the appli-
cations are an appropriate choice of model and an accurate estimate of the parameters
for the model.

11.1 ALL-POLE MODELING OF SIGNALS

The model represented by Eq. (11.1) in general has both poles and zeros. While there
are a variety of techniques for determining the full set of numerator and denominator
coefficients in Eq. (11.1), the most successful and most widely used have concentrated
on restricting q to be zero, in which case, H(z) in Figure 11.1 has the form

H(z) = G

1 −
p∑

k=1

akz
−k

= G

A(z)
, (11.2)

where we have replaced the parameter b0 by the parameter G to emphasize its role
as an overall gain factor. Such models are aptly termed “all-pole” models.1 By its very
nature, it would appear that an all-pole model would be appropriate only for modeling
signals of infinite duration. While this may be true in a theoretical sense, this choice
for the system function of the model works well for signals found in many applications,
and as we will show, the parameters can be computed in a straightforward manner from
finite-duration segments of the given signal.

1Detailed discussion of this case and the general pole/zero case are given in Kay (1988), Thierrien
(1992), Hayes (1996) and Stoica and Moses (2005).

892 Chapter 11 Parametric Signal Modeling

The input and output of the all-pole system in Eq. (11.2) satisfy the linear constant–
coefficient difference equation

ŝ[n] =
p∑

k=1

akŝ[n − k] + Gv[n], (11.3)

which indicates that the model output at time n is comprised of a linear combination
of past samples plus a scaled input sample. As we will see, this structure suggests that
the all-pole model is equivalent to the assumption that the signal can be approximated
as a linear combination of (or equivalently, is linearly predictable from) its previous
values. Consequently, this method for modeling a signal is often also referred to as
linear predictive analysis or linear prediction.2

11.1.1 Least-Squares Approximation

The goal in all-pole modeling is to choose the input v[n] and the parameters G, and
a1, . . . , ap in Eq. (11.3) such that ŝ[n] is a close approximation in some sense to s[n],
the signal to be modeled. If, as is usually the case, v[n] is specified in advance (e.g.,
v[n] = δ[n]), a direct approach to determining the best values for the parameters might
be to minimize the total energy in the error signal ese[n] = (s[n]−ŝ[n]), thereby obtaining
a least-squares approximation to s[n]. Specifically, for deterministic signals, the model
parameters might be chosen to minimize the total squared error

∞∑
n=−∞

(s[n] − ŝ[n])2 =
∞∑

n=−∞

(
s[n] −

p∑
k=1

akŝ[n − k] − Gv[n]
)2

. (11.4)

In principle, the aks minimizing this squared error can be found by differentiating the ex-
pression in Eq. (11.4) with respect to each parameter, setting that derivative to zero, and
solving the resulting equations. However, this results in a nonlinear system of equations,
the solution of which is computationally difficult, in general. Although this least-squares
problem is too difficult for most practical applications, the basic least-squares principle
can be applied to slightly different formulations with considerable success.

11.1.2 Least-Squares Inverse Model

A formulation based on inverse filtering provides a relatively straightforward and
tractable solution for the parameter values in the all-pole model. In any approach to
approximation, it is recognized at the outset that the model output will in most cases
not be exactly equal to the signal to be modeled. The inverse filtering approach is based
on the recognition that if the given signal s[n] is in fact the output of the filter H(z) in
the model of Figure 11.1 then with s[n] as the input to the inverse of H(z), the output
will be v[n]. Consequently, as depicted in Figure 11.2 and with H(z) assumed to be an
all-pole system as specified in Eq.(11.2), the inverse filter, whose system function

A(z) = 1 −
p∑

k=1

akz
−k, (11.5)

2When used in the context of speech processing, linear predictive analysis is often referred to as linear
predictive coding (LPC). (See Rabner and Schafer, 1978 and Quatieri, 2002.)

Section 11.1 All-Pole Modeling of Signals 893

s[n] Inverse
System

A(z)

g[n]

Figure 11.2 Inverse filter formulation
for all-pole signal modeling.

is sought so that its output g[n] would be equal to the scaled input Gv[n]. In this for-
mulation, then, we choose the parameters of the inverse filter (and therefore implicitly
the parameters of the model system) to minimize the mean-squared error between g[n]
and Gv[n]. As we will see, this leads to a set of well-behaved linear equations.

From Figure 11.2 and Eq. (11.5) it follows that g[n] and s[n] satisfy the difference
equation

g[n] = s[n] −
p∑

k=1

aks[n − k]. (11.6)

The modeling error ê[n] is now defined as

ê[n] = g[n] − Gv[n] = s[n] −
p∑

k=1

aks[n − k] − Gv[n]. (11.7)

If v[n] is an impulse, then, for n > 0, the error ê[n] corresponds to the error between
s[n] and the linear prediction of s[n] using the model parameters. Thus, it is convenient
to also express Eq. (11.7) as

ê[n] = e[n] − Gv[n], (11.8)

where e[n] is the prediction error given by

e[n] = s[n] −
p∑

k=1

aks[n − k]. (11.9)

For a signal that exactly fits the all-pole model of Eq. (11.3), the modeling error ê[n]
will be zero, and the prediction error e[n] will be the scaled input, i.e.,

e[n] = Gv[n]. (11.10)

This formulation in terms of inverse filtering leads to considerable simplification,
since v[n] is assumed known and e[n] can be computed from s[n] using Eq. (11.9). The
parameter values ak are then chosen to minimize

E =
〈
|ê[n]|2

〉
, (11.11)

where the notation 〈 · 〉 denotes a summing operation for finite energy determinis-
tic signals and an ensemble averaging operation for random signals. Minimizing E in
Eq. (11.11) results in an inverse filter that minimizes the total energy in the modeling
error in the case of deterministic signals or the mean-squared value of the modeling
error in the case of random signals. For convenience, we will often refer to 〈·〉 as the
averaging operator where its interpretation as a sum or as an ensemble average should
be clear from the context. Again, note that in solving for the parameters ak specifying
the inverse system of Figure 11.2, the all-pole system is implicitly specified, as well.

894 Chapter 11 Parametric Signal Modeling

To find the optimal parameter values, we substitute Eq. (11.8) into Eq. (11.11) to
obtain

E =
〈
(e[n] − Gv[n])2

〉
, (11.12)

or equivalently,

E =
〈
e2[n]
〉
+ G2
〈
v2[n]
〉
− 2G 〈v[n]e[n]〉 . (11.13)

To find the parameters that minimize E , we differentiate Eq. (11.12) with respect
to the ith filter coefficient ai and set the derivative equal to zero, leading to the set of
equations

∂E
∂ai

= ∂

∂ai

[〈
e2[n]
〉
− 2G 〈v[n]s[n − i]〉

]
= 0, i = 1, 2, . . . , p, (11.14)

where we have assumed that G is independent of ai and, of course, so is v[n], and
consequently that

∂

∂ai

[
G2
〈
v2[n]
〉]

= 0. (11.15)

For models that will be of interest to us, v[n] will be an impulse if s[n] is a causal
finite-energy signal and white noise if s[n] is a wide-sense stationary random pro-
cess. With v[n] an impulse and s[n] zero for n < 0, the product v[n]s[n − i] = 0 for
i = 1, 2, . . . p. With v[n] as white noise,

〈v[n]s[n − i]〉 = 0, i = 1, 2, . . . p, (11.16)

since for any value of n, the input of a causal system with white-noise input is uncorre-
lated with the output values prior to time n. Thus, for both cases, Eq. (11.14) reduces
to

∂E
∂ai

= ∂

∂ai

〈
e2[n]
〉
= 0 i = 1, 2, , . . . , p (11.17)

In other words, choosing the coefficients to minimize the average squared modeling
error

〈
ê2[n]〉 is equivalent to minimizing the average squared prediction error

〈
e2[n]〉.

Expanding Eq. (11.17) and invoking the linearity of the averaging operator, we obtain
from Eq. (11.17) the equations

〈s[n]s[n − i]〉 −
p∑

k=1

ak 〈s[n − k]s[n − i]〉 = 0, i = 1, . . . , p. (11.18)

Defining

φss[i, k] = 〈s[n − i]s[n − k]〉 , (11.19)

Eqs. (11.18) can be rewritten more compactly as
p∑

k=1

akφss[i, k] = φss[i, 0], i = 1, 2, . . . , p. (11.20)

Equations (11.20) comprise a system of p linear equations in p unknowns. Com-
putation of the parameters of the model can be achieved by solving the set of linear
equations for the parameters ak for k = 1, 2, . . . , p, using known values for φss[i, k] for
i = 1, 2, . . . , p and k = 0, 1, . . . , p or first computing them from s[n].

Section 11.1 All-Pole Modeling of Signals 895

11.1.3 Linear Prediction Formulation of All-Pole
Modeling

As suggested earlier, an alternative and useful interpretation of all-pole signal modeling
stems from the interpretation of Eq. (11.3) as a linear prediction of the output in terms
of past values, with the prediction error e[n] being the scaled input Gv[n], i.e.,

e[n] = s[n] −
p∑

k=1

aks[n − k] = Gv[n]. (11.21)

As indicated by Eq. (11.17), minimizing the inverse modeling error E in Eq. (11.11)
is equivalent to minimizing the averaged prediction error

〈
e2[n]〉. If the signal s[n] were

produced by the model system, and if v[n] is an impulse, and if s[n] truly fits the all-pole
model, then the signal at any n > 0 is linearly predictable from past values, i.e., the
prediction error is zero. If v[n] is white noise, then the prediction error is white.

The interpretation in terms of prediction is depicted in Figure 11.3, where the
transfer function of the prediction filter P(z) is

P(z) =
p∑

k=1

akz
−k. (11.22)

This system is referred to as the pth-order linear predictor for the signal s[n]. Its output
is

s̃[n] =
p∑

k=1

aks[n − k], (11.23)

and as Figure 11.3 shows, the prediction error signal is e[n] = s[n] − s̃[n]. The sequence
e[n] represents the amount by which the linear predictor fails to exactly predict the
signal s[n]. For this reason, e[n] is also sometimes called the prediction error residual or
simply the residual. With this point of view, the coefficients ak are called the prediction
coefficients. As is also shown in Figure 11.3, the prediction error filter is related to the
linear predictor by

A(z) = 1 − P(z) = 1 −
p∑

k=1

akz
−k. (11.24)

s[n]

Linear
Predictor

P(z)

A(z)

e[n]

~s[n]
−

Figure 11.3 Linear prediction
formulation for all-pole signal modeling.

896 Chapter 11 Parametric Signal Modeling

11.2 DETERMINISTIC AND RANDOM SIGNAL MODELS

To use the optimum inverse filter or equivalently the optimum linear predictor as a basis
for parametric signal modeling, it is necessary to be more specific about the assumed
input v[n] and about the method of computing the averaging operator 〈·〉. To this end,
we consider separately the case of deterministic signals and the case of random signals.
In both cases, we will use averaging operations that assume knowledge of the signal
to be modeled over all time −∞ < n < ∞. In Section 11.3, we discuss some of the
practical considerations when only a finite-length segment of the signal s[n] is available.

11.2.1 All-Pole Modeling of Finite-Energy Deterministic
Signals

In this section, we assume an all-pole model that is causal and stable and also that both
the input v[n] and the signal s[n] to be modeled are zero for n < 0. We further assume
that s[n] has finite energy and is known for all n ≥ 0. We choose the operator 〈·〉 in
Eq. (11.11) as the total energy in the modeling error sequence ê[n], i.e.,

E =
〈
|ê[n]|2

〉
=

∞∑
n=−∞

|ê[n]|2. (11.25)

With this definition of the averaging operator, φss[i, k] in Eq. (11.19) is given by

φss[i, k] =
∞∑

n=−∞
s[n − i]s[n − k], (11.26)

and equivalently,

φss[i, k] =
∞∑

n=−∞
s[n]s[n − (i − k)]. (11.27)

The coefficients φss[i, k] in Eq. (11.20) are now

φss[i, k] = rss[i − k], (11.28)

where for real signals s[n], rss[m] is the deterministic autocorrelation function

rss[m] =
∞∑

n=−∞
s[n + m]s[n] =

∞∑
n=−∞

s[n]s[n − m]. (11.29)

Therefore, Eq. (11.20) takes the form
p∑

k=1

akrss[i − k] = rss[i] i = 1, 2, . . . , p. (11.30)

These equations are called the autocorrelation normal equations and also the Yule–
Walker equations. They provide a basis for computing the parameters a1, . . . , ap from
the autocorrelation function of the signal. In Section 11.2.5, we discuss an approach to
choosing the gain factor G.

Section 11.2 Deterministic and Random Signal Models 897

ˆw[n] LTI
System
H(z)

s[n]

white
noise

Figure 11.4 Linear system model for a
random signal s[n].

11.2.2 Modeling of Random Signals

For all-pole modeling of zero-mean, wide-sense stationary, random signals, we assume
that the input to the all-pole model is zero-mean, unit-variance, white noise as indicated
in Figure 11.4. The difference equation for this system is

ŝ[n] =
p∑

k=1

akŝ[n − k] + Gw[n], (11.31)

where the input has autocorrelation function E{w[n + m]w[n]} = δ[m], zero mean
(E{w[n]} = 0), and unit average power (E{(w[n])2} = δ[0] = 1), with E{·} representing
the expectation or probability average operator.3

The resulting model for analysis is the same as that depicted in Figure 11.2, but
the desired output g[n] changes. In the case of random signals, we want to make g[n] as
much like a white-noise signal as possible, rather than the unit sample sequence that was
desired in the deterministic case. For this reason, the optimal inverse filter for random
signals is often referred to as a whitening filter.

We also choose the operator 〈·〉 in Eq. (11.11) as an appropriate one for random
signals, specifically the mean-squared value or equivalently the average power. Then
Eq. (11.11) becomes

E = E{(ê[n])2}. (11.32)

If s[n] is assumed to be a sample function of a stationary random process, then φss[i, k]
in Eq. (11.19) would be the autocorrelation function

φss[i, k] = E{s[n − i]s[n − k]} = rss[i − k]. (11.33)

The system coefficients can be found as before from Eq. (11.20). Thus, the system
coefficients satisfy a set of equations of the same form as Eq. (11.30), i.e.,

p∑
k=1

akrss[i − k] = rss[i], i = 1, 2, . . . , p. (11.34)

Therefore, modeling random signals again results in the Yule–Walker equations, with
the autocorrelation function in this case being defined by the probabilistic average

rss[m] = E {s[n + m]s[n]} = E {s[n]s[n − m]} . (11.35)

3Computation of E{·} requires knowledge of the probability densities. In the case of stationary random
signals, only one density is required. In the case of ergodic random processes, a single infinite time average
could be used. In practical applications, however, such averages must be approximated by estimates obtained
from finite time averages.

898 Chapter 11 Parametric Signal Modeling

11.2.3 Minimum Mean-Squared Error

For modeling of either deterministic signals (Section 11.2.1) or random signals (Section
11.2.2) the minimum value of the prediction error e[n] in Figure 11.3 can be expressed
in terms of the corresponding correlation values in Eq. (11.20) to find the optimum
predictor coefficients. To see this, we write E as

E =
〈(

s[n] −
p∑

k=1

aks[n − k]
)2〉

. (11.36)

As outlined in more detail in Problem 11.2, if Eq. (11.36) is expanded, and Eq. (11.20)
is substituted into the result, it follows that in general,

E = φss[0, 0] −
p∑

k=1

akφss[0, k]. (11.37)

Equation (11.37) is true for any appropriate choice of the averaging operator. In par-
ticular, for averaging definitions for which φss[i, k] = rss[i − k], Eq. (11.37) becomes

E = rss[0] −
p∑

k=1

akrss[k]. (11.38)

11.2.4 Autocorrelation Matching Property

An important and useful property of the all-pole model resulting from the solution
of Eq. (11.30) for deterministic signals and Eq. (11.34) for random signals is referred
to as the autocorrelation matching property (Makhoul, 1973). Equations (11.30) and
(11.34) represent a set of p equations to be solved for the model parameters ak for
k = 1, . . . , p. The coefficients in these equations on both the left- and right-hand sides
of the equations are comprised of the (p + 1) correlation values rss[m], m = 0, 1, . . . , p,
where the correlation function is appropriately defined, depending on whether the signal
to be modeled is deterministic or random.

The basis for verifying the autocorrelation matching property is to observe that
the signal ŝ[n] obviously fits the model when the model system H(z) in Figure 11.1 is
specified as the all-pole system in Eq. (11.2). If we were to consider again applying
all-pole modeling to ŝ[n], we would of course again obtain Eqs. (11.30) or (11.34), but
this time, with rŝŝ[m] in place of rss[m]. The solution must again be the same parameter
values ak , k = 1, 2, . . . , p, since ŝ[n] fits the model, and this solution will result if

rss[m] = crŝŝ[m] 0 ≤ m ≤ p, (11.39)

where c is any constant. The fact that the equality in Eq. (11.39) is required follows
from the form of the recursive solution of the Yule–Walker equations as developed in
Section 11.6. In words, the autocorrelation normal equations require that for the lags
|m| = 0, 1, . . . , p the autocorrelation functions of the model output and the signal being
modeled are proportional.

Section 11.2 Deterministic and Random Signal Models 899

11.2.5 Determination of the Gain Parameter G

With the approach that we have taken, determination of the optimal choice for the
coefficients ak of the model does not depend on the system gain G. From the perspective
of the inverse filtering formulation in Figure 11.2, one possibility is to choose G so that〈
(ŝ[n])2〉 = 〈(s[n])2〉. For finite-energy deterministic signals, this corresponds to matching

the total energy in the model output to the total energy in the signal that is being
modeled. For random signals, it is the average power that is matched. In both cases, this
corresponds to choosing G, so that rŝŝ[0] = rss[0]. With this choice, the proportionality
factor c in Eq. (11.39) is unity.

Example 11.1 1st-Order System

Figure 11.5 shows two signals, both of which are outputs of a 1st-order system with
system function

H(z) = 1

1 − αz−1
. (11.40)

The signal sd [n] = h[n] = αnu[n] is the output when the input is a unit impulse δ[n],
while the signal sr [n] is the output when the input to the system is a zero mean, unit
variance white-noise sequence. Both signals extend over the range −∞ < n < ∞, as
suggested by Figure 11.5.

sd[n]

sr[n]

n

n

Figure 11.5 Examples of deterministic and random outputs of a 1st-order all-pole
system.

The autocorrelation function for the signal sd [n] is

rsd sd [m] = rhh[m] =
∞∑

n=0

αn+mαn = α|m|
1 − α2

, (11.41)

the autocorrelation function of sr [n] is also given by Eq. (11.41) since sr [n] is the
response of the system to white noise, for which the autocorrelation function is a unit
impulse.

Since both signals were generated with a 1st-order all-pole system, a 1st-order
all-pole model will be an exact fit. In the deterministic case, the output of the optimum

900 Chapter 11 Parametric Signal Modeling

inverse filter will be a unit impulse, and in the random signal case, the output of the
optimum inverse filter will be a zero-mean white-noise sequence with unit average
power. To show that the optimum inverse filter will be exact, note that for a 1st-order
model, Eqs. (11.30) or (11.34) reduce to

rsd sd [0]a1 = rsd sd [1], (11.42)

so from Eq. (11.41), it follows that the optimum predictor coefficient for both the
deterministic and the random signal is

a1 = rsd sd [1]
rsd sd [0] =

α

1 − α2

1

1 − α2

= α. (11.43)

From Eq. (11.38), the minimum mean-squared error is

E = 1

1 − α2
− a1

α

1 − α2
= 1 − α2

1 − α2
= 1, (11.44)

which is the size of the unit impulse in the deterministic case and the average power
of the white-noise sequence in the random case.

As mentioned earlier, and as is clear in this example, when the signal is generated
by an all-pole system excited by either an impulse or white noise, all-pole modeling can
determine the parameters of the all-pole system exactly. This requires prior knowledge
of the model order p and the autocorrelation function. This was possible to obtain
for this example, because a closed-form expression was available for the infinite sum
required to compute the autocorrelation function. In a practical setting, it is generally
necessary to estimate the autocorrelation function from a finite-length segment of the
given signal. Problem 11.14 considers the effect of finite autocorrelation estimates (to
be discussed next) for the deterministic signal sd [n] of this section.

11.3 ESTIMATION OF THE CORRELATION FUNCTIONS

To use the results of Sections 11.1 and 11.2 for modeling of either deterministic or ran-
dom signals, we require apriori knowledge of the correlation functions φss[i, k] that are
needed to form the system equations satisfied by the coefficients ak , or we must estimate
these from the given signal. Furthermore, we may want to apply block processing or
short-time analysis techniques to represent the time-varying properties of a nonstation-
ary signal, such as speech. In this section, we will discuss two distinct approaches to
the computation of the correlation estimates for practical application of the concepts
of parametric signal modeling. These two approaches have come to be known as the
autocorrelation method and the covariance method.

11.3.1 The Autocorrelation Method

Suppose that we have available a set of M +1 signal samples s[n] for 0 ≤ n ≤ M , and we
wish to compute the coefficients for an all-pole model. In the autocorrelation method,
it is assumed that the signal ranges over −∞ < n < ∞, with the signal samples taken to

Section 11.3 Estimation of the Correlation Functions 901

be zero for all n outside the interval 0 ≤ n ≤ M , even if they have been extracted from
a longer sequence. This, of course, imposes a limit to the exactness that can be expected
of the model, since the IIR impulse response of an all-pole model will be used to model
the finite-length segment of s[n].

Although the prediction error sequence need not be computed explicitly to solve
for the filter coefficients, it is nevertheless informative to consider its computation in
some detail. The impulse response of the prediction error filter is, by the definition of
A(z), in Eq. (11.24),

hA[n] = δ[n] −
p∑

k=1

akδ[n − k]. (11.45)

It can be seen that since the signal s[n] has finite length M + 1 and hA[n], the impulse
response of the prediction filter A[z], has length p + 1, the prediction error sequence
e[n] = hA[n] ∗ s[n] will always be identically zero outside the interval 0 ≤ n ≤ M + p.
Figure 11.6 shows an example of the prediction error signal for a linear predictor with
p = 5. In the upper plot, hA[n − m] the (time-reversed and shifted) impulse response
of the prediction error filter, is shown as a function of m for three different values of n.
The dark lines with square dots depict hA[n − m], and the lighter lines with round dots
show the sequence s[m] for 0 ≤ m ≤ 30. On the left side is hA[0 − m], which shows that
the first nonzero prediction error sample is e[0] = s[0]. This, of course, is consistent with
Eq. (11.9). On the extreme right is hA[M + p − m], which shows that the last nonzero
error sample is e[M + p] = −aps[M]. The second plot in Figure 11.6 shows the error
signal e[n] for 0 ≤ n ≤ M +p. From the point of view of linear prediction, it follows that
the first p samples (dark lines and dots) are predicted from samples that are assumed
to be zero. Similarly, the samples of the input for n ≥ M + 1 are assumed to be zero to
obtain a finite-length signal. The linear predictor attempts to predict the zero samples

hA[0 − m] hA[n − m] hA[M + p − m]
s[m]

−p

p

n M

M

M + p

M + p

m

n

e[n] = hA[n] * s[n] = s[n] − Σ aks[n − k]
k = 1

p

Figure 11.6 Illustration (for p = 5) of computation of prediction error for the
autocorrelation method. (Square dots denote samples of hA[n−m] and light round
dots denote samples of s[m] for the upper plot and e[n] for the lower plot.)

902 Chapter 11 Parametric Signal Modeling

↑↑ ↑
M − m

s[n], s[n + m]

−m M
n

Figure 11.7 Illustration of computation of the autocorrelation function for a finite-
length sequence. (Square dots denote samples of s[n + m], and light round dots
denote samples of s[n].)

in the interval M + 1 ≤ n ≤ M + p from prior samples that are nonzero and part of the
original signal. Indeed, if s[0] �= 0 and s[M] �= 0, then it will be true that both e[0] = s[0]
and e[M + p] = −aps[M] will be nonzero. That is, the prediction error (total-squared
error E) can never be exactly zero if the signal is defined to be zero outside the interval
0 ≤ n ≤ M . Furthermore, the total-squared prediction error for a pth-order predictor
would be

E (p) =
〈
e[n]2
〉
=

∞∑
n=−∞

e[n]2 =
M+p∑
n=0

e[n]2, (11.46)

i.e., the limits of summation can be infinite for convenience, but practically speaking,
they are finite.

When the signal is assumed to be identically zero outside the interval 0 ≤ n ≤ M ,
the correlation function φss[i, k] reduces to the autocorrelation function rss[m] where
the values needed in Eq. (11.30) are for m = |i − k|. Figure 11.7 shows the shifted
sequences used in computing rss[m] with s[n] denoted by round dots and s[n + m] by
square dots. Note that for a finite-length signal, the product s[n]s[n + m] is nonzero
only over the interval 0 ≤ n ≤ M − m when m ≥ 0. Since rss is an even function, i.e.,
rss[−m] = rss[m] = rss[|m|] it follows that the autocorrelation values needed for the
Yule–Walker equations can be computed as,

rss[|m|] =
∞∑

n=−∞
s[n]s[n + |m|] =

M−|m|∑
n=0

s[n]s[n + |m|]. (11.47)

For the finite-length sequence s[n], Eq. (11.47) has all the necessary properties of an
autocorrelation function and rss[m] = 0 for m > M . But of course rss[m] is not the same
as the autocorrelation function of the infinite length signal from which the segment was
extracted.

Equation (11.47) can be used to compute estimates of the autocorrelation func-
tion for either deterministic or random signals.4 Often, the finite-length input signal
is extracted from a longer sequence of samples. This is the case, for example, in ap-
plications to speech processing, where voiced segments (e.g., vowel sounds) of speech
are treated as deterministic and unvoiced segments (fricative sounds) are treated as

4In the context of random signals, it was shown in Section 10.6 that Eq. (11.47) is a biased estimate of
the autocorrelation function. When p � M as is often the case, this statistical bias is generally negligible.

Section 11.3 Estimation of the Correlation Functions 903

random signals.5 According to the previous discussion, the first p and last p samples of
the prediction error can be large due to the attempt to predict nonzero samples from
zero samples and to predict zero samples from nonzero samples. Since this can bias the
estimation of the predictor coefficients, a signal-tapering window, such as a Hamming
window is generally applied to the signal before computation of the autocorrelation
function.

11.3.2 The Covariance Method

An alternative choice for the averaging operator for the prediction error for a pth-order
predictor is

E (p)
cov =
〈
(e[n])2

〉
=

M∑
n=p

(e[n])2. (11.48)

As in the autocorrelation method, the averaging is over a finite interval (p ≤ n ≤ M),
but the difference is that the signal to be modeled is known over the larger interval
0 ≤ n ≤ M . The total-squared prediction error only includes values of e[n] that can be
computed from samples within the interval 0 ≤ n ≤ M . Consequently, the averaging
takes place over a shorter interval p ≤ n ≤ M . This is significant, since it relieves
the inconsistency between the all-pole model and the finite-length signal.6 In this case,
we only seek to match the signal over a finite interval rather than over all n as in the
autocorrelation method. The upper plot in Figure 11.8 shows the same signal s[m] as

hA[p − m] hA[n − m] hA[M − m]
s[m]

M

M n

n

p

p
m

e[n] = hA[n] * s[n] = s[n] − Σ aks[n − k]
k = 1

p

Figure 11.8 Illustration (for p = 5) of computation of prediction error for the
covariance method. (In upper plot, square dots denote samples of hA[n − m], and
light round dots denote samples of s[m].)

5In both cases, the deterministic autocorrelation function in Eq. (11.47) is used as an estimate.
6The definitions of total-squared prediction error in Eqs. (11.48) and (11.46) are distinctly different,

so we use the subscript cov to distinguish them.

904 Chapter 11 Parametric Signal Modeling

s[n − i], s[n − k]

i k p M

n

Figure 11.9 Illustration of computation of covariance function for a finite-length
sequence. (Square dots denote samples of s[n − k] and light round dots denote
samples of s[n − i].)

in the upper part of Figure 11.6, but in this case, the prediction error is only computed
over the interval p ≤ n ≤ M as needed in Eq. (11.48). As shown by the prediction error
filter impulse responses hA[n − m] in the upper plot, there are no end effects when the
prediction error is computed in this way, since all the signal samples needed to compute
the prediction error are available. Because of this, it is possible for the prediction error
to be precisely zero over the entire interval p ≤ n ≤ M , if the signal from which the
finite length segment was extracted was generated as the output of an all-pole system.
Seen another way, if s[n] is the output of an all-pole system with an input that is zero
for n > 0, then as seen from Eqs. (11.9) and (11.10) the prediction error will be zero for
n > 0.

The covariance function inherits the same definition of the averaging operator,
i.e.,

φss[i, k] =
M∑

n=p

s[n − i]s[n − k]. (11.49)

The shifted sequences s[n − i] (light lines and round dots) and s[n − k] (dark lines and
square dots) are shown in Figure 11.9. This figure shows that since we need φss[i, k] only
for i = 0, 1, . . . , p and k = 1, 2, . . . , p, the segment s[n] for 0 ≤ n ≤ M contains all the
samples that are needed to compute φss[i, k] in Eq. (11.49).

11.3.3 Comparison of Methods

The autocorrelation and covariance methods have many similarities, but there are many
important differences in the methods and the resulting all-pole models. In this section,
we summarize some of the differences that we have already demonstrated and call
attention to some others.

Prediction Error

Both the averaged prediction error
〈
e2[n]〉 and averaged modeling error

〈
ê2[n]〉 are

nonnegative and nonincreasing with increasing model order p. In the autocorrelation
method based on estimates obtained from finite-length signals, the averaged modeling
or prediction error will never be zero, because the autocorrelation values will not be ex-
act. Furthermore, the minimum value of the prediction error even with an exact model
is Gv[n] as indicated by Eq. (11.10). In the covariance method, the prediction error for
n > 0 can be exactly zero if the original signal was generated by an all-pole model. This
will be demonstrated in Example 11.2.

Section 11.4 Model Order 905

Equations for Predictor Coefficients

In both methods, the predictor coefficients that minimize the averaged prediction error
satisfy a general set of linear equations expressed in matrix form as �a = ψ . The co-
efficients of the all-pole model are obtained by inverting the matrix �; i.e., a = �−1ψ .
In the covariance method, the elements φss[i, k] of the matrix � are computed using
Eq. (11.49). In the autocorrelation method, the covariance values become autocorrela-
tion values, i.e., φss[i, k] = rss[|i −k|] and are computed using Eq. (11.47). In both cases,
the matrix � is symmetric and positive-definite, but in the autocorrelation method, the
matrix � is also a Toeplitz matrix. This implies numerous special properties of the solu-
tion, and it implies that the solution of the equations can be done more efficiently than
would be true in general. In Section 11.6, we will explore some of these implications for
the autocorrelation method.

Stability of the Model System

The prediction error filter has a system function A(z) that is a polynomial in z−1. There-
fore, it can be represented in terms of its zeros as

A(z) = 1 −
p∑

k=1

akz
−k =

p∏
k=1

(1 − zkz
−1). (11.50)

In the autocorrelation method, the zeros of the prediction error filter A(z) are
guaranteed to lie strictly within the unit circle of the z plane; i.e., |zk| < 1. This means
that the poles of the causal system function H(z) = G/A(z) of the model lie inside the
unit circle, which implies that the model system is stable. A simple proof of this assertion
is given by Lang and McClellan (1979) and McClellan (1988). Problem 11.10 develops
a proof that depends on the lattice filter interpretation of the prediction error system
to be discussed in Section 11.7.1. In the covariance method as we have formulated it,
no such guarantee can be given.

11.4 MODEL ORDER

An important issue in parametric signal modeling is the model order p, the choice of
which has a major impact on the accuracy of the model. A common approach to choosing
p is to examine the averaged prediction error (often referred to as the residual) from
the optimum pth-order model. Let a

(p)
k be the parameters for the optimal pth-order

predictor found using Eq. (11.30). The prediction error energy for the pth-order model
using the autocorrelation method is7

E (p) =
∞∑

n=−∞

(
s[n] −

p∑
k=1

a
(p)
k s[n − k]

)2

. (11.51)

For the zeroth-order predictor, (p = 0), there are no delay terms in Eq. (11.51), i.e., the
“predictor” is just the identity system so e[n] = s[n]. Consequently, for p = 0,

E (0) =
∞∑

n=−∞
s2[n] = rss[0]. (11.52)

7Recall that E(p)
cov denotes the total-squared prediction error for the covariance method, while we use

E(p) with no subscript to denote the total-squared prediction error for the autocorrelation method.

906 Chapter 11 Parametric Signal Modeling

Plotting the normalized mean-squared prediction error V(p) = E (p)/E (0) as a func-
tion of p shows how increasing p changes this error energy. In the autocorrelation
method, we showed that the averaged prediction error can never be precisely zero,
even if the signal s[n] was generated by an all-pole system, and the model order is the
same as the order of the generating system. In the covariance method, however, if the
all-pole model is a perfect model for the signal s[n], E (p)

cov will become identically zero
at the correct choice of p, since the averaged prediction error only considers values
for p ≤ n ≤ M . Even if s[n] is not perfectly modeled by an all-pole system, there is
often a value of p above which increasing p has little or no effect on either V(p) or
V(p)

cov = E (p)
cov /E (0)

cov. This threshold is an efficient choice of model order for representing
the signal as an all-pole model.

Example 11.2 Model Order Selection

To demonstrate the effect of model order, consider a signal s[n] generated by exciting
a 10th-order system

H(z) = 0.6

(1 − 1.03z−1 + 0.79z−2 − 1.34z−3 + 0.78z−4 − 0.92z−5

+1.22z−6 − 0.43z−7 + 0.6z−8 − 0.29z−9 − 0.23z−10)

(11.53)

with an impulse v[n] = δ[n]. The samples of s[n] for 0 ≤ n ≤ 30 are shown as the
sequence in the upper plots in Figures 11.6 and 11.8. This signal was used as the signal
to be modeled by an all-pole model with both the autocorrelation method and the
covariance method. Using the 31 samples of s[n], the appropriate autocorrelation and
covariance values were computed and the predictor coefficients computed by solv-
ing Eqs. (11.30) and (11.34) respectively. The normalized mean-squared prediction
errors are plotted in Figure 11.10. Note that in both the autocorrelation and covari-
ance methods the normalized error decreases abruptly at p = 1 in both plots, then
decreasing more slowly as p increases. At p = 10, the covariance method gives zero
error, while the autocorrelation method gives a nonzero averaged error for p ≥ 10.
This is consistent with our discussion of the prediction error in Section 11.3.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Model order p

N
or

m
al

iz
ed

 m
ea

n-
sq

ua
re

d
pr

ed
ic

ti
on

 e
rr

or
V(p

) a
nd

 V(p
)

Autocorrelation Method
Covariance Method

co
v

Figure 11.10 Normalized mean-squared prediction error V(p) as a function of
model order p in Example 11.2.

Section 11.5 All-Pole Spectrum Analysis 907

While Example 11.2 is an ideal simulation, the general nature of the dependence
of averaged prediction error as a function of p is typical of what happens when all-pole
modeling is applied to sampled signals. The graph of V(p) as a function of p tends to
flatten out at some point, and that value of p is often selected as the value to be used
in the model. In applications such as speech analysis, it is possible to choose the model
order based on physical models for the production of the signal to be modeled. (See
Rabiner and Schafer, 1978.)

11.5 ALL-POLE SPECTRUM ANALYSIS

All-pole signal modeling provides a method of obtaining high-resolution estimates of a
signal’s spectrum from truncated or windowed data. The use of parametric signal mod-
eling in spectrum analysis is based on the fact that if the data fits the model, then a finite
segment of the data can be used to determine the model parameters and, consequently,
also its spectrum. Specifically, in the deterministic case

|Ŝ(ejω)|2 = |H(ejω)|2|V (ejω)|2 = |H(ejω)|2 (11.54)

since |V (ejω)|2 = 1 for a unit impulse excitation to the model system. Likewise, for
random signals the power spectrum of the output of the model is

Pŝŝ(e
jω) = |H(ejω)|2Pww(ejω) = |H(ejω)|2, (11.55)

since Pww(ejω) = 1 for the white-noise input. Thus, we can obtain an estimate of the
spectrum of a signal s[n] by computing an all-pole model for the signal and then com-
puting the magnitude-squared of the frequency response of the model system. For both
the deterministic and random cases, the spectrum estimate takes the form

Spectrum estimate = |H(ejω)|2 = G

1 −
p∑

k=1

ake
−jωk

2

. (11.56)

To obtain an understanding of the nature of the spectrum estimate in Eq. (11.56)
for the deterministic case, it is useful to recall that the DTFT of the finite-length signal
s[n] is

S(ejω) =
M∑

n=0

s[n]e−jωn. (11.57)

Furthermore, note that

rss[m] =
M−|m|∑
n=0

s[n + m]s[n] = 1
2π

∫ π

−π

|S(ejω)|2ejωmdω, (11.58)

where, due to the finite length of s[n], rss[m] = 0 for |m| > M . The values of rss[m]
for m = 0, 1, 2, . . . , p are used in the computation of the all-pole model using the
autocorrelation method. Thus, it is reasonable to suppose that there is a relationship

908 Chapter 11 Parametric Signal Modeling

between the Fourier spectrum of the signal, |S(ejω)|2, and the all-pole model spectrum,
|Ŝ(ejω)|2 = |H(ejω)|2.

One approach to illuminating this relationship is to obtain an expression for the
averaged prediction error in terms of the DTFT of the signal s[n]. Recall that the
prediction error is e[n] = hA[n] ∗ s[n], where hA[n] is the impulse response of the
prediction error filter. From Parseval’s Theorem, the averaged prediction error is

E =
M+p∑
n=0

(e[n])2 = 1
2π

∫ π

−π

|S(ejω)|2|A(ejω)|2dω, (11.59)

where S(ejω) is the DTFT of s[n] as given by Eq. (11.57). Since H(z) = G/A(z),
Eq. (11.59) can be expressed in terms of H(ejω) as

E = G2

2π

∫ π

−π

|S(ejω)|2
|H(ejω)|2 dω. (11.60)

Since the integrand in Eq. (11.60) is positive, and |H(ejω)|2 > 0 for −π < ω ≤ π ,
it therefore follows from Eq. (11.60) that minimizing E is equivalent to minimizing
the ratio of the energy spectrum of the signal s[n] to the magnitude-squared of the
frequency response of the linear system in the all-pole model. The implication of this is
that the all-pole model spectrum will attempt to match the energy spectrum of the signal
more closely at frequencies where the signal spectrum is large, since frequencies where
|S(ejω)|2 > |H(ejω)|2 contribute more to the mean-squared error than frequencies
where the opposite is true. Thus, the all-pole model spectrum estimate favors a good
fit around the peaks of the signal spectrum. This will be illustrated by the discussion in
Section 11.5.1. Similar analysis and reasoning also applies to the case in which s[n] is
random.

11.5.1 All-Pole Analysis of Speech Signals

All-pole modeling is widely used in speech processing both for speech coding, where the
term linear predictive coding (LPC) is often used, and for spectrum analysis. (See Atal
and Hanauer, 1971, Makhoul, 1975, Rabiner and Schafer, 1978, and Quatieri, 2002.) To
illustrate many of the ideas discussed in this chapter, we discuss in some detail the use
of all-pole modeling for spectrum analysis of speech signals. This method is typically
applied in a time-dependent manner by periodically selecting short segments of the
speech signal for analysis in much the same way as is done in time-dependent Fourier
analysis as discussed in Section 10.3. Since the time-dependent Fourier transform is
essentially a sequence of DTFTs of finite-length segments, the above discussion of the
relationship between the DTFT and the all-pole spectrum characterizes the relationship
between time-dependent Fourier analysis and time-dependent all-pole model spectrum
analysis, as well.

Figure 11.11 shows a 201-point Hamming-windowed segment of a speech signal
s[n] in the top panel and the corresponding autocorrelation function rss[m] below. Dur-
ing this time interval, the speech signal is voiced (vocal cords vibrating), as evidenced
by the periodic nature of the signal. This periodicity is reflected in the autocorrelation
function as the peak at about 27 samples (27/8 = 3.375 ms for 8 kHz sampling rate) and
integer multiples thereof.

Section 11.5 All-Pole Spectrum Analysis 909

0 12 27 40 50 100 150 200
−5

0

5

0 50 100 150 200

−0.5

0

0.5

(a)

(b)

Samples number (8 kHz sampling rate)

Lag number (8 kHz sampling rate)

Figure 11.11 (a) Windowed voiced speech waveform. (b) Corresponding auto-
correlation function (samples connected by straight lines).

When applying all-pole modeling to voiced speech, it is useful to think of the
signal as being deterministic, but with an excitation function that is a periodic train of
impulses. This accounts for the periodic nature of the autocorrelation function when
several periods of the signal are included in the window as in Figure 11.11(a).

Figure 11.12 shows a comparison of the DTFT of the signal in Figure 11.11(a) with
spectra computed from all-pole modeling with two different model orders and using the
autocorrelation function in Figure 11.11(b). Note that the DTFT of s[n] shows peaks at
multiples of the fundamental frequency F0 = 8 kHz/27 = 296 Hz, as well as many other
less prominent peaks and dips that can be attributed to the windowing effects discussed
in Section 10.2.1. If the first 13 samples of rss[m] in Figure 11.11(b) are used to compute
an all-pole model spectrum (p = 12), the result is the smooth curve shown with the
heavy line in Figure 11.12(a). With the filter order as 12 and the fundamental period of
27 samples, this spectrum estimate in effect ignores the spectral structure owing to the
periodicity of the signal and produces a much smoother spectrum estimate. If 41 values
of rss[m] are used, however, we obtain the spectrum plotted with the thin line. Since
the period of the signal is 27, a value of p = 40 includes the periodicity peak in the
autocorrelation function and thus, the all-pole spectrum tends to represent much of the
fine detail in the DTFT spectrum. Note that both cases support our assertion above that
the all-pole model spectrum estimate tends to favor good representation at the peaks
of the DTFT spectrum.

910 Chapter 11 Parametric Signal Modeling

0 500 1000 1500 2000 2500 3000 3500 4000
−60

−40

−20

0

20

40

p = 12 p = 40

0 5 10 15 20 25 30 35 40
0

0. 5

1

(a)

(b)

DTFT

lo
g

m
ag

ni
tu

de
 (

dB
)

Frequency in kHz

p

V(
p)

 =
 —

––E(p
)

E(o
)

Figure 11.12 (a) Comparison of DTFT and all-pole model spectra for voiced
speech segment in Figure 11.11(a). (b) Normalized prediction error as a function
of p.

This example illustrates that the choice of the model order p controls the degree
of smoothing of the DTFT spectrum. Figure 11.12(b) shows that as p increases, the
mean-squared prediction error decreases quickly and then levels off, as in our previous
example. Recall that in Sections 11.2.4 and 11.2.5, we argued that the all-pole model
with appropriately chosen gain results in a match between the autocorrelation func-
tions of the signal and the all-pole model up to p correlation lags as in Eq. (11.39).
This implies that as p increases, the all-pole model spectrum will approach the DTFT
spectrum, and when p → ∞, it follows that rhh[m] = rss[m] for all m, and therefore,
|H(ejω)|2 = |S(ejω)|2. However, this does not mean that H(ejω) = S(ejω) because
H(z) is an IIR system, and S(z) is the z-transform of a finite-length sequence. Also note
that as p → ∞, the averaged prediction error does not approach zero, even though
|H(ejω)|2 → |S(ejω)|2. As we have discussed, this occurs because the total error in
Eq. (11.11) is the prediction error ẽ[n] minus Gv[n]. Said differently, the linear pre-
dictor must always predict the first nonzero sample from the zero-valued samples that
precede it.

Section 11.5 All-Pole Spectrum Analysis 911

0 50 100 150 200
−0.1

−0.05

0

0.05

0.1

0 12 40 50 100 150 200
−0.1

0

0.1

Sample number (8 kHz sampling rate)

Lag number (8 kHz sampling rate)

(a)

(b)

Figure 11.13 (a) Windowed unvoiced speech waveform. (b) Corresponding au-
tocorrelation function (samples connected by straight lines).

The other main class of speech sounds is comprised of the unvoiced sounds such as
fricatives. These sounds are produced by creating random turbulent air flow in the vocal
tract; therefore, they are best modeled in terms of an all-pole system excited by white
noise. Figure 11.13 shows an example of a 201-point Hamming-windowed segment of
unvoiced speech and its corresponding autocorrelation function. Note that the autocor-
relation function shows no indication of periodicity in either the signal waveform or the
autocorrelation function. A comparison of the DTFT of the signal in Figure 11.13(a)
with two all-pole model spectra computed from the autocorrelation function in Fig-
ure 11.13(b) is shown in Figure 11.14(a). From the point of view of spectrum analysis of
random signals, the magnitude-squared of the DTFT is a periodogram. Thus, it contains
a component that is randomly varying with frequency. Again, by choice of the model
order, the periodogram can be smoothed to any desired degree.

11.5.2 Pole Locations

In speech processing, the poles of the all-pole model have a close relationship to the res-
onance frequencies of the vocal tract, thus, it is often useful to factor the polynomial A(z)

to obtain its zeros for representation as in Eq. (11.50). As discussed in Section 11.3.3,
the zeros zk of the prediction error filter are the poles of the all-pole model system
function. It is the poles of the system function that are responsible for the peaks in the
spectrum estimates discussed in Section 11.5.1. The closer a pole is to the unit circle,
the more peaked is the spectrum for frequencies close to the angle of the pole.

912 Chapter 11 Parametric Signal Modeling

0 500 1000 1500 2000 2500 3000 3500 4000

−50

−40

−30

−20

−10

0

10

20

p = 12 p = 40

0 5 10 15 20 25 30 35 40
0

0.5

1

p

DTFT

−60

(a)

(b)

lo
g

m
ag

ni
tu

de
 (

dB
)

Frequency in kHz

V(
p)

 =
 —

––E(p
)

E(o
)

Figure 11.14 (a) Comparison of DTFT and all-pole model spectra for unvoiced
speech segment in Figure 11.13(a). (b) Normalized prediction error as a function
of p.

Figure 11.15 shows the zeros of the prediction error system function A(z) (poles
of the model system) for the two spectrum estimates in Figure 11.12(a). For p = 12, the
zeros of A(z) are denoted by the open circles. Five complex conjugate pairs of zeros are
close to the unit circle, and their manifestations as poles are clearly evident in heavy
line curve of Figure 11.12(a). For the case p = 40, the zeros of A(z) are denoted by
the large filled dots. Observe that most of the zeros are close to the unit circle, and
they are more or less evenly distributed around the unit circle. This produces the peaks
in the model spectrum that are spaced approximately at multiples of the normalized
radian frequency corresponding to the fundamental frequency of the speech signal; i.e.,
at angles 2π(296 Hz)/8 kHz.

Section 11.5 All-Pole Spectrum Analysis 913

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

p = 12 p = 40

Figure 11.15 Zeros of prediction error
filters (poles of model systems) used to
obtain the spectrum estimates in
Figure 11.12.

11.5.3 All-Pole Modeling of Sinusoidal Signals

As another important example, we consider the use of the poles of an all-pole model to
estimate frequencies of sinusoidal signals. To see why this is possible, consider the sum
of two sinusoids

s[n] = [A1 cos(ω1n + θ1) + A2 cos(ω2n + θ2)] u[n]. (11.61)

The z-transform of s[n] has the form

S(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3

(1 − ejω1z−1)(1 − e−jω1z−1)(1 − ejω2z−1)(1 − e−jω2z−1)
. (11.62)

That is, the sum of two sinusoids can be represented as the impulse response of an LTI
system whose system function has both poles and zeros. The numerator polynomial
would be a somewhat complicated function of the amplitudes, frequencies, and phase
shifts. What is important for our discussion is that the numerator is a 3rd-order poly-
nomial and the denominator is a 4th-order polynomial, the roots of which are all on
the unit circle at angles equal to ±ω1 and ±ω2. The difference equation describing this
system with impulse excitation has the form

s[n] −
4∑

k=1

aks[n − k] =
3∑

k=1

bkδ[n − k] (11.63)

where the coefficients ak would result from multiplying the denominator factors. Note
that

s[n] −
4∑

k=1

aks[n − k] = 0 for n ≥ 4, (11.64)

which suggests that the signal s[n] can be predicted with no error by a 4th-order predictor
except at the very beginning (0 ≤ n ≤ 3). The coefficients of the denominator can be

914 Chapter 11 Parametric Signal Modeling

0
A

m
pl

it
ud

e
L

og
 m

ag
ni

tu
de

 in
 d

B
10 20 30 40 50 60 70 80 90 100

−50

0

50

0.15 0.2 0.22 0.25 0.3
0

20

40

60

80

100

120

Autocorrelation method
Covariance method

Frequency ���

(a) Sinusoidal signal

(b) Spectrum estimates

Time index n

True frequencies

DTFT

Figure 11.16 Spectrum estimation for a sinusoidal signal.

estimated from the signal by applying the covariance method to a short segment of the
signal selected so as not to include the first four samples. In the ideal case for which
Eq. (11.61) accurately represents the signal (e.g., high SNR), the roots of the resulting
polynomial provide good estimates of the frequencies of the component sinusoids.

Figure 11.16(a) shows a plot of 101 samples of the signal8

s[n] = 20 cos(0.2πn − 0.1π) + 22 cos(0.22πn + 0.9π). (11.65)

Because the two frequencies are close together, it is necessary to use a large number of
samples to resolve the two frequencies by Fourier analysis. However, since the signal fits
the all-pole model perfectly, the covariance method can be used to obtain very accurate
estimates of the frequencies from very short segments of the signal. This is illustrated
in Figure 11.16(b).

The DTFT of the 101 samples (with rectangular window) shows no indication that
there are two distinct sinusoid frequencies around ω = 0.21π . Recall that the main lobe
width for an (M + 1)-point rectangular window is 	ω = 4π/(M + 1). Consequently, a
101-point rectangular window can clearly resolve two frequencies only if they are no
closer than about .04π rad/s. Correspondingly, the DTFT does not show two spectral
peaks.

Similarly, use of the autocorrelation method results in the spectrum estimate
shown by the heavy line. This estimate also contains only one spectral peak. The predic-

8The tapering of the segment of the signal in Figure 11.16(a) is not a result of windowing. It is caused
by the “beating” of the two cosines of nearly the same frequency. The period of the beat frequency (difference
between 0.22π and 0.2π) is 100 samples.

Section 11.6 Solution of the Autocorrelation Normal Equations 915

tion error polynomial (in factored form) obtained with the autocorrelation method is

Aa(z) = (1 − 0.998ej0.21πz−1)(1 − 0.998e−j0.21πz−1)

· (1 − 0.426z−1)(1 − 0.1165z−1) (11.66)

The two real poles contribute no peaks, and the complex poles are close to the unit circle,
but at ±0.21π , which is halfway between the two frequencies. Thus, the windowing
inherent in the autocorrelation method causes the resulting model to lock onto the
average frequency 0.21π .

On the other hand, the factored prediction error polynomial obtained with the
covariance method is (with rounding of the magnitudes and angles) given by

Ac(z) = (1 − ej0.2πz−1)(1 − e−j0.2πz−1)

· (1 − ej0.22πz−1)(1 − e−j0.22πz−1). (11.67)

In this case, the angles of the zeros are almost exactly equal to the frequencies of the
two sinusoids. Also shown in Figure 11.16(b) is the frequency response of the model,
i.e.,

|Hcov(e
jω)|2 = 1

|Acov(ejω)|2 . (11.68)

plotted in dB. In this case, the prediction error is very close to zero, which, if used
to estimate the gain of the all-pole model, would lead to an indeterminant estimate.
Therefore, the gain is arbitrarily set to one, which leads to a plot of Eq. (11.68) on a
similar scale to the other estimates. Since the poles are almost exactly on the unit circle,
the magnitude spectrum becomes exceedingly large at the pole frequencies. Note that
the roots of the prediction error polynomial give an accurate estimate of the frequencies.
This method, of course, does not provide accurate information about the amplitudes
and phases of the sinusoidal components.

11.6 SOLUTION OF THE AUTOCORRELATION NORMAL
EQUATIONS

In both the autocorrelation and covariance methods of computing the correlation val-
ues, the predictor coefficients that minimize the mean-squared inverse filter error and
equivalently the prediction error satisfy a set of linear equations of the general form:⎡⎢⎢⎢⎢⎢⎣

φss[1, 1] φss[1, 2] φss[1, 3] · · · φss[1, p]
φss[2, 1] φss[2, 2] φss[2, 3] · · · φss[2, p]
φss[3, 1] φss[3, 2] φss[3, 3] · · · φss[3, p]

...
...

... · · · ...

φss[p, 1] φss[p, 2] φss[p, 3] · · · φss[p, p]

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a1
a2
a3
...

ap

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
φss[1, 0]
φss[2, 0]
φss[3, 0]

...

φss[p, 0]

⎤⎥⎥⎥⎥⎥⎦ . (11.69)

916 Chapter 11 Parametric Signal Modeling

In matrix notation, these linear equations have the representation

�a = ψ . (11.70)

Since φ[i, k] = φ[k, i], in both the autocorrelation and covariance methods, the matrix
� is symmetric, and, because it arises in a least-squares problem, it is also positive-
definite, which guarantees that it is invertible. In general, this leads to efficient solu-
tion methods, such as the Cholesky decomposition (see Press, et al., 2007), that are
based on matrix factorization and applicable when � is symmetric and positive definite.
However, in the specific case of the autocorrelation method or any method for which
φss[i, k] = rss[|i − k|], Eqs. (11.69) become the autocorrelation normal equations (also
referred to as the Yule–Walker equations).⎡⎢⎢⎢⎢⎢⎣

rss[0] rss[1] rss[2] · · · rss[p − 1]
rss[1] rss[0] rss[1] · · · rss[p − 2]
rss[2] rss[1] rss[0] · · · rss[p − 3]

...
...

... · · · ...

rss[p − 1] rss[p − 2] rss[p − 3] · · · rss[0]

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a1
a2
a3
...

ap

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
rss[1]
rss[2]
rss[3]

...

rss[p]

⎤⎥⎥⎥⎥⎥⎦ . (11.71)

In this case, in addition to the matrix � being symmetric and positive-definite, it is also a
Toeplitz matrix, i.e., all the elements on each subdiagonal are equal. This property leads
to an efficient algorithm, referred to as the Levinson–Durbin recursion, for solving the
equations.

11.6.1 The Levinson–Durbin Recursion

The Levinson–Durbin algorithm for computing the predictor coefficients that minimize
the total-squared prediction error results from the high degree of symmetry in the matrix
� and furthermore, as Eq. (11.71) confirms, the elements of the right-hand side vector
ψ are primarily the same values that populate the matrix �. Equations (L–D.1) to
(L–D.6) in Figure 11.17 define the computations. A derivation of these equations is
given in Section 11.6.2, but before developing the details of the derivation, it is helpful
to simply examine the steps of the algorithm.

(L–D.1) This step initializes the mean-squared prediction error to be the energy of
the signal. That is, a zeroth-order predictor (no predictor) yields no reduction in
prediction error energy, since the prediction error e[n] is identical to the signal
s[n].

The next line in Figure 11.17 states that steps (L–D.2) through (L–D.5) are repeated p

times, with each repetition of those steps increasing the order of the predictor by one. In
other words, the algorithm computes a predictor of order i from the predictor of order
i − 1 starting with i − 1 = 0.

(L–D.2) This step computes a quantity ki . The sequence of parameters ki , i = 1, 2, . . . , p

which we refer to as the k-parameters, plays a key role in generating the next set
of predictor coefficients.9

9For reasons to be discussed in Section 11.7, the k-parameters are also called PARCOR (for PARtial
CORrelation) coefficients or also, reflection coefficients.

Section 11.6 Solution of the Autocorrelation Normal Equations 917

Levinson–Durbin Algorithm

E (0) = rss[0] (L–D.1)
for i = 1, 2, . . . , p

ki =
⎛⎝rss[i] −

i−1∑
j=1

a
(i−1)
j rss[i − j]

⎞⎠ /E (i−1) (L–D.2)

a
(i)
i = ki (L–D.3)

if i > 1 then for j = 1, 2, . . . , i − 1
a

(i)
j = a

(i−1)
j − kia

(i−1)
i−j (L–D.4)

end
E (i) = (1 − k2

i)E (i−1) (L–D.5)
end
aj = a

(p)
j j = 1, 2, . . . , p (L–D.6)

Figure 11.17 Equations defining the Levinson–Durbin algorithm.

(L–D.3) This equation states that a
(i)
i , the ith coefficient of the ith-order predictor, is

equal to ki .

(L–D.4) In this equation, ki is used to compute the remaining coefficients of the ith-
order predictor as a combination of the coefficients of the predictor of order
(i − 1) with those same coefficients in reverse order.

(L–D.5) This equation updates the prediction error for the ith-order predictor.

(L–D.6) This is the final step where the pth-order predictor is defined to be the result
after p iterations of the algorithm.

The Levinson–Durbin algorithm is valuable because it is an efficient method of
solution of the autocorrelation normal equations and also for the insight that it provides
about the properties of linear prediction and all-pole models. For example, from Eq.
(L–D.5), it can be shown that the averaged prediction error for a pth-order predictor is
the product of the prediction errors for all lower-order predictors, from which it follows
that 0 < E (i) ≤ E (i−1) < E (p) and

E (p) = E (0)

p∏
i=1

(1 − k2
i) = rss[0]

p∏
i=1

(1 − k2
i). (11.72)

Since E (i) > 0, it must be true that −1 < ki < 1 for i = 1, 2, . . . , p. That is, the
k-parameters are strictly less than one in magnitude.

11.6.2 Derivation of the Levinson–Durbin Algorithm

From Eq. (11.30), the optimum predictor coefficients satisfy the set of equations

rss[i] −
p∑

k=1

akrss[i − k] = 0 i = 1, 2, . . . , p, (11.73a)

918 Chapter 11 Parametric Signal Modeling

and the minimum mean-squared prediction error is given by

rss[0] −
p∑

k=1

akrss[k] = E (p). (11.73b)

Since Eq. (11.73b) contains the same correlation values as in Eq. (11.73a), it is possible
to take them together and write a new set of p + 1 equations that are satisfied by
the p unknown predictor coefficients and the corresponding unknown mean-squared
prediction error E (p). These equations have the matrix form⎡⎢⎢⎢⎢⎢⎣

rss[0] rss[1] rss[2] · · · rss[p]
rss[1] rss[0] rss[1] · · · rss[p − 1]
rss[2] rss[1] rss[0] · · · rss[p − 2]

...
...

... · · · ...

rss[p] rss[p − 1] rss[p − 2] · · · rss[0]

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1
−a

(p)

1
−a

(p)

2
...

−a
(p)
p

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
E (p)

0
0
...

0

⎤⎥⎥⎥⎥⎥⎦ . (11.74)

It is this set of equations that can be solved recursively by the Levinson–Durbin al-
gorithm. This is done by successively incorporating a new correlation value at each
iteration and solving for the next higher-order predictor in terms of the new correlation
value and the previously found predictor.

For any order i, the set of equations in Eq. (11.74) can be represented in matrix
notation as

R(i)a(i) = e(i). (11.75)

We wish to show how the ith solution can be derived from the (i −1)st solution. In other
words, given a(i−1), the solution to R(i−1)a(i−1) = e(i−1), we wish to derive the solution
to R(i)a(i) = e(i).

First, write the equations R(i−1)a(i−1) = e(i−1) in expanded form as⎡⎢⎢⎢⎢⎢⎣
rss[0] rss[1] rss[2] · · · rss[i − 1]
rss[1] rss[0] rss[1] · · · rss[i − 2]
rss[2] rss[1] rss[0] · · · rss[i − 3]

...
...

... · · · ...

rss[i − 1] rss[i − 2] rss[i − 3] · · · rss[0]

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1
−a

(i−1)

1
−a

(i−1)

2
...

−a
(i−1)

i−1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
E (i−1)

0
0
...

0

⎤⎥⎥⎥⎥⎥⎦ . (11.76)

Then append a 0 to the vector a(i−1) and multiply by the matrix R(i) to obtain⎡⎢⎢⎢⎢⎢⎢⎢⎣

rss[0] rss[1] rss[2] · · · rss[i]
rss[1] rss[0] rss[1] · · · rss[i − 1]
rss[2] rss[1] rss[0] · · · rss[i − 2]

...
...

... · · · ...

rss[i − 1] rss[i − 2] rss[i − 3] · · · rss[1]
rss[i] rss[i − 1] rss[i − 2] · · · rss[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−a

(i−1)

1
−a

(i−1)

2
...

−a
(i−1)

i−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E (i−1)

0
0
...

0
γ (i−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11.77)

where, to satisfy Eq. (11.77),

γ (i−1) = rss[i] −
i−1∑
j=1

a
(i−1)
j rss[i − j]. (11.78)

Section 11.6 Solution of the Autocorrelation Normal Equations 919

It is in Eq. (11.78) that the new autocorrelation value rss[i] is introduced. However,
Eq. (11.77) is not yet in the desired form R(i)a(i) = e(i). The key step in the derivation is
to recognize that due to the special symmetry of the Toeplitz matrix R(i), the equations
can be written in reverse order (first equation last and last equation first, and so on) and
the matrix for the resulting set of equations is still R(i); i.e.,⎡⎢⎢⎢⎢⎢⎢⎢⎣

rss[0] rss[1] rss[2] · · · rss[i]
rss[1] rss[0] rss[1] · · · rss[i − 1]
rss[2] rss[1] rss[0] · · · rss[i − 2]

...
...

... · · · ...

rss[i − 1] rss[i − 2] rss[i − 3] · · · rss[1]
rss[i] rss[i − 1] rss[i − 2] · · · rss[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−a

(i−1)

i−1
−a

(i−1)

i−2
...

−a
(i−1)

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ (i−1)

0
0
...

0
E (i−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11.79)

Now Eq. (11.77) is combined with Eq. (11.79) according to

R(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−a

(i−1)

1
−a

(i−1)

2
...

−a
(i−1)

i−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−a

(i−1)

i−1
−a

(i−1)

i−2
...

−a
(i−1)

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E (i−1)

0
0
...

0
γ (i−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ (i−1)

0
0
...

0
E (i−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11.80)

Equation (11.80) is now approaching the desired form R(i)a(i) = e(i). All that remains
is to choose γ (i−1), so that the right hand vector has only a single nonzero entry. This
requires that

ki = γ (i−1)

E (i−1)
=

rss[i] −
i−1∑
j=1

a
(i−1)
j rss[i − j]

E (i−1)
, (11.81)

which ensures cancelation of the last element of the right hand side vector, and causes
the first element to be

E (i) = E (i−1) − kiγ
(i−1) = E (i−1)(1 − k2

i). (11.82)

With this choice of γ (i−1), it follows that the vector of ith-order prediction coefficients
is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−a

(i)

1
−a

(i)

2
...

−a
(i)

i−1
−a

(i)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−a

(i−1)

1
−a

(i−1)

2
...

−a
(i−1)

i−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−a

(i−1)

i−1
−a

(i−1)

i−2
...

−a
(i−1)

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.83)

From Eq. (11.83), we can write the set of equations for updating the coefficients as

a
(i)
j = a

(i−1)
j − kia

(i−1)
i−j j = 1, 2, . . . , i − 1, (11.84a)

920 Chapter 11 Parametric Signal Modeling

and

a
(i)
i = ki . (11.84b)

Equations (11.81), (11.84b), (11.84a), and (11.82) are the key equations of the Levinson–
Durbin algorithm. They correspond to Eqs. (L–D.2), (L–D.3), (L–D.4), and (L–D.5) in
Figure 11.17, which shows how they are used order-recursively to compute the optimum
prediction coefficients as well as the corresponding mean-squared prediction errors and
coefficients ki for all linear predictors up to order p.

11.7 LATTICE FILTERS

Among the many interesting and useful concepts that emerge from the Levinson–
Durbin algorithm is its interpretation in terms of the lattice structures introduced in
Section 6.6. There, we showed that any FIR filter with system function of the form

A(z) = 1 −
M∑

k=1

αkz
−k (11.85)

can be implemented by a lattice structure as depicted in Figure 6.37. Furthermore, we
showed that the coefficients of the FIR system function are related to the k-parameters
of a corresponding lattice filter by a recursion given in Figure 6.38, which is repeated
for convenience in the bottom half of Figure 11.18. By reversing the steps in the k-
to-α algorithm, we obtained an algorithm given in Figure 6.39 for computing the k-
parameters from the coefficients αj , j = 1, 2, . . . , M . Thus, there is a unique relationship
between the coefficients of the direct form representation and the lattice representation
of an FIR filter.

In this chapter, we have shown that a pth-order prediction error filter is an FIR
filter with system function

A(p)(z) = 1 −
p∑

k=1

a
(p)
k z−k,

whose coefficients can be computed from the autocorrelation function of a signal
through a process that we have called the Levinson–Durbin algorithm. A by-product
of the Levinson–Durbin computation is a set of parameters that we have also denoted
ki and called the k-parameters. A comparison of the two algorithms in Figure 11.18
shows that their steps are identical except for one important detail. In the algorithm
derived in Chapter 6, we started with the lattice filter with known coefficients ki and
derived the recursion for obtaining the coefficients of the corresponding direct form
FIR filter. In the Levinson–Durbin algorithm, we begin with the autocorrelation func-
tion of a signal and compute the k-parameters recursively as an intermediate result in
computing the coefficients of the FIR prediction error filter. Since both algorithms give
a unique result after p iterations, and since there is a unique relationship between the
k-parameters and the coefficients of an FIR filter, it follows that if M = p and aj = αj

for j = 1, 2, . . . , p, the k-parameters produced by the Levinson–Durbin algorithm must
be the k-parameters of a lattice filter implementation of the FIR prediction error filter
A(p)(z).

Section 11.7 Lattice Filters 921

Levinson–Durbin Algorithm

E (0) = rss[0]
for i = 1, 2, . . . , p

ki =
⎛⎝rss[i] −

i−1∑
j=1

a
(i−1)
j rss[i − j]

⎞⎠ /E (i−1) Eq. (11.81)

a
(i)
i = ki Eq. (11.84b)

if i > 1 then for j = 1, 2, . . . , i − 1
a

(i)
j = a

(i−1)
j − kia

(i−1)
i−j Eq. (11.84a)

end
E (i) = (1 − k2

i)E (i−1) Eq. (11.82)
end
aj = a

(p)
j j = 1, 2, . . . , p

Lattice k-to-α Algorithm

Given k1, k2, . . . , kM

for i = 1, 2, . . . , M

α
(i)
i = ki Eq. (6.66b)

if i > 1 then for j = 1, 2, . . . , i − 1
α

(i)
j = α

(i−1)
j − kiα

(i−1)
i−j Eq. (6.66a)

end
end
αj = α

(M)
j j = 1, 2, . . . , M Eq. (6.68b)

Figure 11.18 Comparison of the Levinson–Durbin algorithm and the algorithm
for converting from k -parameters of a lattice structure to the FIR impulse response
coefficients in Eq. (11.85).

11.7.1 Prediction Error Lattice Network

To explore the lattice filter interpretation further, suppose that we have an ith-order
prediction error system function

A(i)(z) = 1 −
i∑

k=1

a
(i)
k z−k. (11.86)

The z-transform representation of the prediction error10 would be

E(i)(z) = A(i)(z)S(z), (11.87)

10The z-transform equations are used assuming that the z-transforms of e[n] and s[n] exist. Although
this would not be true for random signals, the relationships between the variables remain in effect for the
system. The z-transform notation facilitates the development of these relationships.

922 Chapter 11 Parametric Signal Modeling

and the time-domain difference equation for this FIR filter is

e(i)[n] = s[n] −
i∑

k=1

a
(i)
k s[n − k]. (11.88)

The sequence e(i)[n] is given the more specific name forward prediction error
because it is the error in predicting s[n] from i previous samples.

The source of the lattice filter interpretation is Eqs. (11.84a) and (11.84b), which,
if substituted into Eq. (11.86), yield the following relation between A(i)(z) and A(i−1)(z):

A(i)(z) = A(i−1)(z) − kiz
−iA(i−1)(z−1). (11.89)

This is not a surprising result if we consider the matrix representation of the polynomial
A(i)(z) in Eq. (11.83).11 Now, if Eq. (11.89) is substituted for A(i)(z) in Eq. (11.87), the
result is

E(i)(z) = A(i−1)(z)S(z) − kiz
−iA(i−1)(z−1)S(z). (11.90)

The first term in Eq. (11.90) is E(i−1)(z), i.e., the prediction error for an (i − 1)st-order
filter. The second term has a similar interpretation, if we define

Ẽ(i)(z) = z−iA(i)(z−1)S(z) = B(i)(z)S(z), (11.91)

where we have defined B(i)(z) as

B(i)(z) = z−iA(i)(z−1) (11.92)

The time-domain interpretation of Eq. (11.91) is

ẽ(i)[n] = s[n − i] −
i∑

k=1

a
(i)
k s[n − i + k]. (11.93)

The sequence ẽ(i)[n] is called the backward prediction error, since Eq. (11.93) suggests
that s[n− i] is “predicted” (using coefficients a

(i)
k) from the i samples that follow sample

n − i.
With these definitions, it follows from Eq. (11.90) that

E(i)(z) = E(i−1)(z) − kiz
−1Ẽ(i−1)(z). (11.94)

and hence,

e(i)[n] = e(i−1)[n] − ki ẽ
(i−1)[n − 1]. (11.95)

By substituting Eq. (11.89) into Eq. (11.91), we obtain

Ẽ(i)(z) = z−1Ẽ(i−1)(z) − kiE
(i−1)(z), (11.96)

which, in the time domain, corresponds to

ẽ(i)[n] = ẽ(i−1)[n − 1] − kie
(i−1)[n]. (11.97)

11The algebraic manipulations to derive this result are suggested as an exercise in Problem 11.21.

Section 11.7 Lattice Filters 923

−ki

−ki

z−1

e(i−1)[n]

e(i−1)[n]~

e(i)[n]

e(i)[n]~
Figure 11.19 Signal flow graph of
prediction error computation.

The difference equations in Eq. (11.95) and Eq. (11.97) express the ith-order
forward and backward prediction errors in terms of ki and the (i−1)st-order forward and
backward prediction errors. This pair of difference equations is represented by the flow
graph of Figure 11.19. Therefore, Figure 11.19 represents a pair of difference equations
that embody one iteration of the Levinson–Durbin recursion. As in the Levinson–
Durbin recursion, we start with a zeroth-order predictor for which

e(0)[n] = ẽ(0)[n] = s[n]. (11.98)

With e(0)[n] = s[n] and ẽ(0)[n] = s[n] as inputs to a first stage as depicted in Figure 11.19
with k1 as coefficient, we obtain e(1)[n] and ẽ(1)[n] as outputs. These are the required
inputs for stage 2. We can use p successive stages of the structure in Figure 11.19 to
build up a system whose output will be the desired pth-order prediction error signal
e[n] = e(p)[n]. Such a system, as depicted in Figure 11.20, is identical to the lattice
network in Figure 6.37 of Section 6.6.12 In summary, Figure 11.20 is a signal flow graph
representation of the equations

e(0)[n] = ẽ(0)[n] = s[n] (11.99a)

e(i)[n] = e(i−1)[n] − ki ẽ
(i−1)[n − 1] i = 1, 2, . . . , p (11.99b)

ẽ(i)[n] = ẽ(i−1)[n − 1] − kie
(i−1)[n] i = 1, 2, . . . , p (11.99c)

e[n] = e(p)[n], (11.99d)

where, if the coefficients ki are determined by the Levinson–Durbin recursion, the
variables e(i)[n] and ẽ(i)[n] are the forward and backward prediction errors for the ith-
order optimum predictor.

11.7.2 All-Pole Model Lattice Network

In Section 6.6.2, we showed that the lattice network of Figure 6.42 is an implementation
of the all-pole system function H(z) = 1/A(z), where A(z) is the system function of an
FIR system; i.e., H(z) is the exact inverse of A(z), and in the present context, it is the
system function of the all-pole model with G = 1. In this section, we review the all-pole
lattice structure in terms of the notation of forward and backward prediction error.

12Note that in Figure 6.37 the node variables were denoted a(i)[n] and b(i)[n] instead of e(i)[n] and
ẽ(i)[n], respectively.

924 Chapter 11 Parametric Signal Modeling

−k1

−k1

−k2

−k2

−kp

−kp

e(0)[n] e(1)[n] e(2)[n]

e(0)[n]~ e(1)[n]~ e(2)[n]~ e(p)[n]~

e(p)[n]s[n] e[n]

z–1 z–1 z–1

Figure 11.20 Signal flow graph of lattice network implementation of pth-order
prediction error computation.

z−1

e(p−1)[n] e(p−2)[n] e(0)[n] s[n]e[n] = e(p)[n]

e(p−1)[n] e(0)[n]e(p)[n]

z−1 z−1

kp

−kp

kp−1

−kp−1

k1

−k1

~ ~ e(1)[n]~ ~

Figure 11.21 All-pole lattice system.

If we replace the node variable labels a(i)[n] and b(i)[n] in Figure 6.42 with the cor-
responding e(i)[n] and ẽ(i)[n] we obtain the flow graph of Figure 11.21, which represents
the set of equations

e(p)[n] = e[n] (11.100a)

e(i−1)[n] = e(i)[n] + ki ẽ
(i−1)[n − 1] i = p, p − 1, . . . , 1 (11.100b)

ẽ(i)[n] = ẽ(i−1)[n − 1] − kie
(i−1)[n] i = p, p − 1, . . . , 1 (11.100c)

s[n] = e(0)[n] = e(0)[n]. (11.100d)

As we discussed in Section 6.6.2, any stable all-pole system can be implemented
by a lattice structure such as Figure 11.21. For such systems, the guarantee of stability
inherent in the condition |ki | < 1 is particularly important. Even though the lattice
structure requires twice the number of multiplications per output sample as the direct
form, it may be the preferred implementation when coefficients must be coarsely quan-
tized. The frequency response of the direct form is exceedingly sensitive to quantization
of the coefficients. Furthermore, we have seen that high-order direct form IIR systems
can become unstable owing to quantization of their coefficients. This is not the case for
the lattice network, as long as the condition |ki | < 1 is maintained for the quantized
k-parameters. Furthermore, the frequency response of the lattice network is relatively
insensitive to quantization of the k-parameters.

Section 11.7 Lattice Filters 925

11.7.3 Direct Computation of the k -Parameters

The structure of the flow graph in Figure 11.20 is a direct consequence of the Levinson–
Durbin recursion, and the parameters ki , i = 1, 2, . . . , p can be obtained from the
autocorrelation values rss[m], m = 0, 1, . . . , p through iterations of the algorithm of
Figure 11.17. From our discussion so far, the ki parameters have been an ancillary
consequence of computing the predictor parameters. However, Itakura and Saito (1968,
1970), showed that the ki parameters can be computed directly from the forward and
backward prediction errors in Figure 11.20. And because of the iterative structure as a
cascade of the stages in Figure 11.19, the ki parameters can be computed sequentially
from signals available from previous stages of the lattice. The direct computation of the
parameter ki is achieved with the following equation:

kP
i =

∞∑
n=−∞

e(i−1)[n]ẽ(i−1)[n − 1]
{ ∞∑

n=−∞
(e(i−1)[n])2

∞∑
n=−∞

(ẽ(i−1)[n − 1])2

}1/2
. (11.101)

Observe that Eq. (11.101) is in the form of the energy-normalized cross-correlation
between the forward and backward prediction errors at the output of the ith stage. For
this reason kP

i computed using Eq. (11.101) is called a PARCOR coefficient, or more
precisely PARtial CORrelation coefficient. Figure 11.20 has the interpretation that the
correlation in s[n] represented by the autocorrelation function rss[m] is removed step-
by-step by the lattice filter. For a more detailed discussion of the concept of partial
correlation, see Stoica and Moses (2005) or Markel and Gray (1976).

Equation (11.101) for computing kP
i is the geometric mean between a value k

f
i

that minimizes the mean-squared forward prediction error and a value kb
i that minimizes

the mean-squared backward prediction error. The derivation of this result is considered
in Problem 11.28. Note that we have shown the limits on the sums as infinite simply to
emphasize that all error samples are involved in the sum. To be more specific, all the
sums in Eq. (11.101) could start at n = 0 and end at n = M + i, since this is the
range over which the error signal output of both the forward and backward ith-order
predictors would be nonzero. This is the same assumption that was made in setting up the
autocorrelation method for finite-length sequences. Indeed, Problem 11.29 outlines a
proof that kP

i computed by Eq. (11.101) gives identically the same result as ki computed
by Eq. (11.81) or Eq. (L–D.2) in Figure 11.17. Therefore, Eq. (11.101) can be substituted
for Eq. (L–D.2) in Figure 11.17, and the resulting set of prediction coefficients will be
identical to those computed from the autocorrelation function.

To use Eq. (11.101), it is necessary to actually compute the forward and backward
prediction errors by employing the computations of Figure 11.19. In summary, the fol-
lowing steps result in computation of the PARCOR coefficients kP

i for i = 1, 2, . . . , p:

PARCOR.0 Initialize with e(0)[n] = ẽ(0)[n] = s[n] for 0 ≤ n ≤ M .

For i = 1, 2, . . . , p repeat the following steps.

926 Chapter 11 Parametric Signal Modeling

PARCOR.1 Compute e(i)[n] and ẽ(i−1)[n] using Eq. (11.99b) and Eq. (11.99c) respec-
tively for 0 ≤ n ≤ M + i. Save these two sequences as input for the next stage.

PARCOR.2 Compute kP
i using Eq. (11.101).

Another approach to computing the coefficients in Figure 11.20 was introduced
by Burg, 1975, who formulated the all-pole modeling problem in terms of the maximum
entropy principle. He proposed to use the structure of Figure 11.20, which embodies the
Levinson–Durbin algorithm, with coefficients kB

i that minimize the sum of the mean-
squared forward and backward prediction errors at the output of each stage. The result
is given by the equation

kB
i =

2
N∑

n=i

e(i−1)[n]ẽ(i−1)[n − 1]
N∑

n=i

(e(i−1)[n])2 +
N∑

n=i

(ẽ(i−1)[n − 1])2

(11.102)

The procedure for using this equation to obtain the sequence kB
i , i = 1, 2, . . . , p is the

same as the PARCOR method. In statement PARCOR.2, kP
i is simply replaced by kB

i

from Eq. (11.102). In this case, the averaging operator is the same as in the covariance
method, which means that very short segments of s[n] can be used, while maintaining
high spectral resolution.

Even though the Burg method uses a covariance-type analysis, the condition
|kB

i | < 1 holds, implying that the all-pole model implemented by the lattice filter will be
stable. (See Problem 11.30.) Just as in the case of the PARCOR method, Eq. (11.102)
can be substituted for Eq. (L–D.2) in Figure 11.17 to compute the prediction coefficients.
While the resulting coefficients will differ from those obtained from the autocorrela-
tion function or from Eq. (11.101), the resulting all-pole model will still be stable. The
derivation of Eq. (11.102) is the subject of Problem 11.30.

11.8 SUMMARY

This chapter provides an introduction to parametric signal modeling. We have em-
phasized all-pole models, but many of the concepts discussed apply to more general
techniques involving rational system functions. We have shown that the parameters of
an all-pole model can be computed by a two-step process. The first step is the compu-
tation of correlation values from a finite-length signal. The second step is solving a set
of linear equations, where the correlation values comprise the coefficients. We showed
that the solutions obtained depend on how the correlation values are computed, and
we showed that if the correlation values are true autocorrelation values, a particularly
useful algorithm, called the Levinson–Durbin algorithm, can be derived for the solu-
tion of the equations. Furthermore, the structure of the Levinson–Durbin algorithm
was shown to illuminate many useful properties of the all-pole model. The subject of
parametric signal modeling has a rich history, a voluminous literature, and abundant
applications, all of which make it a subject worthy of further advanced study.

Chapter 11 Problems 927

Problems

Basic Problems

11.1. s[n] is a finite-energy signal known for all n. φss [i, k] is defined as

φss [i, k] =
∞∑

n=−∞
s[n − i]s[n − k].

Show that φss [i, k] can be expressed as a function of |i − k|.
11.2. In general, the mean-squared prediction error is defined in Eq. (11.36) as

E =
〈⎛⎝s[n] −

p∑
k=1

aks[n − k]
⎞⎠2〉

. (P11.2-1)

(a) Expand Eq. (P11.2-1) and use the fact that 〈s[n − i]s[n − k]〉 = φss [i, k] = φss [k, i]
to show that

E = φss [0, 0] − 2
p∑

k=1

akφss [0, k] +
p∑

i=1

ai

p∑
k=1

akφss [i, k] (P11.2-2)

(b) Show that for the optimum predictor coefficients, which satisfy Eqs. (11.20), Eq. (P11.2-
2) becomes

E = φss [0, 0] −
p∑

k=1

akφss [0, k]. (P11.2-3)

11.3. The impulse response of a causal all-pole model of the form of Figure 11.1 and Eq. (11.3)
with system parameters G and {ak} satisfies the difference equation

h[n] =
p∑

k=1

akh[n − k] + Gδ[n] (P11.3-1)

(a) The autocorrelation function of the impulse response of the system is

rhh[m] =
∞∑

n=−∞
h[n]h[n + m]

By substituting Eq. (P11.3-1) into the equation for rhh[−m], and using the fact that
rhh[−m] = rhh[m] show that

p∑
k=1

akrhh[|m − k|] = rhh[m], m = 1, 2, . . . , p (P11.3-2)

(b) Using the same approach as in (a), now show that

rhh[0] −
p∑

k=1

akrhh[k] = G2. (P11.3-3)

928 Chapter 11 Parametric Signal Modeling

11.4. Consider a signal x[n] = s[n] + w[n], where s[n] satisfies the difference equation

s[n] = 0.8s[n − 1] + v[n].
v[n] is a zero-mean white-noise sequence with variance σ 2

v = 0.49 and w[n] is a zero-mean
white-noise sequence with variance σ 2

w = 1. The processes v[n] and w[n] are uncorrelated.
Determine the autocorrelation sequences φss [m] and φxx [m].

11.5. The inverse filter approach to all-pole modeling of a deterministic signal s[n] is discussed
in Section 11.1.2 and depicted in Fig. 11.2. The system function of the inverse filter is given
in Eq. (11.5).

(a) Based on this approach, determine the coefficients a1 and a2 of the best all-pole model
for s[n] = δ[n] + δ[n − 2] with p = 2.

(b) Again, based on this approach, determine the coefficients a1, a2 and a3 of the best
all-pole model for s[n] = δ[n] + δ[n − 2] with p = 3.

11.6. Suppose that you have computed the parameters G and ak , k = 1, 2, . . . , p of the all-pole
model

H(z) = G

1 −
p∑

k=1

akz
−k

.

Explain how you might use the DFT to evaluate the all-pole spectrum estimate |H(ejωk)|
at N frequencies ωk = 2πk/N for k = 0, 1, . . . , N − 1.

11.7. Consider a desired causal impulse response hd [n] that we wish to approximate by a system
having impulse response h[n] and system function

H(z) = b

1 − az−1
.

Our optimality criterion is to minimize the error function given by

E =
∞∑

n=0

(hd [n] − h[n])2.

(a) Suppose a is given, and we wish to determine the unknown parameter b which mini-
mizes E . Assume that |a| < 1. Does this result in a nonlinear set of equations? If so,
show why. If not, determine b.

(b) Suppose b is given, and we wish to determine the unknown parameter a which mini-
mizes E . Is this a nonlinear problem? If so, show why. If not, determine a.

11.8. Assume that s[n] is a finite-length (windowed) sequence that is zero outside the interval
0 ≤ n ≤ M − 1. The pth-order backward linear prediction error sequence for this signal is
defined as

ẽ[n] = s[n] −
p∑

k=1

βks[n + k]

That is, s[n] is “predicted” from the p samples that follow sample n. The mean-squared
backward prediction error is defined as

Ẽ =
∞∑

m=−∞
(ẽ[m])2 =

∞∑
m=−∞

⎛⎝s[m] −
p∑

k=1

βks[m + k]
⎞⎠2

Chapter 11 Problems 929

where the infinite limits indicate that the sum is over all nonzero values of (ẽ[m])2 as in
the autocorrelation method used in “forward prediction.”

(a) The prediction error sequence ẽ[n] is zero outside a finite interval N1 ≤ n ≤ N2.
Determine N1 and N2.

(b) Following the approach used in this chapter to derive the forward linear predictor,
derive the set of normal equations that are satisfied by the βks that minimize the
mean-squared prediction error Ẽ . Give your final answer in a concise, well-defined
form in terms of autocorrelation values.

(c) Based on the result in part (b), describe how the backward predictor coefficients {βk}
related to the forward predictor coefficients {αk}?

Advanced Problems

11.9. Consider a signal s[n] that we model as the impulse response of an all-pole system of
order p. Denote the system function of the pth-order all-pole model as H(p)(z) and the
corresponding impulse response as h(p)[n]. Denote the inverse of H(p)(z) as H

(p)
inv (z) =

1/H(p)(z). The corresponding impulse response is h
(p)
inv [n]. The inverse filter, characterized

by h
(p)
inv [n], is chosen to minimize the total squared error E(p) given by

E(p) =
∞∑

n=−∞

[
δ[n] − g(p)[n]

]2
,

where g(p)[n] is the output of the filter H
(p)
inv (z) when the input is s[n].

(a) Figure P11.9 depicts a signal flow graph of the lattice filter implementation of H
(4)
inv (z).

Determine h
(4)
inv[1], the impulse response at n = 1.

(b) Suppose we now wish to model the signal s[n] as the impulse response of a 2nd-order
all-pole filter. Draw a signal flow graph of the lattice filter implementation of H

(2)
inv (z).

(c) Determine the system function H(2)(z) of the 2nd-order all-pole filter.

z−1

s[n] g(4)[n]

z−1z−1

2/9

2/9

1/4

1/4

2/3

2/3

−1/6

−1/6

z−1

Figure P11.9

11.10. Consider an ith-order predictor with prediction error system function

A(i)(z) = 1 −
i∑

j=1

a
(i)
j

z−j =
i∏

j=1

(1 − z
(i)
j

z−1) (P11.10-1)

From the Levinson–Durbin recursion, it follows that a
(i)
i

= ki . Use this fact with

Eq. (P11.10-1) to show that if |ki | ≥ 1, it must be true that |z(i)
j

| ≥ 1 for some j . That

930 Chapter 11 Parametric Signal Modeling

is, show that the condition |ki | < 1 is a necessary condition for A(p)(z) to have all its zeros
strictly inside the unit circle.

11.11. Consider an LTI system with system function H(z) = h0 + h1z−1. The signal y[n] is the
output of this system due to an input that is white noise with zero mean and unit variance.

(a) What is the autocorrelation function ryy [m] of the output signal y[n]?
(b) The 2nd-order forward prediction error is defined as

e[n] = y[n] − a1y[n − 1] − a2y[n − 2].
Without using the Yule–Walker equations directly, find a1 and a2, such that the vari-
ance of e[n] is minimized.

(c) The backward prediction filter for y[n] is defined as
ẽ[n] = y[n] − b1y[n + 1] − b2y[n + 2].

Find b1 and b2 such that the variance of ẽ[n] is minimized. Compare these coefficients
to those determined in part (b).

11.12. (a) The autocorrelation function, ryy [m] of a zero-mean wide-sense stationary random
process y[n] is given. In terms of ryy [m], write the Yule–Walker equations that result
from modeling the random process as the response to a white noise sequence of a
3rd-order all-pole model with system function

H(z) = A

1 − az−1 − bz−3
.

(b) A random process v[n] is the output of the system shown in Figure P11.12-1, where
x[n] and z[n] are independent, unit variance, zero mean, white noise signals, and
h[n] = δ[n − 1] + 1

2 δ[n − 2]. Find rvv[m], the autocorrelation of v[n].
x [n]

z[n]

v[n]
h[n] +

Figure P11.12-1

(c) Random process y1[n] is the output of the system shown in Figure P11.12-2, where
x[n] and z[n] are independent, unit variance, zero-mean, white noise signals, and

H1(z) = 1

1 − az−1 − bz−3
.

The same a and b as found in part (a) are used for all-pole modeling of y1[n]. The
inverse modeling error, w1[n], is the output of the system shown in Figure P11.12-3.
Is w1[n] white? Is w1[n] zero mean? Explain.

x [n]

z[n]

H1(z)
y1[n]

+

Figure P11.12-2

1 − az−1 − bz−3
w1[n]y1[n]

Figure P11.12-3

(d) What is the variance of w1[n]?

Chapter 11 Problems 931

11.13. We have observed the first six samples of a causal signal s[n] given by s[0] = 4, s[1] = 8,
s[2] = 4, s[3] = 2, s[4] = 1, and s[5] = 0.5. For the first parts of this problem, we will
model the signal using a stable, causal, minimum-phase, two-pole system having impulse
response ŝ[n] and system function

H(z) = G

1 − a1z−1 − a2z−2
.

The approach is to minimize the modeling error E given by

E = min
a1,a2,A

5∑
n=0

(g[n] − Gδ[n])2 ,

where g[n] is the response of the inverse system to s[n], and the inverse system has system
function

A(z) = 1 − a1z−1 − a2z−2.

(a) Write g[n] − Gδ[n] for 0 ≤ n ≤ 5.
(b) Based on your work in part (a), write the linear equations for the desired parameters

a1, a2, and G.
(c) What is G?
(d) For this s[n], without solving the linear equations in part (b), discuss whether you

expect that the modeling error E will be zero.

For the rest of this problem, we will model the signal using a different stable, causal,
minimum-phase system having impulse response ŝ2[n] and system function

H2(z) = b0 + b1z−1

1 − az−1
.

The modeling error to be minimized in this case is E2 given by

E2 = min
a,b0,b1

5∑
n=0

(g[n] − r[n])2 ,

where g[n] is the response of the inverse system to s[n], and the inverse system now has
system function

A(z) = 1 − az−1.

Furthermore, r[n] is the impulse response of a system with system function

B(z) = b0 + b1z−1.

(e) For this model, write g[n] − r[n] for 0 ≤ n ≤ 5.
(f) Calculate the parameter values a, b0, and b1 that minimize the modeling error.
(g) Calculate the modeling error E2 in part (f).

11.14. In Example 11.1, we considered the sequence sd [n] = αnu[n], which is the impulse re-
sponse of a 1st-order all-pole system having system function

H(z) = 1

1 − αz−1
.

In this problem we consider the estimation of the parameters of an all-pole model for the
signal sd [n] known only over the interval 0 ≤ n ≤ M .

932 Chapter 11 Parametric Signal Modeling

(a) First, consider the estimation of a 1st-order model by the autocorrelation method.
To begin, show that the autocorrelation function of the finite-length sequence s[n] =
sd [n](u[n] − u[n − M − 1]) = αn(u[n] − u[n − M − 1]) is

rss [m] = α|m| 1 − α2(M−|m|+1)

1 − α2
. (P11.14-1)

(b) Use the autocorrelation function determined in (a) in Eq. (11.34), and solve for the
coefficient a1 of the 1st-order predictor.

(c) You should find that the result obtained in (b) is not the exact value (i.e., a1 �= α)
as obtained in Example 11.1, when the autocorrelation function was computed using
the infinite sequence. Show, however, that a1 → α for M → ∞.

(d) Use the results of (a) and (b) in Eq. (11.38) to determine the minimum mean-squared
prediction error for this example. Show that for M → ∞ the error approaches the
minimum mean-squared error found in Example 11.1 for the exact autocorrelation
function.

(e) Now, consider the covariance method for estimating the correlation function. Show
that for p = 1, φss [i, k] in Eq. (11.49) is given by

φss [i, k] = α2−i−k 1 − α2M

1 − α2
0 ≤ (i, k) ≤ 1. (P11.14-2)

(f) Use the result of (e) in Eq. (11.20) to solve for the coefficient of the optimum 1st-order
predictor. Compare your result to the result in (b) and to the result in Example 11.1.

(g) Use the results of (e) and (f) in Eq. (11.37) to find the minimum mean-squared predic-
tion error. Compare your result to the result in (d) and to the result in Example 11.1.

11.15. Consider the signal

s[n] = 3
(

1
2

)n

u[n] + 4
(

−2
3

)n

u[n] .

(a) We want to use a causal, 2nd -order all-pole model, i.e., a model of the form

H(z) = A

1 − a1 z−1 − a2 z−2
,

to optimally represent the signal s[n], in the least-square error sense. Find a1, a2, and
A.

(b) Now, suppose we want to use a causal, 3rd -order all-pole model, i.e., a model of the
form

H(z) = B

1 − b1 z−1 − b2 z−2 − b3 z−3
,

to optimally represent the signal s[n], in the least-square error sense. Find, b1, b2, b3,
and B.

11.16. Consider the signal

s[n] = 2
(

1
3

)n

u[n] + 3
(

−1
2

)n

u[n]. (P11.16-1)

We wish to model this signal using a 2nd-order (p = 2) all-pole model or, equivalently,
using 2nd-order linear prediction.

For this problem, since we are given an analytical expression for s[n] and s[n] is the impulse
response of an all-pole filter, we can obtain the linear prediction coefficients directly from

Chapter 11 Problems 933

the z-transform of s[n]. (You are asked to do this in part (a).) In practical situations, we
are typically given data, i.e., a set of signal values, and not an analytical expression. In this
case, even when the signal to be modeled is the impulse response of an all-pole filter, we
need to perform some computation on the data, using methods such as those discussed in
Section 11.3, to determine the linear prediction coefficients.

There are also situations in which an analytical expression is available for the signal, but
the signal is not the impulse response of an all-pole filter, and we would like to model it
as such. In this case, we again need to carry out computations such as those discussed in
Section 11.3.

(a) For s[n] as given in Eq. (P11.16-1), determine the linear prediction coefficients a1, a2
directly from the z-transform of s[n].

(b) Write the normal equations for p = 2 to obtain equations for a1, a2 in terms of rss [m].
(c) Determine the values of rss [0], rss [1], and rss [2] for the signal s[n] given in

Eq. (P11.16-1).
(d) Solve the system of equations from part (a) using the values you found in part (b) to

obtain values for the aks.
(e) Are the values of ak from part (c) what you would expect for this signal? Justify your

answer clearly.
(f) Suppose you wish to model the signal now with p = 3. Write the normal equations

for this case.
(g) Find the value of rss [3].
(h) Solve for the values of ak when p = 3.
(i) Are the values of ak found in part (h) what you would expect given s[n]? Justify your

answer clearly.
(j) Would the values of a1, a2 you found in (h) change if we model the signal with p = 4?

11.17. x[n] and y[n] are sample sequences of jointly wide-sense stationary, zero-mean random
processes. The following information is known about the autocorrelation function φxx [m]
and cross correlation φyx [m]:

φxx [m] =
{

0 m odd
1

2|m| m even

φyx [−1] = 2 φyx [0] = 3 φyx [1] = 8 φyx [2] = −3

φyx [3] = 2 φyx [4] = −0.75

(a) The linear estimate of y given x is denoted ŷx . It is designed to minimize

E = E
(

| y[n] − ŷx [n] |2
)

, (P11.17-1)

where the ŷx [n] is formed by processingx[n]with an FIR filter whose impulse response
h[n] is of length 3 and is given by

h[n] = h0δ[n] + h1δ[n − 1] + h2δ[n − 2].
Determine h0, h1, and h2 to minimize E .

(b) In this part, ŷx , the linear estimate of y given x, is again designed to minimize E in
Eq. (P11.17-1), but with different assumptions on the structure of the linear filter.
Here the estimate is formed by processing x[n] with an FIR filter whose impulse
response g[n] is of length 2 and is given by

g[n] = g1δ[n − 1] + g2δ[n − 2].
Determine the g1 and g2 to minimize E .

934 Chapter 11 Parametric Signal Modeling

(c) The signal, x[n] can be modeled as the output from a two-pole filter H(z) whose input
is w[n], a wide-sense stationary, zero-mean, unit-variance white-noise signal.

H(z) = 1

1 − a1z−1 − a2z−2

Determine a1 and a2 based on the least-squares inverse model in Section 11.1.2.
(d) We want to implement the system shown in Figure P11.17 where the coefficients ai

are from all-pole modeling in part (c) and the coefficients hi are the values of the
impulse response of the linear estimator in part (a). Draw an implementation that
minimizes the total cost of delays, where the cost of each individual delay is weighted
linearly by its clock rate.

w[n]

n

ˆ
2

x[n] yx[n] ŷx[2n]

1 − ∑ akz−k
2

k = 1

1

0 1 2

h0
h1 h2

Figure P11.17

(e) Let Ea be the cost in part (a) and let Eb be the cost in part (b), where each E is defined
as in Eq. (P11.17-1). Is Ea larger than, equal to, or smaller than Eb, or is there not
enough information to compare them?

(f) Calculate Ea and Eb when φyy [0] = 88. (Hint: The optimum FIR filters calculated in
parts (a) and (b) are such that E [ŷx [n](y[n] − ŷx [n])] = 0.)

11.18. A discrete-time communication channel with impulse response h[n] is to be compensated
for with an LTI system with impulse response hc[n] as indicated in Figure P11.18. The
channel h[n] is known to be a one-sample delay, i.e.,

h[n] = δ[n − 1].
The compensator hc[n] is an N -point causal FIR filter, i.e.,

Hc(z) =
N−1∑
k=0

akz
−k.

The compensator hc[n] is designed to invert (or compensate for) the channel. Specifically,
hc[n] is designed so that with s[n] = δ[n], ŝ[n] is as “close” as possible to an impulse; i.e.,
hc[n] is designed so that the error

E =
∞∑

n=−∞
|ŝ[n] − δ[n]|2

is minimized. Find the optimal compensator of length N , i.e., determine a0, a1, . . . , aN−1
to minimize E .

s[n] s[n]h[n] hc[n] ˆ

channel compensator

Figure P11.18

Chapter 11 Problems 935

11.19. A speech signal was sampled with a sampling rate of 8 kHz. A 300-sample segment was se-
lected from a vowel sound and multiplied by a Hamming window as shown in Figure P11.19.
From this signal a set of linear predictors

P (i)(z) =
i∑

k=1

a
(i)
k

z−k,

with orders ranging from i = 1 to i = 11 was computed using the autocorrelation method.
This set of predictors is shown in Table 11.1 below in a form suggestive of the Levinson–
Durbin recursion.

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4
0 50 100 150 200 250 300

Sample index n

Windowed Segment of Vowel Sound

Figure P11.19

(a) Determine the z-transform A(4)(z) of the 4th-order prediction error filter. Draw and
label the flow graph of the direct form implementation of this system.

(b) Determine the set of k-parameters {k1, k2, k3, k4} for the 4th-order prediction error
lattice filter. Draw and label the flow graph of the lattice implementation of this
system.

(c) The minimum mean-squared prediction error for the 2nd-order predictor is E(2) =
0.5803. What is the minimum mean-squared prediction error for the 3rd-order predic-
tor? What is the total energy of the signal s[n]? What is the value of the autocorrelation
function rss [1]?

TABLE 11.1 PREDICTION COEFFICIENTS FOR A SET OF LINEAR PREDICTORS

i a
(i)
1 a

(i)
2 a

(i)
3 a

(i)
4 a

(i)
5 a

(i)
6 a

(i)
7 a

(i)
8 a

(i)
9 a

(i)
10 a

(i)
11

1 0.8328
2 0.7459 0.1044
3 0.7273 −0.0289 0.1786
4 0.8047 −0.0414 0.4940 −0.4337
5 0.7623 0.0069 0.4899 −0.3550 −0.0978
6 0.6889 −0.2595 0.8576 −0.3498 0.4743 −0.7505
7 0.6839 −0.2563 0.8553 −0.3440 0.4726 −0.7459 −0.0067
8 0.6834 −0.3095 0.8890 −0.3685 0.5336 −0.7642 0.0421 −0.0713
9 0.7234 −0.3331 1.3173 −0.6676 0.7402 −1.2624 0.2155 −0.4544 0.5605

10 0.6493 −0.2730 1.2888 −0.5007 0.6423 −1.1741 0.0413 −0.4103 0.4648 0.1323
11 0.6444 −0.2902 1.3040 −0.5022 0.6859 −1.1980 0.0599 −0.4582 0.4749 0.1081 0.0371

936 Chapter 11 Parametric Signal Modeling

(d) The minimum mean-squared prediction errors for these predictors form a sequence
{E(0), E(1), E(2), . . . , E(11)}. It can be shown that this sequence decreases abruptly
in going from i = 0 to i = 1 and then decreases slowly for several orders and then
makes a sharp decrease. At what order i would you expect this to occur?

(e) Sketch carefully the prediction error sequence e(11)[n] for the given input s[n] in
Figure P11.19. Show as much detail as possible.

(f) The system function of the 11th-order all-pole model is

H(z) = G

A(11)(z)
= G

1 −
11∑

k=1

a
(11)
k

z−k

= G

11∏
i=1

(1 − ziz
−1)

.

The following are five of the roots of the 11th-order prediction error filter A(11)(z).

i |zi | � zi (rad)

1 0.2567 2.0677
2 0.9681 1.4402
3 0.9850 0.2750
4 0.8647 2.0036
5 0.9590 2.4162

State briefly in words where the other six zeros of A(11)(z) are located. Be as precise
as possible.

(g) Use information given in the table and in part (c) of this problem to determine the
gain parameter G for the 11th-order all-pole model.

(h) Carefully sketch and label a plot of the frequency response of the 11th-order all-pole
model filter for analog frequencies 0 ≤ F ≤ 4 kHz.

11.20. Spectrum analysis is often applied to signals comprised of sinusoids. Sinusoidal signals
are particularly interesting, because they share properties with both deterministic and
random signals. On the one hand, we can describe them in terms of a simple equation. On
the other hand, they have infinite energy, so we often characterize them in terms of their
average power, just as with random signals. This problem explores some theoretical issues
in modeling sinusoidal signals from the point of view of random signals.

We can consider sinusoidal signals as stationary random signals by assuming that
the signal model is s[n] = A cos(ω0n + θ) for −∞ < n < ∞, where both A and θ can
be considered to be random variables. In this model, the signal is considered to be an
ensemble of sinusoids described by underlying probability laws for A and θ . For simplicity,
assume that A is a constant, and θ is a random variable that is uniformly distributed over
0 ≤ θ < 2π .

(a) Show that the autocorrelation function for such a signal is

rss [m] = E{s[n + m]s[n]} = A2

2
cos(ω0m). (P11.20-1)

(b) Using Eq. (11.34), write the set of equations that is satisfied by the coefficients of a
2nd-order linear predictor for this signal.

(c) Solve the equations in (b) for the optimum predictor coefficients. Your answer should
be a function of ω0.

(d) Factor the polynomial A(z) = 1−a1z−1 −a2z−2 describing the prediction error filter.
(e) Use Eq. (11.37) to determine an expression for the minimum mean-squared pre-

diction error. Your answer should confirm why random sinusoidal signals are called
“predictable” and/or “deterministic.”

Chapter 11 Problems 937

11.21. Using Eqs. (11.84a) and (11.84b) from the Levinson–Durbin recursion, derive the relation
between the ith and i − 1st prediction error filters given in Eq. (11.89).

11.22. In this problem, we consider the construction of lattice filters to implement the inverse
filter for the signal

s[n] = 2
(

1
3

)n

u[n] + 3
(

−1
2

)n

u[n].

(a) Find the values of the k-parameters k1 and k2 for the 2nd-order case (i.e., p = 2).
(b) Draw the signal flow graph of a lattice filter implementation of the inverse filter, i.e.,

the filter that outputs y[n] = Aδ[n] (a scaled impulse) when the input x[n] = s[n].
(c) Verify that the signal flow graph you drew in part (b) has the correct impulse response

by showing that the z-transform of this inverse filter is indeed proportional to the
inverse of S(z).

(d) Draw the signal flow graph for a lattice filter that implements an all-pole system such
that when the input is x[n] = δ[n], the output is the signal s[n] given above.

(e) Derive the system function of the signal flow graph you drew in part (d) and demon-
strate that its impulse response h[n] satisfies h[n] = s[n].

11.23. Consider the signal

s[n] = α

(
2
3

)n

u[n] + β

(
1
4

)n

u[n]
where α and β are constants. We wish to linearly predict s[n] from its past p values using
the relationship

ŝ[n] =
p∑

k=1

aks[n − k]

where the coefficients ak are constants. The coefficients ak are chosen to minimize the
prediction error

E =
∞∑

n=−∞
(s[n] − ŝ[n])2.

(a) With rss [m] denoting the autocorrelation function of s[n], write the equations for the
case p = 2 the solution to which will result in a1, a2.

(b) Determine a pair of values for α and β such that when p = 2, the solution to the
normal equations is a1 = 11

12 and a2 = − 1
6 . Is your answer unique? Explain.

(c) If α = 8 and β = −3, determine k-parameter k3, resulting from using the Levinson
recursion to solve the normal equations for p = 3. Is that different from k3 when
solving for p = 4?

11.24. Consider the following Yule–Walker equations: �p ap = γ p , where:

ap =

⎡⎢⎢⎣
a
p

1
...

a
p
p

⎤⎥⎥⎦ γ p =
⎡⎢⎣ φ[1]

...

φ[p]

⎤⎥⎦
and

�p =
⎡⎢⎣ φ[0] · · · φ[p − 1]

...
. . .

...

φ[p − 1] · · · φ[0]

⎤⎥⎦ (a Toeplitz matrix)

938 Chapter 11 Parametric Signal Modeling

The Levinson–Durbin algorithm provides the following recursive solution for the normal
equation �p+1 ap+1 = γ p+1:

a
p+1
p+1 =

φ[p + 1] −
(
γ b

p

)T
ap

φ[0] −
(
γ p

)T
ap

a
p+1
m = a

p
m − a

p+1
p+1 · a

p

p−m+1 m = 1, . . . , p

where γ b
p is the backward version of γ p : γ b

p = [φ[p] . . . φ[1]]T , and a1
1 = φ[1]

φ[0] . Note that
for vectors, the model order is shown in the subscript; but for scalars, the model order is
shown in the superscript.

Now consider the following normal equation: �p bp = cp , where

bp =

⎡⎢⎢⎣
b
p

1
...

b
p
p

⎤⎥⎥⎦ cp =
⎡⎢⎣ c[1]

...

c[p]

⎤⎥⎦
Show that the recursive solution for �p+1 bp+1 = cp+1 is:

b
p+1
p+1 =

c[p + 1] −
(
γ b

p

)T
bp

φ[0] −
(
γ p

)T
ap

b
p+1
m = b

p
m − b

p+1
p+1 · a

p

p−m+1 m = 1, . . . , p

where b1
1 = c[1]

φ[0] .

(Note: You may find it helpful to note that ab
p = �−1

p γ b
p .)

11.25. Consider a colored wide-sense stationary random signal s[n] that we desire to whiten using
the system in Figure P11.25-1: In designing the optimal whitening filter for a given order p,
we pick the coefficient a

(p)
k

, k = 1, ..., p that satisfy the autocorrelation normal equations
given by Eq. (11.34), where rss [m] is the autocorrelation of s[n].

s[n] g[n]
1 − ∑ akz−k

k = 1
p

Figure P11.25-1

It is known that the optimal 2nd-order whitening filter for s[n] is
H2(z) = 1 + 1

4 z−1 − 1
8z−2, (i.e., a

(2)
1 = − 1

4 , a
(2)
2 = 1

8), which we implement in the 2nd-

order lattice structure in Figure P11.25-2. We would also like to use a 4th-order system,
with transfer function

H4(z) = 1 −
4∑

k=1

a
(4)
k

z−k.

We implement this system with the lattice structure in Figure P11.25-3. Determine which,
if any of H4(z), k1, k2, k3, k4 can be exactly determined from the information given above.
Explain why you cannot determine the remaining, if any, parameters.

Chapter 11 Problems 939

s[n] g[n]

z−1z−1

−1/8

−1/8

2/7

2/7

Figure P11.25-2 Lattice structure for 2nd-order system

z−1

s[n] g[n]

z−1z−1

−k4

−k4

−k3

−k3

−k2

−k2

−k1

−k1

z−1

Figure P11.25-3 Lattice structure for 4th-order system

Extension Problems

11.26. Consider a stable all-pole model with system function

H(z) = G

1 −
p∑

m=1

amz−m

= G

A(z)
.

Assume that g is positive.
In this problem, we will show that a set of (p+1) samples of the magnitude-squared

of H(z) on the unit circle; i.e.,

C[k] = |H(ejπk/p)|2 k = 0, 1, . . . , p,

is sufficient to represent the system. Specifically, given C[k], k = 0, 1, . . . , p, show that the
parameters G and am, m = 0, 1, . . . , p can be determined.

(a) Consider the z-transform

Q(z) = 1

H(z)H(z−1)
= A(z)A(z−1)

G2
,

which corresponds to a sequence q[n]. Determine the relationship between q[n] and
hA[n], the impulse response of the prediction error filter whose system function is
A(z). Over what range of n will q[n] be nonzero?

(b) Design a procedure based on the DFT for determining q[n] from the given magnitude-
squared samples C[k].

(c) Assuming that the sequence q[n] as determined in (b) is known, state a procedure
for determining A(z) and G.

940 Chapter 11 Parametric Signal Modeling

11.27. The general IIR lattice system in Figure 11.21 is restricted to all-pole systems. However,
both poles and zeros can be implemented by the system of Figure P11.27-1 (Gray and
Markel, 1973, 1975). Each of the sections in Figure P11.27-1 is described by the flow graph
of Figure P11.27-2. In other words, Figure 11.21 is embedded in Figure P11.27-1 with the
output formed as a linear combination of the backward prediction error sequences.

x[n] = e(P)[n] e(P − 1)[n] e(P − 2)[n] e(1)[n] e(0)[n]

e(P − 1)[n] e(P − 2)[n] e(1)[n] e(0)[n]

cP − 1cP cP − 2 c1 c0

y[n]

Section
1

Section
P − 1

Section
P ∼e(P)[n]∼ ∼ ∼ ∼

Figure P11.27-1

z−1

e(i−1)[n]e(i)[n]

e(i−1)[n]

ki

−ki

e(i)[n]~ ~ Figure P11.27-2

(a) Show that the system function between the input X(z) = E(p)(z) and Ẽ(i)(z) is

H̃ (i)(z) = Ẽ(i)(z)

X(z)
= z−1A(i)(z−1)

A(p)(z)
. (P11.27-1)

(b) Show that H̃ (p)(z) is an all-pass system. (This result is not needed for the rest of the
problem.)

(c) The overall system function from X(z) to Y (z) is

H(z) = Y (z)

X(z)
=

p∑
i=0

ciz
−1A(i)(z−1)

A(p)(z)
= Q(z)

A(p)(z)
. (P11.27-2)

Show that the numerator Q(z) in Eq. (P11.27-2) is a pth-order polynomial of the form

Q(z) =
p∑

m=0

qmz−m (P11.27-3)

where the coefficients cm in Figure P11.27 are given by the equation

cm = qm +
p∑

i=m+1

cia
(i)
i−m

m = p, p − 1, . . . , 1, 0. (P11.27-4)

(d) Give a procedure for computing all the parameters needed to implement a system
function such as Eq. (P11.27-2) using the lattice structure of Figure P11.27.

Chapter 11 Problems 941

(e) Using the procedure described in (c), draw the complete flow graph of the lattice
implementation of the system

H(z) = 1 + 3z−1 + 3z−2 + z−3

1 − 0.9z−1 + 0.64z−2 − 0.576z−3
. (P11.27-5)

11.28. In Section 11.7.3, the k-parameters are computed by Eqs. (11.101). Using the relations
e(i)[n] = e(i−1)[n] − ki ẽ

(i−1)[n − 1] and ẽ(i)[n] = ẽ(i−1)[n − 1] − kie
(i−1)[n], show that

kP
i =
√

k
f
i

kb
i
,

where k
f
i

is the value of ki that minimizes the mean-squared forward prediction error

E(i) =
∞∑

n=−∞
(e(i)[n])2,

and kb
i

is the value of ki that minimizes the mean-squared backward prediction error

Ẽ(i) =
∞∑

n=−∞
(ẽ(i)[n])2.

11.29. Substitute Eq. (11.88) and Eq. (11.93) into Eq. (11.101) to show that

kP
i =

∞∑
n=−∞

e(i−1)[n]ẽ(i−1)[n − 1]
{ ∞∑

n=−∞
(e(i−1)[n])2

∞∑
n=−∞

(ẽ(i−1)[n − 1])2

}1/2

=
rss [i] −

i−1∑
j=1

a
(i−1)
j

rss [i − j]

E(i−1)
= ki .

11.30. As discussed in Section 11.7.3, Burg (1975) proposed computing the k parameters so as
to minimize the sum of the forward and backward prediction errors at the ith stage of the
lattice filter; i.e.,

B(i) =
M∑

n=i

[
(e(i)[n])2 + (ẽ(i)[n])2

]
(P11.30-1)

where the sum is over the fixed interval i ≤ n ≤ M .
(a) Substitute the lattice filter signals e(i)[n] = e(i−1)[n] − ki ẽ

(i−1)[n − 1] and ẽ(i)[n] =
ẽ(i−1)[n−1]−kie

(i−1)[n] into (P11.30-1) and show that the value of ki that minimizes
B(i) is

kB
i =

2
M∑

n=i

e(i−1)[n]ẽ(i−1)[n − 1]⎧⎨⎩
M∑

n=i

(e(i−1)[n])2 +
M∑

n=i

(ẽ(i−1)[n − 1])2

⎫⎬⎭
. (P11.30-2)

(b) Prove that −1 < kB
i

< 1.

Hint: Consider the expression
M∑

n=i

(x[n] ± y[n])2 > 0 where x[n] and y[n] are two

distinct sequences.
(c) Given a set of Burg coefficients kB

i
, i = 1, 2, . . . , p, how would you obtain the coeffi-

cients of the corresponding prediction error filter A(p)(z)?

12

Discrete Hilbert

Transforms

12.0 INTRODUCTION

In general, the specification of the Fourier transform of a sequence requires complete
knowledge of both the real and imaginary parts or of the magnitude and phase at
all frequencies in the range −π < ω ≤ π . However, we have seen that under cer-
tain conditions, there are constraints on the Fourier transform. For example, in Sec-
tion 2.8, we saw that if x[n] is real, then its Fourier transform is conjugate symmetric,
i.e., X(ejω) = X∗(e−jω). From this, it follows that for real sequences, specification of
X(ejω) for 0 ≤ ω ≤ π also specifies it for −π ≤ ω ≤ 0. Similarly, we saw in Section 5.4
that under the constraint of minimum phase, the Fourier transform magnitude and
phase are not independent; i.e., specification of magnitude determines the phase and
specification of phase determines the magnitude to within a scale factor. In Section 8.5,
we saw that for sequences of finite length N , specification of X(ejω) at N equally spaced
frequencies determines X(ejω) at all frequencies.

In this chapter, we will see that the constraint of causality of a sequence implies
unique relationships between the real and imaginary parts of the Fourier transform.
Relationships of this type between the real and imaginary parts of complex functions
arise in many fields besides signal processing, and they are commonly known as Hilbert
transform relationships. In addition to developing these relationships for the Fourier
transform of causal sequences, we will develop related results for the DFT and for
sequences with one-sided Fourier transforms. Also, in Section 12.3 we will indicate how
the relationship between magnitude and phase for minimum-phase sequences can be
interpreted in terms of the Hilbert transform.

942

Section 12.0 Introduction 943

Although we will take an intuitive approach in this chapter (see Gold, Oppenheim
and Rader, 1970) it is important to be aware that the Hilbert transform relationships fol-
low formally from the properties of analytic functions. (See Problem 12.21.) Specifically,
the complex functions that arise in the mathematical representation of discrete-time sig-
nals and systems are generally very well-behaved functions. With few exceptions, the
z-transforms that have concerned us have had well-defined regions in which the power
series is absolutely convergent. Since a power series represents an analytic function
within its ROC, it follows that z-transforms are analytic functions inside their ROCs.
By the definition of an analytic function, this means that the z-transform has a well-
defined derivative at every point inside the ROC. Furthermore, for analytic functions
the z-transform and all its derivatives are continuous functions within the ROC.

The properties of analytic functions imply some rather powerful constraints on
the behavior of the z-transform within its ROC. Since the Fourier transform is the z-
transform evaluated on the unit circle, these constraints also restrict the behavior of
the Fourier transform. One such constraint is that the real and imaginary parts sat-
isfy the Cauchy–Riemann conditions, which relate the partial derivatives of the real
and imaginary parts of an analytic function. (See, for example, Churchill and Brown,
1990.) Another constraint is the Cauchy integral theorem, through which the value of
a complex function is specified everywhere inside a region of analyticity in terms of the
values of the function on the boundary of the region. On the basis of these relations
for analytic functions, it is possible, under certain conditions, to derive explicit integral
relationships between the real and imaginary parts of a z-transform on a closed contour
within the ROC. In the mathematics literature, these relations are often referred to
as Poisson’s formulas. In the context of system theory, they are known as the Hilbert
transform relations.

Rather than following the mathematical approach just discussed, we will develop
the Hilbert transform relations by exploiting the fact that the real and imaginary parts
of the Fourier transform of a causal sequence are the transforms of the even and odd
components, respectively, of the sequence (properties 5 and 6, Table 2.1). As we will
show, a causal sequence is completely specified by its even part, implying that the Fourier
transform of the original sequence is completely specified by its real part. In addition
to applying this argument to specifying the Fourier transform of a particular causal
sequence in terms of its real part, we can also apply it, under certain conditions, to
specify the Fourier transform of a sequence in terms of its magnitude.

The notion of an analytic signal is an important concept in continuous-time signal
processing. An analytic signal is a complex time function (which is analytic) having a
Fourier transform that vanishes for negative frequencies. A complex sequence cannot
be considered in any formal sense to be analytic, since it is a function of an integer
variable. However, in a style similar to that described in the previous paragraph, it is
possible to relate the real and imaginary parts of a complex sequence whose spectrum is
zero on the unit circle for −π < ω < 0. A similar approach can also be taken in relating
the real and imaginary parts of the DFT for a periodic or, equivalently, a finite-length
sequence. In this case, the “causality” condition is that the periodic sequence be zero in
the second half of each period.

944 Chapter 12 Discrete Hilbert Transforms

Thus, in this chapter, a notion of causality will be applied to relate the even and odd
components of a function or, equivalently, the real and imaginary parts of its transform.
We will apply this approach in four situations. First, we relate the real and imaginary
parts of the Fourier transform X(ejω) of a sequence x[n] that is zero for n < 0. In the
second situation, we obtain a relationship between the real and imaginary parts of the
DFT for periodic sequences or, equivalently, for a finite-length sequence considered to
be of length N , but with the last (N/2) − 1 points restricted to zero. In the third case,
we relate the real and imaginary parts of the logarithm of the Fourier transform under
the condition that the inverse transform of the logarithm of the transform is zero for
n < 0. Relating the real and imaginary parts of the logarithm of the Fourier transform
corresponds to relating the log magnitude and phase of X(ejω). Finally, we relate the
real and imaginary parts of a complex sequence whose Fourier transform, considered
as a periodic function of ω, is zero in the second half of each period.

12.1 REAL- AND IMAGINARY-PART SUFFICIENCY OF THE
FOURIER TRANSFORM FOR CAUSAL SEQUENCES

Any sequence can be expressed as the sum of an even sequence and an odd sequence.
Specifically, with xe[n] and xo[n] denoting the even and odd parts, respectively, of x[n],1
we have

x[n] = xe[n] + xo[n], (12.1)

where

xe[n] = x[n] + x[−n]
2

(12.2)

and

xo[n] = x[n] − x[−n]
2

. (12.3)

Equations (12.1) to (12.3) apply to an arbitrary sequence, whether or not it is causal
and whether or not it is real. However, if x[n] is causal, i.e., if x[n] = 0, n < 0, then it
is possible to recover x[n] from xe[n] or to recover x[n] for n �= 0 from xo[n]. Consider,
for example, the causal sequence x[n] and its even and odd components, as shown in
Figure 12.1. Because x[n] is causal, x[n] = 0 for n < 0 and x[−n] = 0 for n > 0.
Therefore, the nonzero portions of x[n] and x[−n] do not overlap except at n = 0. For
this reason, it follows from Eqs. (12.2) and (12.3) that

x[n] = 2xe[n]u[n] − xe[0]δ[n] (12.4)

and

x[n] = 2xo[n]u[n] + x[0]δ[n]. (12.5)

The validity of these relationships is easily seen in Figure 12.1. Note that x[n] is com-
pletely determined by xe[n]. On the other hand, xo[0] = 0, so we can recover x[n] from
xo[n] only for n �= 0.

1If x[n] is real, then xe[n] and xo[n] in Eqs. (12.2) and (12.3) are the even and odd parts, respectively,
of x[n] as considered in Chapter 2. If x[n] is complex, for the purposes of this discussion we still define xe[n]
and xo[n] as in Eqs. (12.2) and (12.3), which do not correspond to the conjugate-symmetric and conjugate-
antisymmetric parts of a complex sequence as considered in Chapter 2.

Section 12.1 Real- and Imaginary-Part Sufficiency of the Fourier Transform 945

0 n

0 n

0 n

x [n]

x [–n]

xe[k]

0 n

xo[k]

Figure 12.1 Even and odd parts of a real causal sequence.

Now, if x[n] is also stable, i.e., absolutely summable, then its Fourier transform
exists. We denote the Fourier transform of x[n] as

X(ejω) = XR(ejω) + jXI (e
jω), (12.6)

where XR(ejω) is the real part and XI (e
jω) is the imaginary part of X(ejω). Recall that

if x[n] is a real sequence, then XR(ejω) is the Fourier transform of xe[n] and jXI (e
jω)

is the Fourier transform of xo[n]. Therefore, for a causal, stable, real sequence, XR(ejω)

completely determines X(ejω), since, if we are given XR(ejω), we can find X(ejω) by
the following process:

1. Find xe[n] as the inverse Fourier transform of XR(ejω).

2. Find x[n] using Eq. (12.4).

3. Find X(ejω) as the Fourier transform of x[n].

946 Chapter 12 Discrete Hilbert Transforms

This also implies, of course, that XI (e
jω) can be determined from XR(ejω). In

Example 12.1, we illustrate how this procedure can be applied to obtain X(ejω) and
XI (e

jω) from XR(ejω).

Example 12.1 Finite-Length Sequence

Consider a real, causal sequence x[n] for which XR(ejω), the real part of the DTFT, is

XR(ejω) = 1 + cos 2ω. (12.7)

We would like to determine the original sequence x[n], its Fourier transform X(ejω),
and the imaginary part of the Fourier transform, XI (ejω). As a first step, we rewrite
Eq. (12.7) expressing the cosine as a sum of complex exponentials:

XR(ejω) = 1 + 1
2
e−j2ω + 1

2
ej2ω. (12.8)

We know that XR(ejω) is the Fourier transform of xe[n], the even part of x[n] as
defined in Eq. (12.2). Comparing Eq. (12.8) with the definition of the Fourier transform,
Eq. (2.131), we can match terms to obtain

xe[n] = δ[n] + 1
2
δ[n − 2] + 1

2
δ[n + 2].

Now that we have obtained the even part, we can use the relation in Eq. (12.4) to
obtain

x[n] = δ[n] + δ[n − 2]. (12.9)

From x[n], we get

X(ejω) = 1 + e−j2ω

= 1 + cos 2ω − j sin 2ω. (12.10)

From Eq. (12.10), we can both confirm that XR(ejω) is as specified in Eq. (12.7) and
also obtain

XI (ejω) = − sin 2ω. (12.11)

As an alternative path to obtaining XI (ejω), we can first use Eq. (12.3) to get xo[n]
from x[n]. Substituting Eq. (12.9) into Eq. (12.3) then yields

xo[n] = 1
2
δ[n − 2] − 1

2
δ[n + 2].

The Fourier transform of xo[n] is jXI (ejω), so we find

jXI (ejω) = 1
2
e−j2ω − 1

2
ej2ω

= −j sin 2ω,

so that

XI (ejω) = − sin 2ω,

which is consistent with Eq. (12.11).

Section 12.1 Real- and Imaginary-Part Sufficiency of the Fourier Transform 947

Example 12.2 Exponential Sequence

Let

XR(ejω) = 1 − α cos ω

1 − 2α cos ω + α2
, |α| < 1, (12.12)

or equivalently,

XR(ejω) = 1 − (α/2)(ejω + e−jω)

1 − α(ejω + e−jω) + α2
, |α| < 1, (12.13)

with α real. We first determine xe[n] and then x[n] using Eq. (12.4).
To obtain xe[n], the inverse Fourier transform of XR(ejω), it is convenient to first

obtain XR(z), the z-transform of xe[n]. This follows directly from Eq. (12.13), given
that

XR(ejω) = XR(z)
∣∣
z=ejω .

Consequently, by replacing ejω by z in Eq. (12.13), we obtain

XR(z) = 1 − (α/2)(z + z−1)

1 − α(z + z−1) + α2
(12.14)

= 1 − α
2 (z + z−1)

(1 − αz−1)(1 − αz)
. (12.15)

Since we began with the Fourier transform XR(ejω) and obtained XR(z) by
extending XR(ejω) into the z-plane, the ROC of XR(z) must, of course, include the
unit circle and is then bounded on the inside by the pole at z = α and on the outside
by the pole at z = 1/α.

From Eq. (12.15), we now want to obtain xe[n], the inverse z-transform of XR(z).
We do this by expanding Eq. (12.15) in partial fractions, yielding

XR(z) = 1
2

[
1

1 − αz−1
+ 1

1 − αz

]
, (12.16)

with the ROC specified to include the unit circle. The inverse z-transform of Eq. (12.16)
can then be applied separately to each term to obtain

xe[n] = 1
2
αnu[n] + 1

2
α−nu[−n]. (12.17)

Consequently, from Eq. (12.4),

x[n] = αnu[n] + α−nu[−n]u[n] − δ[n]
= αnu[n].

X(ejω) is then given by

X(ejω) = 1
1 − αe−jω

, (12.18)

and X(z) is given by

X(z) = 1

1 − αz−1
|z| > |α|. (12.19)

948 Chapter 12 Discrete Hilbert Transforms

The constructive procedure illustrated in Example 12.1 can be interpreted analyti-
cally to obtain a general relationship that expresses XI (e

jω) directly in terms of XR(ejω).
From Eq. (12.4), the complex convolution theorem, and the fact that xe[0] = x[0], it
follows that

X(ejω) = 1
π

∫ π

−π

XR(ejθ)U(ej (ω−θ))dθ − x[0], (12.20)

where U(ejω) is the Fourier transform of the unit step sequence. As stated in Section 2.7,
although the unit step is neither absolutely summable nor square summable, it can be
represented by the Fourier transform

U(ejω) =
∞∑

k=−∞
πδ(ω − 2πk) + 1

1 − e−jω
, (12.21)

or, since the term 1/(1 − e−jω) can be rewritten as

1
1 − e−jω

= 1
2

− j

2
cot
(ω

2

)
, (12.22)

Eq. (12.21) becomes

U(ejω) =
∞∑

k=−∞
πδ(ω − 2πk) + 1

2
− j

2
cot
(ω

2

)
. (12.23)

Using Eq. (12.23), we can express Eq. (12.20) as

X(ejω) = XR(ejω) + jXI (e
jω)

= XR(ejω) + 1
2π

∫ π

−π

XR(ejθ)dθ (12.24)

− j

2π

∫ π

−π

XR(ejθ) cot
(

ω − θ

2

)
dθ − x[0].

Equating real and imaginary parts in Eq. (12.24) and noting that

x[0] = 1
2π

∫ π

−π

XR(ejθ)dθ, (12.25)

we obtain the relationship

XI (e
jω) = − 1

2π

∫ π

−π

XR(ejθ) cot
(

ω − θ

2

)
dθ. (12.26)

A similar procedure can be followed to obtain x[n] and X(ejω) from XI (e
jω) and x[0]

using Eq. (12.5). This process results in the following equation for XR(ejω) in terms of
XI (e

jω):

XR(ejω) = x[0] + 1
2π

∫ π

−π

XI (e
jθ) cot

(
ω − θ

2

)
dθ. (12.27)

Equations (12.26) and (12.27), which are called discrete Hilbert transform rela-
tionships, hold for the real and imaginary parts of the Fourier transform of a causal,
stable, real sequence. They are improper integrals, since the integrand is singular at

Section 12.2 Sufficiency Theorems for Finite-Length Sequences 949

XR(e j
)

� – �

� –

� + �� � 2�

2
–cot

Figure 12.2 Interpretation of the
Hilbert transform as a periodic
convolution.

ω−θ = 0. Such integrals must be evaluated carefully to obtain a consistent finite result.
This can be done formally by interpreting the integrals as Cauchy principal values. That
is, Eq. (12.26) becomes

XI (e
jω) = − 1

2π
P
∫ π

−π

XR(ejθ) cot
(

ω − θ

2

)
dθ, (12.28a)

and Eq. (12.27) becomes

XR(ejω) = x[0] + 1
2π

P
∫ π

−π

XI (e
jθ) cot

(
ω − θ

2

)
dθ, (12.28b)

where P denotes the Cauchy principal value of the integral that follows. The meaning
of the Cauchy principal value in Eq. (12.28a), for example, is

XI (e
jω) = − 1

2π
lim
ε→0

[∫ π

ω+ε

XR(ejθ) cot
(

ω − θ

2

)
dθ

+
∫ ω−ε

−π

XR(ejθ) cot
(

ω − θ

2

)
dθ

]
.

(12.29)

Equation (12.29) shows that XI (e
jω) is obtained by the periodic convolution of

− cot(ω/2) with XR(ejω), with special care being taken in the vicinity of the singularity
at θ = ω. In a similar manner, Eq. (12.28b) involves the periodic convolution of cot(ω/2)

with XI (e
jω).

The two functions involved in the convolution integral of Eq. (12.28a) or, equiva-
lently, Eq. (12.29) are illustrated in Figure 12.2. The limit in Eq. (12.29) exists because
the function cot[(ω − θ)/2] is antisymmetric at the singular point θ = ω and the limit is
taken symmetrically about the singularity.

12.2 SUFFICIENCY THEOREMS FOR FINITE-LENGTH
SEQUENCES

In Section 12.1, we showed that causality or one-sidedness of a real sequence implies
some strong constraints on the Fourier transform of the sequence. The results of the

950 Chapter 12 Discrete Hilbert Transforms

previous section apply, of course, to finite-length causal sequences, but since the finite-
length property is more restrictive, it is perhaps reasonable to expect the Fourier trans-
form of a finite-length sequence to be more constrained. We will see that this is indeed
the case.

One way to take advantage of the finite-length property is to recall that finite-
length sequences can be represented by the DFT. Since the DFT involves sums rather
than integrals, the problems associated with improper integrals disappear.

Since the DFT is, in reality, a representation of a periodic sequence, any results
we obtain must be based on corresponding results for periodic sequences. Indeed, it
is important to keep the inherent periodicity of the DFT firmly in mind in deriving
the desired Hilbert transform relation for finite-length sequences. Therefore, we will
consider the periodic case first and then discuss the application to the finite-length case.

Consider a periodic sequence x̃[n] with period N that is related to a finite-length
sequence x[n] of length N by

x̃[n] = x[((n))N]. (12.30)

As in Section 12.1, x̃[n] can be represented as the sum of an even and odd periodic
sequence,

x̃[n] = x̃e[n] + x̃o[n], n = 0, 1, . . . , (N − 1), (12.31)

where

x̃e[n] = x̃[n] + x̃[−n]
2

, n = 0, 1, . . . , (N − 1), (12.32a)

and

x̃o[n] = x̃[n] − x̃[−n]
2

, n = 0, 1, . . . , (N − 1). (12.32b)

A periodic sequence cannot, of course, be causal in the sense used in Section 12.1.
We can, however, define a “periodically causal” sequence to be a periodic sequence for
which x̃[n] = 0 for N/2 < n < N . That is, x̃[n] is identically zero over the last half of
the period. We assume henceforth that N is even; the case of N odd is considered in
Problem 12.25. Note that because of the periodicity of x̃[n], it is also true that x̃[n] = 0
for −N/2 < n < 0. For finite-length sequences, this restriction means that although the
sequence is considered to be of length N , the last (N/2) − 1 points are in fact zero. In
Figure 12.3, we show an example of a periodically causal sequence and its even and odd
parts with N = 8. Because x̃[n] is zero in the second half of each period, x̃[−n] is zero in
the first half of each period, and, consequently, except for n = 0 and n = N/2, there is
no overlap between the nonzero portions of x̃[n] and x̃[−n]. Therefore, for periodically
causal periodic sequences,

x̃[n] =
⎧⎨⎩

2x̃e[n], n = 1, 2, . . . , (N/2) − 1,

x̃e[n], n = 0, N/2,

0, n = (N/2) + 1, . . . , N − 1,

(12.33)

and

x̃[n] =
{

2x̃o[n], n = 1, 2, . . . , (N/2) − 1,

0, n = (N/2) + 1, . . . , N − 1,
(12.34)

Section 12.2 Sufficiency Theorems for Finite-Length Sequences 951

–N 0 N

...

...

...

......

...

...

...

x [n]

x [–n]

xe[n]

xo[n]

n

–N 0 N n

–N 0 N n

–N 0 N n

~

~

~

~

Figure 12.3 Even and odd parts of a periodically causal, real, periodic sequence
of period N = 8.

where x̃[n] cannot be recovered from x̃o[n] because x̃o[0] = x̃o[N/2] = 0. If we define
the periodic sequence

ũN [n] =
⎧⎨⎩

1, n = 0, N/2,

2, n = 1, 2, . . . , (N/2) − 1,

0, n = (N/2) + 1, . . . , N − 1,

(12.35)

then it follows that, for N even, we can express x̃[n] as

x̃[n] = x̃e[n]ũN [n] (12.36)

and

x̃[n] = x̃o[n]ũN [n] + x̃[0]δ̃[n] + x̃[N/2]δ̃[n − (N/2)], (12.37)

where δ̃[n] is a periodic unit-impulse sequence with period N . Thus, the sequence x̃[n]
can be completely recovered from x̃e[n]. On the other hand, x̃o[n] will always be zero at
n = 0 and n = N/2, and consequently, x̃[n] can be recovered from x̃o[n] only for n �= 0
and n �= N/2.

If x̃[n] is a real periodic sequence of period N with DFS X̃[k], then X̃R[k], the real
part of X̃[k], is the DFS of x̃e[n] and jX̃I [k] is the DFS of x̃o[n]. Hence, Eqs. (12.36) and
(12.37) imply that, for a periodic sequence of period N , which is periodically causal in
the sense defined earlier, X̃[k] can be recovered from its real part or (almost) from its
imaginary part. Equivalently, X̃I [k] can be obtained from X̃R[k], and X̃R[k] can (almost)
be obtained from X̃I [k].

952 Chapter 12 Discrete Hilbert Transforms

Specifically, suppose that we are given X̃R[k]. Then, we can obtain X̃[k] and X̃I [k]
by the following procedure:

1. Compute x̃e[n] using the DFS synthesis equation

x̃e[n] = 1
N

N−1∑
k=0

X̃R[k]ej (2π/N)kn. (12.38)

2. Compute x̃[n] using Eq. (12.36).

3. Compute X̃[k] using the DFS analysis equation

X̃[k] =
N−1∑
n=0

x̃[n]e−j (2π/N)kn = X̃R[k] + jX̃I [k]. (12.39)

In contrast to the general causal case discussed in Section 12.1, the procedure just
outlined can be implemented on a computer, since Eqs. (12.38) and (12.39) can be
evaluated accurately and efficiently using an FFT algorithm.

To obtain an explicit relation between X̃R[k], and X̃I [k], we can carry out the
procedure analytically. From Eq. (12.36) and Eq. (8.34), it follows that

X̃[k] = X̃R[k] + jX̃I [k]

= 1
N

N−1∑
m=0

X̃R[m]ŨN [k − m];
(12.40)

i.e., X̃[k] is the periodic convolution of X̃R[k], the DFS of x̃e[n], with ŨN [k] the DFS of
ũN [n]. The DFS of ũN [n] can be shown to be (see Problem 12.24)

ŨN [k] =
⎧⎨⎩

N, k = 0,

−j2 cot(πk/N), k odd,

0, k even.

(12.41)

If we define

Ṽ N [k] =
{−j2 cot(πk/N), k odd,

0, k even,
(12.42)

then Eq. (12.40) can be expressed as

X̃[k] = X̃R[k] + 1
N

N−1∑
m=0

X̃R[m]Ṽ N [k − m]. (12.43)

Therefore,

jX̃I [k] = 1
N

N−1∑
m=0

X̃R[m]Ṽ N [k − m], (12.44)

which is the desired relation between the real and imaginary parts of the DFS of a
periodically causal, real, and periodic sequence. Similarly, beginning with Eq. (12.37)
we can show that

X̃R[k] = 1
N

N−1∑
m=0

jX̃I [m]Ṽ N [k − m] + x̃[0] + (−1)kx̃[N/2]. (12.45)

Section 12.2 Sufficiency Theorems for Finite-Length Sequences 953

Equations (12.44) and (12.45) relate the real and imaginary parts of the DFS rep-
resentation of the periodic sequence x̃[n]. If x̃[n] is thought of as the periodic repetition
of a finite-length sequence x[n] as in Eq. (12.30), then

x[n] =
{

x̃[n], 0 ≤ n ≤ N − 1,

0, otherwise.
(12.46)

If x[n] has the “periodic causality” property with respect to a period N (i.e., x[n] = 0
for n < 0 and for n > N/2), then all of the preceding discussion applies to the DFT of
x[n]. In other words, we can remove the tildes from Eqs. (12.44) and (12.45), thereby
obtaining the DFT relations

jXI [k] =

⎧⎪⎨⎪⎩
1
N

N−1∑
m=0

XR[m]VN [k − m], 0 ≤ k ≤ N − 1,

0, otherwise,

(12.47)

and

XR[k] =

⎧⎪⎨⎪⎩
1
N

N−1∑
m=0

jXI [m]VN [k − m] + x[0] + (−1)kx[N/2], 0 ≤ k ≤ N − 1,

0, otherwise.

(12.48)

Note that the sequence VN [k − m] given by Eq. (12.42) is periodic with period N , so we
do not need to worry about computing ((k − m))N in Eqs. (12.47) and (12.48), which
are the desired relations between the real and imaginary parts of the N -point DFT of a
real sequence whose actual length is less than or equal to (N/2)+1 (for N even). These
equations are circular convolutions, and, for example, Eq. (12.47) can be evaluated
efficiently by the following procedure:

1. Compute the inverse DFT of XR[k] to obtain the sequence

xep[n] = x[n] + x[((−n))N]
2

, 0 ≤ n ≤ N − 1. (12.49)

2. Compute the periodic odd part of x[n] by

xop[n] =
⎧⎨⎩

xep[n], 0 < n < N/2,

−xep[n], N/2 < n ≤ N − 1,

0, otherwise.

(12.50)

3. Compute the DFT of xop[n] to obtain jXI [k].
Note that if, instead of computing the odd part of x[n] in step 2, we compute

x[n] =

⎧⎪⎪⎨⎪⎪⎩
xep[0], n = 0,

2xep[n], 0 < n < N/2,

xep[N/2], n = N/2,

0, otherwise,

(12.51)

then the DFT of the resulting sequence would be X[k], the complete DFT of x[n].

954 Chapter 12 Discrete Hilbert Transforms

Example 12.3 Periodic Sequence

Consider a sequence that is periodically causal with period N = 4 and that has

XR[k] =

⎧⎪⎪⎨⎪⎪⎩
2, k = 0,

3, k = 1,

4, k = 2,

3, k = 3.

We can find the imaginary part of the DFT in one of two ways. The first way is to use
Eq. (12.47). For N = 4,

V4[k] =
⎧⎨⎩

2j, k = −1 + 4m,

−2j, k = 1 + 4m,

0, otherwise,

where m is an integer. Implementing the convolution in Eq. (12.47) yields

jXI [k] = 1
4

3∑
m=0

XR[m]V4[k − m], 0 ≤ k ≤ 3

=
⎧⎨⎩

j, k = 1,

−j, k = 3,

0, otherwise.

Alternatively, we can follow the three-step procedure that includes Eqs. (12.49)
and (12.50). Computing the inverse DFT XR[k] yields

xe[n] = 1
4

3∑
k=0

XR[k]W−kn
4 = 1

4
[2 + 3(j)n + 4(−1)n + 3(−j)n]

=
⎧⎨⎩

3, n = 0,

− 1
2 , n = 1, 3,

0, n = 2.

Note that although this sequence is not itself even symmetric, a periodic replication of
xe[n] is even symmetric. Thus, the DFT XR[k] of xe[n] is purely real. Equation (12.50)
allows us to find the periodically odd part xop[n]; specifically,

xop[n] =

⎧⎪⎨⎪⎩
− 1

2 , n = 1,

1
2 , n = 3,

0, otherwise.

Finally, we obtain jXI [k] from the DFT of xop[n]:

jXI [k] =
3∑

n=0

xop[n]Wnk
4 = −1

2
Wk

4 + 1
2
W3k

4

=
⎧⎨⎩

j, k = 1,

−j, k = 3,

0, otherwise,

which is, of course, the same as was obtained from Eq. (12.47).

Section 12.3 Relationships Between Magnitude and Phase 955

12.3 RELATIONSHIPS BETWEEN MAGNITUDE
AND PHASE

So far, we have focused on the relationships between the real and imaginary parts of the
Fourier transform of a sequence. Often, we are interested in relationships between the
magnitude and phase of the Fourier transform. In this section, we consider the conditions
under which these functions might be uniquely related. Although it might appear on
the surface that a relationship between real and imaginary parts implies a relationship
between magnitude and phase, that is not the case. This is clearly demonstrated by
Example 5.9 in Section 5.4. The two system functions H 1(z) and H 2(z) in that example
were assumed to correspond to causal, stable systems. Therefore, the real and imaginary
parts of H 1(e

jω) are related through the Hilbert transform relations of Eqs. (12.28a)
and (12.28b), as are the real and imaginary parts of H 2(e

jω). However, � H 1(e
jω) could

not be obtained from |H 1(e
jω)|, since H 1(e

jω) and H 2(e
jω) have the same magnitude

but a different phase.
The Hilbert transform relationship between the real and imaginary parts of the

Fourier transform of a sequence x[n] was based on the causality of x[n]. We can obtain
a Hilbert transform relationship between magnitude and phase by imposing causality
on a sequence x̂[n] derived from x[n] for which the Fourier transform X̂(ejω) is the
logarithm of the Fourier transform of x[n]. Specifically, we define x̂[n] so that

x[n] F←→ X(ejω) = |X(ejω)|ejarg[X(ejω)], (12.52a)

x̂[n] F←→ X̂(ejω), (12.52b)

where

X̂(ejω) = log[X(ejω)] = log |X(ejω)| + jarg[X(ejω)] (12.53)

and, as defined in Section 5.1, arg[X(ejω)] denotes the continuous phase of X(ejω). The
sequence x̂[n] is commonly referred to as the complex cepstrum of x[n], the properties
and applications of which are discussed in detail in Chapter 13.2

If we now require that x̂[n] be causal, then the real and imaginary parts of X̂(ejω),
corresponding to log |X(ejω)| and arg[X(ejω)], respectively, will be related through
Eqs. (12.28a) and (12.28b); i.e.,

arg[X(ejω)] = − 1
2π

P
∫ π

−π

log |X(ejθ)| cot
(

ω − θ

2

)
dθ (12.54)

and

log |X(ejω)| = x̂[0] + 1
2π

P
∫ π

−π

arg[X(ejθ)] cot
(

ω − θ

2

)
dθ, (12.55a)

where, in Eq. (12.55a), x̂[0] is

x̂[0] = 1
2π

∫ π

−π

log |X(ejω)|dω. (12.55b)

2Although x̂[n] is referred to as the complex cepstrum it is real valued since x(ejω) is defined in
Eq. (12.53) is conjugate symmetric.

956 Chapter 12 Discrete Hilbert Transforms

Although it is not at all obvious at this point, in Problem 12.35 and in Chapter 13
we develop the fact that the minimum-phase condition defined in Section 5.6, namely,
that X(z) have all its poles and zeros inside the unit circle, guarantees causality of the
complex cepstrum. Thus, the minimum-phase condition in Section 5.6 and the condition
of causality of the complex cepstrum turn out to be the same constraint developed
from different perspectives. Note that when x̂[n] is causal, arg[X(ejω)] is completely
determined through Eq. (12.54) by log |X(ejω)|; however, the complete determination
of log |X(ejω)| by Eq. (12.55a) requires both arg[X(ejω)] and the quantity x̂[0]. If x̂[0]
is not known, then log |X(ejω)| is determined only to within an additive constant, or
equivalently, |X(ejω)| is determined only to within a multiplicative (gain) constant.

Minimum phase and causality of the complex cepstrum are not the only constraints
that provide a unique relationship between the magnitude and phase of the DTFT.
As one example of another type of constraint, it has been shown (Hayes, Lim and
Oppenheim, 1980) that if a sequence is of finite length and if its z-transform has no
zeros in conjugate reciprocal pairs, then, to within a scale factor, the sequence (and
consequently, also the magnitude of the DTFT) is uniquely determined by the phase of
the Fourier transform.

12.4 HILBERT TRANSFORM RELATIONS FOR COMPLEX
SEQUENCES

Thus far, we have considered Hilbert transform relations for the Fourier transform
of causal sequences and the DFT of periodic sequences that are “periodically causal”
in the sense that they are zero in the second half of each period. In this section, we
consider complex sequences for which the real and imaginary components can be related
through a discrete convolution similar to the Hilbert transform relations derived in
the previous sections. These relations are particularly useful in representing bandpass
signals as complex signals in a manner completely analogous to the analytic signals of
continuous-time signal theory (Papoulis, 1977).

As mentioned previously, it is possible to base the derivation of the Hilbert trans-
form relations on a notion of causality or one-sidedness. Since we are interested in
relating the real and imaginary parts of a complex sequence, one-sidedness will be ap-
plied to the DTFT of the sequence. We cannot, of course, require that the DTFT be
zero for ω < 0, since it must be periodic. Instead, we consider sequences for which
the Fourier transform is zero in the second half of each period; i.e., the z-transform is
zero on the bottom half (−π ≤ ω < 0) of the unit circle. Thus, with x[n] denoting the
sequence and X(ejω) its Fourier transform, we require that

X(ejω) = 0, −π ≤ ω < 0. (12.56)
(We could just as well assume that X(ejω) is zero for 0 < ω ≤ π .) The sequence x[n]
corresponding to X(ejω) must be complex, since, if x[n] were real, X(ejω) would be
conjugate symmetric, i.e., X(ejω) = X∗(e−jω). Therefore, we express x[n] as

x[n] = xr [n] + jxi[n], (12.57)
where xr [n] and xi[n] are real sequences. In continuous-time signal theory, the com-
parable signal is an analytic function and thus is called an analytic signal. Although
analyticity has no formal meaning for sequences, we will nevertheless apply the same
terminology to complex sequences whose Fourier transforms are one-sided.

Section 12.4 Hilbert Transform Relations for Complex Sequences 957

If Xr(e
jω) and Xi(e

jω) denote the Fourier transforms of the real sequences xr [n]
and xi[n], respectively, then

X(ejω) = Xr(e
jω) + jXi(e

jω), (12.58a)

and it follows that

Xr(e
jω) = 1

2
[X(ejω) + X∗(e−jω)], (12.58b)

and

jXi(e
jω) = 1

2
[X(ejω) − X∗(e−jω)]. (12.58c)

Note that Eq. (12.58c) gives an expression for jXi(e
jω), which is the Fourier

transform of the imaginary signal jxi[n]. Note also that Xr(e
jω) and Xi(e

jω), the Fourier
transforms of the real and imaginary parts, respectively, of x[n] are both complex-
valued functions. In general, the complex transforms Xr(e

jω) and jXi(e
jω) play a role

similar to that played in the previous sections by the even and odd parts, respectively, of
causal sequences. However, Xr(e

jω) is conjugate symmetric, i.e., Xr(e
jω) = X∗

r (e
−jω).

Similarly, jXi(e
jω) is conjugate antisymmetric, i.e., jXi(e

jω) = −jX∗
i (e

−jω).
Figure 12.4 depicts an example of a complex one-sided Fourier transform of a

complex sequence x[n] = xr [n] + jxi[n], and the corresponding two-sided transforms
of the real sequences xr [n] and xi[n]. This figure shows pictorially the cancellation
implied by Eqs. (12.58).

If X(ejω) is zero for −π ≤ ω < 0, then there is no overlap between the nonzero
portions of X(ejω) and X∗(e−jω) except at ω = 0. Thus, X(ejω) can be recovered except
at ω = 0 from either Xr(e

jω) or Xi(e
jω). Since X(ejω) is assumed to be zero at ω = ±π ,

X(ejω) is totally recoverable except at ω = 0 from jXi(e
jω). This is in contrast to the

situation in Section 12.2, in which the causal sequence could be recovered from its odd
part, except at the endpoints.

In particular,

X(ejω) =
{

2Xr(e
jω), 0 < ω < π,

0, −π ≤ ω < 0,
(12.59)

and

X(ejω) =
{

2jXi(e
jω), 0 < ω < π,

0, −π ≤ ω < 0.
(12.60)

Alternatively, we can relate Xr(e
jω) and Xi(e

jω) directly by

Xi(e
jω) =

{−jXr(e
jω), 0 < ω < π,

jXr(e
jω), −π ≤ ω < 0,

(12.61)

or

Xi(e
jω) = H(ejω)Xr(e

jω), (12.62a)

where

H(ejω) =
{−j, 0 < ω < π,

j, −π < ω < 0.
(12.62b)

958 Chapter 12 Discrete Hilbert Transforms

X(e j�)

–3� –2� 2� 3� �–� �

(a)

Xr(e j�)

Xi(e j�)

... ...

X*(e –j�)

–3� –2� 2� 3� �–� �

(b)

... ...

–3� –2� 2� 3� �–� �

(c)

... ...

–3�

–2� 2�

3� �–� �

(d)

... ...

Figure 12.4 Illustration of decomposition of a one-sided Fourier transform. (Solid
curves are real parts and dashed curves are imaginary parts.)

Equations (12.62) are illustrated by comparing Figures 12.4(c) and 12.4(d). Xi(e
jω)

is the Fourier transform of xi[n], the imaginary part of x[n], and Xr(e
jω) is the Fourier

transform of xr [n], the real part of x[n]. Thus, according to Eqs. (12.62), xi[n] can be
obtained by processing xr [n] with an LTI discrete-time system with frequency response
H(ejω), as given by Eq. (12.62b). This frequency response has unity magnitude, a phase
angle of −π/2 for 0 < ω < π , and a phase angle of +π/2 for −π < ω < 0. Such a system
is called an ideal 90-degree phase shifter or a Hilbert transformer. From Eqs. (12.62), it

Section 12.4 Hilbert Transform Relations for Complex Sequences 959

80

2

–1–3–5–7

1 2 3 4 5 6 7

...
... n

3�

2
3�

2

–
2

5�
–

2
7�

–

2
�

–

�

2
5�

2
7�

Figure 12.5 Impulse response of an
ideal Hilbert transformer or 90-degree
phase shifter.

follows that

Xr(e
jω) = 1

H(ejω)
Xi(e

jω) = −H(ejω)Xi(e
jω). (12.63)

Thus, −xr [n] can also be obtained from xi[n] with a 90-degree phase shifter.
The impulse response h[n] of a 90-degree phase shifter, corresponding to the

frequency response H(ejω) given in Eq. (12.62b), is

h[n] = 1
2π

∫ 0

−π

jejωndω − 1
2π

∫ π

0
jejωndω,

or

h[n] =
⎧⎨⎩

2
π

sin2(πn/2)

n
, n �= 0,

0, n = 0.

(12.64)

The impulse response is plotted in Figure 12.5. Using Eqs. (12.62) and (12.63), we obtain
the expressions

xi[n] =
∞∑

m=−∞
h[n − m]xr [m] (12.65a)

and

xr [n] = −
∞∑

m=−∞
h[n − m]xi[m]. (12.65b)

Equations (12.65) are the desired Hilbert transform relations between the real
and imaginary parts of a discrete-time analytic signal. Figure 12.6 shows how a discrete-
time Hilbert transformer system can be used to form a complex analytic signal, which
is simply a pair of real signals.

960 Chapter 12 Discrete Hilbert Transforms

xr[n] xr[n]

xi[n]

Hilbert
transformer

Complex
signal
x [n]

Figure 12.6 Block diagram
representation of the creation of a
complex sequence whose Fourier
transform is one-sided.

12.4.1 Design of Hilbert Transformers

The impulse response of the Hilbert transformer, as given in Eq. (12.64), is not absolutely
summable. Consequently,

H(ejω) =
∞∑

n=−∞
h[n]e−jωn (12.66)

converges to Eq. (12.62b) only in the mean-square sense. Thus, the ideal Hilbert trans-
former or 90-degree phase shifter takes its place alongside the ideal lowpass filter and
ideal bandlimited differentiator as a valuable theoretical concept that corresponds to a
noncausal system and for which the system function exists only in a restricted sense.

Approximations to the ideal Hilbert transformer can, of course, be obtained. FIR
approximations with constant group delay can be designed using either the window
method or the equiripple approximation method. In such approximations, the 90-degree
phase shift is realized exactly, with an additional linear phase component required for a
causal FIR system. The properties of these approximations are illustrated by examples
of Hilbert transformers designed with Kaiser windows.

Example 12.4 Kaiser Window Design of Hilbert
Transformers

The Kaiser window approximation for an FIR discrete Hilbert transformer of order
M (length M + 1) would be of the form

h[n] =

⎧⎪⎨⎪⎩
(

Io{β(1 − [(n − nd)/nd]2)1/2}
Io(β)

)(
2
π

sin2[π(n − nd)/2]
n − nd

)
, 0 ≤ n ≤ M,

0, otherwise,

(12.67)
where nd = M/2. If M is even, the system is a type III FIR generalized linear-phase
system, as discussed in Section 5.7.3.

Figure 12.7(a) shows the impulse response, and Figure 12.7(b) shows the magni-
tude of the frequency response, for M = 18 and β = 2.629. Because h[n] satisfies the
symmetry condition h[n] = −h[M − n] for 0 ≤ n ≤ M , the phase is exactly 90 degrees
plus a linear-phase component corresponding to a delay of nd = 18/2 = 9 samples;
i.e.,

� H(ejω) = −π

2
− 9ω, 0 < ω < π. (12.68)

From Figure 12.7(b), we see that, as required for a type III system, the frequency
response is zero at z = 1 and z = −1 (ω = 0 and ω = π). Thus, the magnitude response
cannot approximate unity very well, except in some middle band ωL < |ω| < ωH .

Section 12.4 Hilbert Transform Relations for Complex Sequences 961

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number (n)

(a)

0 5 10 15 20
–1.0

–0.5

0

0.5

1.0

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �
0

0.3

0.6

0.9

1.2

Figure 12.7 (a) Impulse response and (b) magnitude response of an FIR Hilbert
transformer designed using the Kaiser window. (M = 18 and β = 2.629.)

If M is an odd integer, we obtain a type IV system, as shown in Figure 12.8,
where M = 17 and β = 2.44. For type IV systems, the frequency response is forced
to be zero only at z = 1 (ω = 0). Therefore, a better approximation to a constant-
magnitude response is obtained for frequencies around ω = π . The phase response is
exactly 90 degrees at all frequencies, plus a linear-phase component corresponding to
nd = 17/2 = 8.5 samples delay; i.e.,

� H(ejω) = −π

2
− 8.5ω, 0 < ω < π. (12.69)

From a comparison of Figures 12.7(a) and 12.8(a), we see that type III FIR Hilbert
transformers have a significant computational advantage over type IV systems when
it is not necessary to approximate constant magnitude at ω = π . This is because, for
type III systems, the even-indexed samples of the impulse response are all exactly zero.

962 Chapter 12 Discrete Hilbert Transforms

Thus, taking advantage of the antisymmetry in both cases, the system with M = 17
would require eight multiplications to compute each output sample, while the system
with M = 18 would require only five multiplications per output sample.

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number (n)

(a)

0 5 10 15 20
–1.0

–0.5

0

0.5

1.0

Radian frequency (�)

(b)

0 0.2� 0.4� 0.6� 0.8� �
0

0.3

0.6

0.9

1.2

Figure 12.8 (a) Impulse response and (b) magnitude response of an FIR Hilbert
transformer designed using the Kaiser window. (M = 17 and β = 2.44.)

Type III and IV FIR linear-phase Hilbert transformer approximations with equirip-
ple magnitude approximation and exactly 90-degree phase can be designed using the
Parks–McClellan algorithm as described in Sections 7.7 and 7.8, with the expected im-
provements in magnitude approximation error over window-designed filters of the same
length (see Rabiner and Schafer, 1974).

The exactness of the phase of type III and IV FIR systems is a compelling motiva-
tion for their use in approximating Hilbert transformers. IIR systems must have some

Section 12.4 Hilbert Transform Relations for Complex Sequences 963

yr[n]

xr[n]

yi[n]

Complex
signal
y[n]

h1[n]

h2[n]

Figure 12.9 Block diagram
representation of the allpass phase
splitter method for the creation of a
complex sequence whose Fourier
transform is one-sided.

phase response error as well as magnitude response error in approximating a Hilbert
transformer. The most successful approach to designing IIR Hilbert transformers is to
design a “phase splitter,” which consists of two allpass systems whose phase responses
differ by approximately 90 degrees over some portion of the band 0 < |ω| < π . Such
systems can be designed by using the bilinear transformation to transform a continuous-
time phase-splitting system to a discrete-time system. (For an example of such a system,
see Gold, Oppenheim and Rader, 1970.)

Figure 12.9 depicts a 90-degree phase-splitting system. If xr [n] denotes a real input
signal and xi[n] its Hilbert transform, then the complex sequence x[n] = xr [n] + jxi[n]
has a Fourier transform that is identically zero for −π ≤ ω < 0; i.e., X(z) is zero on
the bottom half of the unit circle of the z-plane. In the system of Figure 12.6, a Hilbert
transformer was used to form the signal xi[n] from xr [n]. In Figure 12.9, we process
xr [n] through two systems: H 1(e

jω) and H 2(e
jω). Now, if H 1(e

jω) and H 2(e
jω) are

allpass systems whose phase responses differ by 90 degrees, then the complex signal
y[n] = yr [n] + jyi[n] has a Fourier transform that also vanishes for −π ≤ ω < 0.
Furthermore, |Y (ejω)| = |X(ejω)|, since the phase-splitting systems are allpass systems.
The phases of Y (ejω) and X(ejω) will differ by the phase component common to H 1(e

jω)

and H 2(e
jω).

12.4.2 Representation of Bandpass Signals

Many of the applications of analytic signals concern narrowband communication. In
such applications, it is sometimes convenient to represent a bandpass signal in terms of
a lowpass signal. To see how this may be done, consider the complex lowpass signal

x[n] = xr [n] + jxi[n],
where xi[n] is the Hilbert transform of xr [n] and

X(ejω) = 0, −π ≤ ω < 0.

The Fourier transforms Xr(e
jω) and jXi(e

jω) are depicted in Figures 12.10(a) and
12.10(b), respectively, and the resulting transform X(ejω) = Xr(e

jω) + jXi(e
jω) is

shown in Figure 12.10(c). (Solid curves are real parts and dashed curves are imaginary
parts.) Now, consider the sequence

s[n] = x[n]ejωcn = sr [n] + jsi[n], (12.70)

where sr [n] and si[n] are real sequences. The corresponding Fourier transform is

S(ejω) = X(ej(ω−ωc)), (12.71)

964 Chapter 12 Discrete Hilbert Transforms

Xr(e j�)

–2� 2� �–� �–��

(a)

��

jXi(e j�)

2� �–� �–��

(b)

��

X(e j�)

–2� 2� �–� �

(c)

��

S(e j�)

–2� 2� �–� �

(d)

�c

�c

�c

�c + ��

�c + ��

�c + ��

Sr(e j�)

–2� 2� �–� �

(e)

jSi(e j�)

–2� 2� �–� �

(f)

Figure 12.10 Fourier transforms for representation of bandpass signals. (Solid
curves are real parts and dashed curves are imaginary parts.) (Note that in parts (b)
and (f) the functions jXi (e

jω) and jSi (e
jω) are plotted, where Xi (e

jω) and Si (e
jω)

are the Fourier transforms of xi [n] and si [n], respectively.)

which is depicted in Figure 12.10(d). Applying Eqs. (12.58) to S(ejω) leads to the
equations

S r(e
jω) = 1

2 [S(ejω) + S∗(e−jω)], (12.72a)

jS i(e
jω) = 1

2 [S(ejω) − S∗(e−jω)]. (12.72b)

Section 12.4 Hilbert Transform Relations for Complex Sequences 965

For the example of Figure 12.10, S r(e
jω) and jS i(e

jω) are illustrated in Figures 12.10(e)
and 12.10(f), respectively. It is straightforward to show that if Xr(e

jω) = 0 for
	ω < |ω| ≤ π , and if ωc +	ω < π , then S(ejω) will be a one-sided bandpass signal such
that S(ejω) = 0 except in the interval ωc < ω ≤ ωc +	ω. As the example of Figure 12.10
illustrates, and as can be shown using Eqs. (12.57) and (12.58), S i(e

jω) = H(ejω)S r(e
jω),

i.e., si[n] is the Hilbert transform of sr [n].
An alternative representation of a complex signal is in terms of magnitude and

phase; i.e., x[n] can be expressed as

x[n] = A[n]ejφ[n], (12.73a)

where

A[n] = (x2
r [n] + x2

i [n])1/2 (12.73b)

and

φ[n] = arctan
(

xi[n]
xr [n]
)

. (12.73c)

Therefore, from Eqs. (12.70) and (12.73), we can express s[n] as

s[n] = (xr [n] + jxi[n])ejωcn (12.74a)

= A[n]ej (ωcn+φ[n]), (12.74b)

from which we obtain the expressions

sr [n] = xr [n] cos ωcn − xi[n] sin ωcn, (12.75a)

or

sr [n] = A[n] cos(ωcn + φ[n]), (12.75b)

and

si[n] = xr [n] sin ωcn + xi[n] cos ωcn, (12.76a)

or

si[n] = A[n] sin(ωcn + φ[n]). (12.76b)

Equations (12.75a) and (12.76a) are depicted in Figures 12.11(a) and 12.11(b),
respectively. These diagrams illustrate how a complex bandpass (single-sideband) signal
can be formed from a real lowpass signal.

Taken together, Eqs. (12.75) and (12.76) are the desired time-domain representa-
tions of a general complex bandpass signal s[n] in terms of the real and imaginary parts
of a complex lowpass signal x[n]. Generally, this complex representation is a convenient
mechanism for representing a real bandpass signal. For example, Eq. (12.75a) provides
a time-domain representation of the real bandpass signal in terms of an “in-phase” com-
ponent xr [n] and a “quadrature” (90-degree phase-shifted) component xi[n]. Indeed, as
illustrated in Figure 12.10(e), Eq. (12.75a) permits the representation of real bandpass
signals (or filter impulse responses) whose Fourier transforms are not conjugate sym-
metric about the center of the passband (as would be the case for signals of the form
xr [n] cos ωcn).

966 Chapter 12 Discrete Hilbert Transforms

xi[n]

sr[n]xr[n]

�

�

+

–

Hilbert
transformer

(a)

sin �cn

cos �cn

xi[n]

si[n]xr[n]

�

�

+

+

++

Hilbert
transformer

(b)

cos �cn

sin �cn

Figure 12.11 Block diagram representation of Eqs. (12.75a) and (12.76a) for
obtaining a single-sideband signal.

It is clear from the form of Eqs. (12.75) and (12.76) and from Figure 12.11 that
a general bandpass signal has the form of a sinusoid that is both amplitude and phase
modulated. The sequence A[n] is called the envelope and φ[n] the phase. This narrow-
band signal representation can be used to represent a variety of amplitude and phase
modulation systems. The example of Figure 12.10 is an illustration of single-sideband
modulation. If we consider the real signal sr [n] as resulting from single-sideband mod-
ulation with the lowpass real signal xr [n] as the input, then Figure 12.11(a) represents a
scheme for implementing the single-sideband modulation system. Single-sideband mod-
ulation systems are useful in frequency-division multiplexing, since they can represent
a real bandpass signal with minimum bandwidth.

12.4.3 Bandpass Sampling

Another important use of analytic signals is in the sampling of bandpass signals. In
Chapter 4, we saw that, in general, if a continuous-time signal has a bandlimited Fourier
transform such that Sc(j�) = 0 for |�| ≥ �N , then the signal is exactly represented
by its samples if the sampling rate satisfies the inequality 2π/T ≥ 2�N . The key to
the proof of this result is to avoid overlapping the replicas of Sc(j�) that form the
DTFT of the sequence of samples. A bandpass continuous-time signal has a Fourier
transform such that Sc(j�) = 0 for 0 ≤ |�| ≤ �c and for |�| ≥ �c + 	�. Thus, its
bandwidth, or region of support, is really only 2	� rather than 2(�c + 	�), and with
a proper sampling strategy, the region −�c ≤ � ≤ �c can be filled with images of
the nonzero part of Sc(j�) without overlapping. This is greatly facilitated by using a
complex representation of the bandpass signal.

As an illustration, consider the system of Figure 12.12 and the signal shown in
Figure 12.13(a). The highest frequency of the input signal is �c + 	�. If this signal
is sampled at exactly the Nyquist rate, 2π/T = 2(�c + 	�), then the resulting se-
quence of samples, sr [n] = sc(nT), has the Fourier transform S r(e

jω) plotted in Fig-
ure 12.13(b). Using a discrete-time Hilbert transformer, we can form the complex
sequence s[n] = sr [n]+jsi[n] whose Fourier transform is S(ejω) in Figure 12.13(c). The

Section 12.4 Hilbert Transform Relations for Complex Sequences 967

sc(t)

T

srd[n]

sid[n]si[n]

sr[n] = sc(nT)
M

M

Complex decimated
signal sd[n]

C/D

Hilbert
transformer

Figure 12.12 System for reduced-rate sampling of a real bandpass signal by
decimation of the equivalent complex bandpass signal.

width of the nonzero region of S(ejω) is 	ω = (�)T . Defining M as the largest integer
less than or equal to 2π/	ω, we see that M copies of S(ejω) would fit into the interval
−π < ω < π . (In the example of Figure 12.13(c), 2π/	ω = 5.) Thus, the sampling rate
of s[n] can be reduced by decimation as shown in Figure 12.12, yielding the reduced-rate
complex sequence sd [n] = srd[n] + jsid[n] = s[Mn] whose Fourier transform is

Sd(ejω) = 1
M

M−1∑
k=0

S(ej [(ω−2πk)/M]). (12.77)

Figure 12.13(d) showsSd(ejω)withM = 5 in Eq. (12.77).S(ejω)and two of the frequency-
scaled and translated copies of S(ejω) are indicated explicitly in Figure 12.13(d). It is
clear that aliasing has been avoided and that all the information necessary to reconstruct
the original sampled real bandpass signal now resides in the discrete-time frequency in-
terval −π < ω ≤ π . A complex filter applied to sd [n] can transform this information
in useful ways, such as by further bandlimiting, amplitude or phase compensation, etc.,
or the complex signal can be coded for transmission or digital storage. This processing
takes place at the low sampling rate, and this is, of course, the motivation for reducing
the sampling rate.

The original real bandpass signal sr [n] can be reconstructed ideally by the following
procedure:

1. Expand the complex sequence by a factor M ; i.e., obtain

se[n] =
{

srd[n/M] + jsid[n/M], n = 0, ±M, ±2M, . . . ,

0, otherwise.
(12.78)

2. Filter the signal se[n] using an ideal complex bandpass filter with impulse response
hi[n] and frequency response

Hi(e
jω) =

⎧⎨⎩
0, −π < ω < ωc,

M, ωc < ω < ωc + 	ω,

0, ωc + 	ω < ω < π.

(12.79)

(In our example, ωc + 	ω = π .)

3. Obtain sr [n] = Re{se[n] ∗ hi[n]}.
A useful exercise is to plot the Fourier transform Se(e

jω) for the example of
Figure 12.13 and verify that the filter of Eq. (12.79) does indeed recover s[n].

–�c

–�c – �� �c + ��

�c �

(a)

1

Sc(j�)

Sr(e j�)

Sd(e j�)S(e j[(� – 6�)/5]))

–3� –2� –�c �c 2� 3� �–� � 2� – �c

(b)

1

... ...

T

S(e j�)

–3� –2� �c 2� 3� �–� �

��

(c)

2

... ...

T

–3�

–2� 2�

3� �–� �

(d)

2

... ...

5T

1
5

S(e j[(� – 8�)/5]))
1
5

Figure 12.13 Example of reduced-rate sampling of a bandpass signal using the
system of Figure 12.12. (a) Fourier transform of continuous-time bandpass signal.
(b) Fourier transform of sampled signal. (c) Fourier transform of complex bandpass
discrete-time signal derived from the signal of part (a). (d) Fourier transform of
decimated complex bandpass of part (c). (Solid curves are real parts and dashed
curves are imaginary parts.)

968

Section 12.5 Summary 969

Another useful exercise is to consider a complex continuous-time signal with a
one-sided Fourier transform equal to Sc(j�) for � ≥ 0. It can be shown that such a
signal can be sampled with sampling rate 2π/T = 	�, directly yielding the complex
sequence sd [n].

12.5 SUMMARY

In this chapter, we have discussed a variety of relations between the real and imaginary
parts of Fourier transforms and the real and imaginary parts of complex sequences.
These relationships are collectively referred to as Hilbert transform relationships. Our
approach to deriving all the Hilbert transform relations was to apply a basic causality
principle that allows a sequence or function to be recovered from its even part. We
showed that, for a causal sequence, the real and imaginary parts of the Fourier transform
are related through a convolution-type integral. Also, for the special case when the
complex cepstrum of a sequence is causal or, equivalently, both the poles and zeros of
its z-transform lie inside the unit circle (the minimum-phase condition), the logarithm
of the magnitude and the phase of the Fourier transform are a Hilbert transform pair
of each other.

Hilbert transform relations were derived for periodic sequences that satisfy a
modified causality constraint and for complex sequences whose Fourier transforms
vanish on the bottom half of the unit circle. Applications of complex analytic signals to
the representation and efficient sampling of bandpass signals were also discussed.

Problems

Basic Problems

12.1. Consider a sequence x[n] with DTFT X(ejω). The sequence x[n] is real valued and causal,
and

Re{X(ejω)} = 2 − 2a cos ω.

Determine Im{X(ejω)}.
12.2. Consider a sequence x[n] and its DTFT X(ejω). The following is known:

x[n] is real and causal,

Re{X(ejω)} = 5
4 − cos ω.

Determine a sequence x[n] consistent with the given information.

12.3. Consider a sequence x[n] and its DTFT X(ejω). The following is known:

x[n] is real,

x[0] = 0,

x[1] > 0,

|X(ejω)|2 = 5
4 − cos ω.

Determine two distinct sequences x1[n] and x2[n] consistent with the given information.

970 Chapter 12 Discrete Hilbert Transforms

12.4. Consider a complex sequence x[n] = xr [n] + jxi [n], where xr [n] and xi [n] are the real
part and imaginary part, respectively. The z-transform X(z) of the sequence x[n] is zero
on the bottom half of the unit circle; i.e., X(ejω) = 0 for π ≤ ω < 2π . The real part of x[n]
is

xr [n] =
⎧⎨⎩

1/2, n = 0,

−1/4, n = ±2,

0, otherwise.

Determine the real and imaginary parts of X(ejω).

12.5. Find the Hilbert transforms xi [n] = H{xr [n]} of the following sequences:

(a) xr [n] = cos ω0n

(b) xr [n] = sin ω0n

(c) xr [n] = sin(ω0n)

πn

12.6. The imaginary part of X(ejω) for a causal, real sequence x[n] is

XI (ejω) = 2 sin ω − 3 sin 4ω.

Additionally, it is known that X(ejω)|ω=0 = 6. Find x[n].
12.7. (a) x[n] is a real, causal sequence with the imaginary part of its DTFT X(ejω) given by

Im{X(ejω)} = sin ω + 2 sin 2ω.

Determine a choice for x[n].
(b) Is your answer to part (a) unique? If so, explain why. If not, determine a second,

distinct choice for x[n] satisfying the relationship given in part (a).

12.8. Consider a real, causal sequence x[n] with DTFT X(ejω) = XR(ejω) + jXI (ejω). The
imaginary part of the DTFT is

XI (ejω) = 3 sin(2ω).

Which of the real parts XRm(ejω) listed below are consistent with this information:

XR1(ejω) = 3
2

cos(2ω),

XR2(ejω) = −3 cos(2ω) − 1,

XR3(ejω) = −3 cos(2ω),

XR4(ejω) = 2 cos(3ω),

XR5(ejω) = 3
2

cos(2ω) + 1.

Chapter 12 Problems 971

12.9. The following information is known about a real, causal sequence x[n] and its DTFT
X(ejω):

Im{X(ejω)} = 3 sin(ω) + sin(3ω),

X(ejω)|ω=π = 3.

Determine a sequence x[n] consistent with this information. Is the sequence unique?

12.10. Consider h[n], the real-valued impulse response of a stable, causal LTI system with fre-
quency response H(ejω). The following is known:

(i) The system has a stable, causal inverse.

(ii)
∣∣∣H(ejω)

∣∣∣2 =
5
4 − cos ω

5 + 4 cos ω
.

Determine h[n] in as much detail as possible.

12.11. Let x[n] = xr [n] + jxi [n] be a complex-valued sequence such that X(ejω) = 0 for
−π ≤ ω < 0. The imaginary part is

xi [n] =
{

4, n = 3,

−4, n = −3.

Specify the real and imaginary parts of X(ejω).

12.12. h[n] is a causal, real-valued sequence with h[0] nonzero and positive. The magnitude
squared of the frequency response of h[n] is given by

∣∣∣H(ejω)

∣∣∣2 = 10
9

− 2
3

cos(ω).

(a) Determine a choice for h[n].
(b) Is your answer to part (b) unique? If so, explain why. If not, determine a second,

distinct choice for h[n] satisfying the given conditions.

12.13. Let x[n] denote a causal, complex-valued sequence with Fourier transform

X(ejω) = XR(ejω) + jXI (ejω).

If XR(ejω) = 1 + cos(ω) + sin(ω) − sin(2ω), determine XI (ejω).

12.14. Consider a real, anticausal sequence x[n] with DTFT X(ejω). The real part of X(ejω) is

XR(ejω) =
∞∑

k=0

(1/2)k cos(kω).

Find XI (ejω), the imaginary part of X(ejω). (Remember that a sequence is said to be
anticausal if x[n] = 0 for n > 0.)

972 Chapter 12 Discrete Hilbert Transforms

12.15. x[n] is a real, causal sequence with DTFT X(ejω). The imaginary part of X(ejω) is

Im{X(ejω)} = sin ω,

and it is also known that
∞∑

n=−∞
x[n] = 3.

Determine x[n].
12.16. Consider a real, causal sequence x[n] with DTFT X(ejω), where the following two facts

are given about X(ejω):

XR(ejω) = 2 − 4 cos(3ω),

X(ejω)|ω=π = 7.

Are these facts consistent? That is, can a sequence x[n] satisfy both? If so, give one choice
for x[n]. If not, explain why not.

12.17. Consider a real, causal, finite-length signal x[n] with length N = 2 and with a 2-point
DFT X[k] = XR[k] + jXI [k] for k = 0, 1. If XR[k] = 2δ[k] − 4δ[k − 1], is it possible to
determine x[n] uniquely? If so, give x[n]. If not, give several choices for x[n] satisfying the
stated condition on XR[k].

12.18. Letx[n]be a real-valued, causal, finite-length sequence with lengthN = 3. Find two choices
for x[n] such that the real part of the DFT XR[k] matches that shown in Figure P12.18.
Note that only one of your sequences is “periodically causal” according to the definition
in Section 10.2, where x[n] = 0 for N/2 < n ≤ N − 1.

0 1

66

2

9 XR[k]

k Figure P12.18

12.19. Let x[n] be a real, causal, finite-length sequence with length N = 4 that is also periodically
causal. The real part of the 4-point DFT XR[k] for this sequence is shown in Figure P12.19.
Determine the imaginary part of the DFT jXI [k].

0 1

1 1

2

2

4

3

XR[k]

k Figure P12.19

12.20. Consider a sequence x[n] that is real, causal, and of finite length with N = 6. The imaginary
part of the 6-point DFT of this sequence is

jXI [k] =
⎧⎨⎩

−j2/
√

3, k = 2,

j2/
√

3, k = 4,

0, otherwise.

Chapter 12 Problems 973

Additionally, it is known that

1
6

5∑
k=0

X[k] = 1.

Which of the sequences shown in Figure P12.20 are consistent with the information given?

0 1

1

2 3 4

2/3

–2/3

2/3

–2/3

2/3

–2/3

2/3

–2/3

2/3

2/3 2/3

–2/3

–2/3 –2/3
–1 –1

5

x2[n]

n

0 1

2

3 4

4

6

–4

5

x4[n]

n

0

1

2 3 4 5

x6[n]

n

0 1

2 3 4 5

x8[n]

n

0 1

2

3 4 5

x1[n]

n

0 1

1

2

3 4 5

x3[n]

n

0 1

1

2

3 4 5

x5[n]

n

0 1

2

2

3

4 5

x7[n]

n

Figure P12.20

12.21. Let x[n] be a real causal sequence for which |x[n]| < ∞. The z-transform of x[n] is

X(z) =
∞∑

n=0

x[n]z−n,

which is a Taylor’s series in the variable z−1 and therefore converges to an analytic function
everywhere outside some circular disc centered at z = 0. (The ROC includes the point
z = ∞, and, in fact, X(∞) = x[0].) The statement that X(z) is analytic (in its ROC) implies
strong constraints on the function X(z). (See Churchill and Brown, 1990.) Specifically, its
real and imaginary parts each satisfy Laplace’s equation, and the real and imaginary parts
are related by the Cauchy–Riemann equations. We will use these properties to determine
X(z) from its real part when x[n] is a real, finite-valued, causal sequence.

Let the z-transform of such a sequence be

X(z) = XR(z) + jXI (z).

974 Chapter 12 Discrete Hilbert Transforms

where XR(z) and XI (z) are real-valued functions of z. Suppose that XR(z) is

XR(ρejω) = ρ + α cos ω

ρ
, α real,

for z = ρejω. Then find X(z) (as an explicit function of z), assuming that X(z) is analytic
everywhere except at z = 0. Do this using both of the following methods.

(a) Method 1, Frequency Domain. Use the fact that the real and imaginary parts of X(z)

must satisfy the Cauchy–Riemann equations everywhere that X(z) is analytic. The
Cauchy–Riemann equations are the following:

1. In Cartesian coordinates,

∂U

∂x
= ∂V

∂y
,

∂V

∂x
= −∂U

∂y
,

where z = x + jy and X(x + jy) = U(x, y) + jV (x, y).
2. In polar coordinates,

∂U

∂ρ
= 1

ρ

∂V

∂ω
,

∂V

∂ρ
= − 1

ρ

∂U

∂ω
,

where z = ρejω and X(ρejω) = U(ρ, ω) + jV (ρ, ω).

Since we know that U = XR , we can integrate these equations to find V = XI and
hence X. (Be careful to treat the constant of integration properly.)

(b) Method 2, Time Domain. The sequence x[n] can be represented as x[n] = xe[n]+xo[n],
where xe[n] is real and even with Fourier transform XR(ejω) and the sequence xo[n]
is real and odd with Fourier transform jXI (ejω). Find xe[n] and, using causality, find
xo[n] and hence x[n] and X(z).

12.22. x[n] is a causal, real-valued sequence with Fourier transform X(ejω). It is known that

Re{X(ejω)} = 1 + 3 cos ω + cos 3ω.

Determine a choice for x[n] consistent with this information, and specify whether or not
your choice is unique.

12.23. x[n] is a real-valued, causal sequence with DTFT X(ejω). Determine a choice for x[n] if
the imaginary part of X(ejω) is given by:

Im{X(ejω)} = 3 sin(2ω) − 2 sin(3ω).

12.24. Show that the sequence of DFS coefficients for the sequence

ũN [n] =
⎧⎨⎩

1, n = 0, N/2,

2, n = 1, 2, . . . , N/2 − 1,

0, n = N/2 + 1, . . . , N − 1,

is

ŨN [k] =
⎧⎨⎩

N, k = 0,

−j2 cot(πk/N), k odd,

0, k even, k �= 0.

Hint: Find the z-transform of the sequence

uN [n] = 2u[n] − 2u[n − N/2] − δ[n] + δ[n − N/2],
and sample it to obtain Ũ [k].

Chapter 12 Problems 975

Advanced Problems

12.25. Consider a real-valued finite-duration sequence x[n] of length M . Specifically, x[n] = 0
for n < 0 and n > M − 1. Let X[k] denote the N -point DFT of x[n] with N ≥ M and N

odd. The real part of X[k] is denoted XR[k].
(a) Determine, in terms of M , the smallest value of N that will permit X[k] to be uniquely

determined from XR[k].
(b) With N satisfying the condition determined in part (a), X[k] can be expressed as the

circular convolution of XR[k] with a sequence UN [k]. Determine UN [k].
12.26. yr [n] is a real-valued sequence with DTFT Yr (e

jω). The sequences yr [n] and yi [n] in Figure
P12.26 are interpreted as the real and imaginary parts of a complex sequence y[n], i.e.,
y[n] = yr [n] + jyi [n]. Determine a choice for H(ejω) in Figure P12.26 so that Y (ejω) is
Yr (e

jω) for negative frequencies and zero for positive frequencies between −π and π , i.e.,

Y (ejω) =
{

Yr (e
jω), −π < ω < 0

0, 0 < ω < π

yr[n] yr[n]
y[n] = yr[n] + jyi[n]

yi[n]H(e j�)

Figure P12.26 System for obtaining y [n] from yr [n].

12.27. Consider a complex sequence h[n] = hr [n] + jhi [n], where hr [n] and hi [n] are both real
sequences, and let H(ejω) = HR(ejω) + jHI (ejω) denote the Fourier transform of h[n],
where HR(ejω) and HI (ejω) are the real and imaginary parts, respectively, of H(ejω).

LetHER(ejω)andHOR(ejω)denote the even and odd parts, respectively, ofHR(ejω),
and let HEI(e

jω), and HOI(e
jω) denote the even and odd parts, respectively, of HI (ejω).

Furthermore, let HA(ejω) and HB(ejω) denote the real and imaginary parts of the Fourier
transform of hr [n], and let HC(ejω) and HD(ejω) denote the real and imaginary parts
of the Fourier transform of hi [n]. Express HA(ejω), HB(ejω), HC(ejω), and HD(ejω) in
terms of HER(ejω), HOR(ejω), HEI(e

jω), and HOI(e
jω).

12.28. The ideal Hilbert transformer (90-degree phase shifter) has frequency response (over one
period)

H(ejω) =
{−j, ω > 0,

j, ω < 0.

Figure P12.28-1 shows H(ejω), and Figure P12.28-2 shows the frequency response of an
ideal lowpass filter Hlp(ejω) with cutoff frequency ωc = π/2. These frequency responses
are clearly similar, each having discontinuities separated by π .

– j

j

H(e j�)

�–� �

Figure P12.28-1

976 Chapter 12 Discrete Hilbert Transforms

Hlp(e j�)

–2� 2� �–� �–
2

1

� �

2 Figure P12.28-2

(a) Obtain a relationship that expresses H(ejω) in terms of Hlp(ejω). Solve this equation

for Hlp(ejω) in terms of H(ejω).
(b) Use the relationships in part (a) to obtain expressions for h[n] in terms of hlp[n] and

for hlp[n] in terms of h[n].
The relationships obtained in parts (a) and (b) were based on definitions of ideal
systems with zero phase. However, similar relationships hold for nonideal systems
with generalized linear phase.

(c) Use the results of part (b) to obtain a relationship between the impulse response
of a causal FIR approximation to the Hilbert transformer and the impulse response
of a causal FIR approximation to the lowpass filter, both of which are designed by
(1) incorporating an appropriate linear phase, (2) determining the corresponding
ideal impulse response, and (3) multiplying by the same window of length (M + 1)
samples, i.e., by the window method discussed in Chapter 7. (If necessary, consider
the cases of M even and M odd separately.)

(d) For the Hilbert transformer approximations of Example 12.4, sketch the magnitude
of the frequency responses of the corresponding lowpass filters.

12.29. In Section 12.4.3, we discussed an efficient scheme for sampling a bandpass continuous-
time signal with Fourier transform such that

Sc(j�) = 0 for |�| ≤ �c and |�| ≥ �c + 	�.

In that discussion, it was assumed that the signal was initially sampled with sampling fre-
quency 2π/T = 2(�c + 	�). The bandpass sampling scheme is depicted in Figure 12.12.
After we form a complex bandpass discrete-time signal s[n] with one-sided Fourier trans-
form S(ejω), the complex signal is decimated by a factor M , which is assumed to be the
largest integer less than or equal to 2π/(�T).

(a) By carrying through an example such as the one depicted in Figure 12.13, show that if
the quantity 2π/(�T) is not an integer for the initial sampling rate chosen, then the
resulting decimated signal sd [n] will have regions of nonzero length where its Fourier
transform Sd(ejω) is identically zero.

(b) How should the initial sampling frequency 2π/T be chosen so that a decimation factor
M can be found such that the decimated sequence sd [n] in the system of Figure 12.12
will have a Fourier transform Sd(ejω) that is not aliased yet has no regions where it
is zero over an interval of nonzero length?

12.30. Consider an LTI system with frequency response,

H(ejω) =
{

1, 0 ≤ ω ≤ π,

0, −π < ω < 0.

The input x[n] to the system is restricted to be real valued and to have a Fourier transform
(i.e., x[n] is absolutely summable). Determine whether or not it is possible to always
uniquely recover the system input from the system output. If it is possible, describe how.
If it is not possible, explain why not.

Chapter 12 Problems 977

Extension Problems

12.31. Derive an integral expression for H(z) outside the unit circle in terms of Re{H(ejω)} when
h[n] is a real, stable, and causal sequence, i.e., h[n] = 0 for n > 0.

12.32. Let H{·} denote the (ideal) operation of Hilbert transformation; that is,

H{x[n]} =
∞∑

k=−∞
x[k]h[n − k],

where h[n] is

h[n] =
⎧⎨⎩ 2 sin2(πn/2)

πn
, n �= 0,

0, n = 0.

Prove the following properties of the ideal Hilbert transform operator.

(a) H{H{x[n]}} = −x[n]
(b)

∞∑
n=−∞

x[n]H{x[n]} = 0 [Hint: Use Parseval’s theorem.]

(c) H{x[n]∗y[n]} = H{x[n]}∗y[n] = x[n]∗H{y[n]}, wherex[n]andy[n]are any sequences.

12.33. An ideal Hilbert transformer with impulse response

h[n] =
⎧⎨⎩ 2 sin2(πn/2)

πn
, n �= 0,

0, n = 0,

has input xr [n] and output xi [n] = xr [n] ∗ h[n], where xr [n] is a discrete-time random
signal.

(a) Find an expression for the autocorrelation sequence φxixi [m] in terms of h[n] and
φxrxr [m].

(b) Find an expression for the cross-correlation sequence φxrxi [m]. Show that in this case,
φxrxi [m] is an odd function of m.

(c) Find an expression for the autocorrelation function of the complex analytic signal
x[n] = xr [n] + jxi [n].

(d) Determine the power spectrum Pxx(ω) for the complex signal in part (c).

978 Chapter 12 Discrete Hilbert Transforms

12.34. In Section 12.4.3, we discussed an efficient scheme for sampling a bandpass continuous-
time signal with Fourier transform such that

Sc(j�) = 0 for |�| ≤ �c and |�| ≥ �c + 	�.

The bandpass sampling scheme is depicted in Figure 12.12. At the end of the section,
a scheme for reconstructing the original sampled signal sr [n] was given. The original
continuous-time signal sc(t) in Figure 12.12 can, of course, be reconstructed from sr [n]
by ideal bandlimited interpolation (ideal D/C conversion). Figure P12.34-1 shows a block
diagram of the system for reconstructing a real continuous-time bandpass signal from a
decimated complex signal. The complex bandpass filter Hi(e

jω) in the figure has a fre-
quency response given by Eq. (12.79).

yre[n] yr[n] yc(t)

yie[n] yi[n]
T

yrd[n]

yid[n]

M

M

Complex
bandpass

filter
Hi(e j�)

Ideal
D/C

converter

Figure P12.34-1

(a) Using the example depicted in Figure 12.13, show that the system of Figure P12.34-1
will reconstruct the original real bandpass signal (i.e., yc(t) = sc(t)) if the inputs to
the reconstruction system are yrd[n] = srd[n] and yid[n] = sid[n].

(b) Determine the impulse response hi [n] = hri[n] + jhii[n] of the complex bandpass
filter in Figure P12.34-1.

(c) Draw a more detailed block diagram of the system of Figure P12.34-1 in which only
real operations are shown. Eliminate any parts of the diagram that are not necessary
to compute the final output.

(d) Now consider placing a complex LTI system between the system of Figure 12.12 and
the system of Figure P12.34-1. This is depicted in Figure P12.34-2, where the frequency
response of the system is denoted H(ejω). Determine how H(ejω) should be chosen
if it is desired that

Yc(j�) = Heff(j�)Sc(j�),

where

Heff(j�) =
{

1, �c < |�| < �c + 	�/2,

0, otherwise.

srd[n] yrd[n]

sid[n] yid[n]

Complex
LTI

system
H(e j�)

Figure P12.34-2

Chapter 12 Problems 979

12.35. In Section 12.3, we defined a sequence x̂[n] referred to as the complex cepstrum of a
sequence x[n], and indicated that a causal complex cepstrum x̂[n] is equivalent to the
minimum-phase condition of Section 5.4 on x[n]. The sequence x̂[n] is the inverse Fourier
transform of X̂(ejω) as defined in Eq. (12.53). Note that because X(ejω) and X̂(ejω) are
defined, the ROC of both X(z) and X̂(z) must include the unit circle.

(a) Justify the statement that the singularities (poles) of X̂(z) will occur wherever X(z)

has either poles or zeros. Use this fact to prove that if x̂[n] is causal, x[n] is minimum
phase.

(b) Justify the statement that if x[n] is minimum phase the constraints of the ROC require
x̂[n] to be causal.

We can examine this property for the case whenx[n] can be written as a superposition
of complex exponentials. Specifically, consider a sequence x[n] whose z-transform is

X(z) = A

Mi∏
k=1

(1 − akz
−1)

Mo∏
k=1

(1 − bkz)

Ni∏
k=1

(1 − ckz
−1)

No∏
k=1

(1 − dkz)

,

where A > 0 and ak, bk, ck and dk all have magnitude less than one.

(c) Write an expression for X̂(z) = log X(z).
(d) Solve for x̂[n] by taking the inverse z-transform of your answer in part (c).
(e) Based on part (d) and the expression for X(z), argue that for sequences x[n] of this

form, a causal complex cepstrum is equivalent to having minimum phase.

13
Cepstrum Analysis

and Homomorphic

Deconvolution

13.0 INTRODUCTION

Throughout this text, we have focused primarily on linear signal processing methods.
In this chapter, we introduce a class of nonlinear techniques referred to as cepstrum
analysis and homomorphic deconvolution. These methods have proven to be effective
and useful in a variety of applications. In addition, they further illustrate the considerable
flexibility and sophistication offered by discrete-time signal processing technologies.

In 1963, Bogert, Healy, and Tukey published a paper with the unusual title “The
Quefrency Analysis of Time Series for Echoes: Cepstrum, Pseudoautocovariance, Cross-
Cepstrum, and Saphe Cracking.”(See Bogert, Healy and Tukey, 1963.) They observed
that the logarithm of the power spectrum of a signal containing an echo has an additive
periodic component due to the echo, and thus, the power spectrum of the logarithm of
the power spectrum should exhibit a peak at the echo delay. They called this function
the cepstrum, interchanging letters in the word spectrum because “in general, we find
ourselves operating on the frequency side in ways customary on the time side and vice
versa.” Bogert et al. went on to define an extensive vocabulary to describe this new sig-
nal processing technique; however, only the terms cepstrum and quefrency have been
widely used.

At about the same time, Oppenheim (1964, 1967, 1969a) proposed a new class
of systems called homomorphic systems. Although nonlinear in the classic sense, these
systems satisfy a generalization of the principle of superposition; i.e., input signals and
their corresponding responses are superimposed (combined) by an operation having
the same algebraic properties as addition. The concept of homomorphic systems is very
general, but it has been studied most extensively for the combining operations of mul-

980

Section 13.1 Definition of the Cepstrum 981

tiplication and convolution, because many signal models involve these operations. The
transformation of a signal into its cepstrum is a homomorphic transformation that maps
convolution into addition, and a refined version of the cepstrum is a fundamental part
of the theory of homomorphic systems for processing signals that have been combined
by convolution.

Since the introduction of the cepstrum, the concepts of the cepstrum and homo-
morphic systems have proved useful in signal analysis and have been applied with suc-
cess in processing speech signals (Oppenheim, 1969b, Oppenheim and Schafer, 1968 and
Schafer and Rabiner, 1970), seismic signals (Ulrych, 1971 and Tribolet, 1979), biomed-
ical signals (Senmoto and Childers, 1972), old acoustic recordings (Stockham, Cannon
and Ingebretsen, 1975), and sonar signals (Reut, Pace and Heator, 1985). The cepstrum
has also been proposed as the basis for spectrum analysis (Stoica and Moses, 2005). This
chapter provides a detailed treatment of the properties and computational issues associ-
ated with the cepstrum and with deconvolution based on homomorphic systems. A num-
ber of these concepts are illustrated in Section 13.10 in the context of speech processing.

13.1 DEFINITION OF THE CEPSTRUM

The original motivation for the cepstrum as defined by Bogert et al. is illustrated by the
following simple example. Consider a sampled signal x[n] that consists of the sum of a
signal v[n] and a shifted and scaled copy (echo) of that signal; i.e.,

x[n] = v[n] + αv[n − n0] = v[n] ∗ (δ[n] + αδ[n − n0]). (13.1)

Noting that x[n] can be represented as a convolution, it follows that the discrete-time
Fourier transform of such a signal has the form of a product

X(ejω) = V (ejω)[1 + αe−jωn0]. (13.2)

The magnitude of X(ejω) is

|X(ejω)| = |V (ejω)|(1 + α2 + 2α cos(ωn0))
1/2, (13.3)

a real even function of ω. The basic observation motivating the cepstrum was that the
logarithm of the product such as in Eq. (13.3) would be a sum of two corresponding
terms, specifically

log |X(ejω)| = log |V (ejω)| + 1
2 log(1 + α2 + 2α cos(ωn0)). (13.4)

For convenience, we define Cx(e
jω) = log |X(ejω)|. Also, in anticipation of a discussion

in which we will want to stress the duality between the time- and frequency- domains,
we substitute ω = 2πf to obtain

Cx(e
j2πf) = log |X(ej2πf)| = log |V (ej2πf)| + 1

2 log(1 + α2 + 2α cos(2πf n0)). (13.5)

There are two components to this real function of normalized frequency f . The
term log |V (ej2πf)| is due solely to the signal v[n], and the second term, log(1 + α2 +
2α cos(2πf n0)) is due to the combination (echoing) of the signal with itself. We can
think of Cx(e

j2πf) as a waveform with continuous independent variable f . The part
due to the echo will be periodic in f with period 1/n0.1 We are used to the notion

1Because log(1 + α2 + 2α cos(2πf n0)) is the log-magnitude of a DTFT, it is also periodic in f with
period one (2π in ω), as well as 1/n0.

982 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

that a periodic time waveform has a line spectrum, i.e., its spectrum is concentrated at
integer multiples of a common fundamental frequency, which is the reciprocal of the
fundamental period. In this case, we have a “waveform” that is a real, even function
of f (i.e., frequency). Fourier analysis appropriate for a continuous-variable periodic
function such as Cx(e

j2πf) would naturally be the inverse DTFT; i.e.,

cx[n] = 1
2π

∫ π

−π

Cx(e
jω)ejωndω =

∫ 1/2

−1/2
Cx(e

j2πf)ej2πf ndf. (13.6)

In the terminology of Bogert et al., cx[n] is referred to as the cepstrum of Cx(e
j2πf)

(or equivalently, of x[n] since Cx(e
j2πf) is derived directly from x[n]). Although the

cepstrum defined as in Eq. (13.6) is clearly a function of a discrete-time index n, Bogert
et al. introduced the term “quefrency” to draw a distinction between the cepstrum time
domain and that of the original signal. Because the term log(1 + α2 + 2α cos(2πf n0))

in Cx(e
j2πf) is periodic in f with period 1/n0, the corresponding component in cx[n]

will be nonzero only at integer multiples of n0, the fundamental quefrency of the term
log(1 + α2 + 2α cos(2πf n0)). Later in this chapter, we will show that for this example
of a simple echo with |α| < 1, the cepstrum has the form

cx[n] = cv[n] +
∞∑

k=1

(−1)k+1 αk

2k
(δ[n + kn0] + δ[n − kn0]), (13.7)

where cv[n] is the inverse DTFT of log |V (ejω)|, (i.e., the cepstrum of v[n]), and the
discrete impulses involve only the echo parameters α and n0. It was this result that
led Bogert et al. to observe that the cepstrum of a signal with an echo had a “peak”
at the echo delay time n0 that stands out clearly from cv[n]. Thus the cepstrum could
be used as the basis for detecting echoes. As mentioned above, the strange-sounding
terms “cepstrum” and “quefrency” and other terms were created to call attention to a
new way of thinking about Fourier analysis of signals wherein the time and frequency
domains were interchanged. In the remainder of this chapter, we will generalize the
concept of cepstrum by using the complex logarithm, and we will show many interesting
properties of the resulting mathematical definition. Furthermore, we will see that the
complex cepstrum can also serve as the basis for separating signals that are combined
by convolution.

13.2 DEFINITION OF THE COMPLEX CEPSTRUM

As the basis for generalizing the concept of the cepstrum, consider a stable sequence
x[n] whose z-transform expressed in polar form is

X(z) = |X(z)|ej � X(z), (13.8)

where |X(z)| and � X(z) are the magnitude and angle, respectively, of the complex
function X(z). Since x[n] is stable, the ROC for X(z) includes the unit circle, and the
DTFT of x[n] exists and is equal to X(ejω). The complex cepstrum associated with x[n]

Section 13.2 Definition of the Complex Cepstrum 983

is defined to be the stable sequence x̂[n],2 whose z-transform is

X̂(z) = log[X(z)]. (13.9)

Although any base can be used for the logarithm, the natural logarithm (i.e., base e)
is typically used and will be assumed throughout the remainder of the discussion. The
logarithm of a complex quantity X(z) expressed as in Eq. (13.8) is defined as

log[X(z)] = log[|X(z)|ej � X(z)] = log |X(z)| + j � X(z). (13.10)

Since in the polar representation of a complex number the angle is unique only to within
integer multiples of 2π , the imaginary part of Eq. (13.10) is not well defined. We will
address that issue shortly; for now we assume that an appropriate definition is possible
and has been used.

The complex cepstrum exists if log[X(z)] has a convergent power series represen-
tation of the form

X̂(z) = log[X(z)] =
∞∑

n=−∞
x̂[n]z−n, |z| = 1, (13.11)

i.e., X̂(z) = log[X(z)] must have all the properties of the z-transform of a stable se-
quence. Specifically, the ROC for the power series representation of log[X(z)] must be
of the form

rR < |z| < rL, (13.12)

where 0 < rR < 1 < rL. If this is the case, x̂[n], the sequence of coefficients of the power
series, is what we call the complex cepstrum of x[n].

Since we require x̂[n] to be stable, the ROC of X̂(z) includes the unit circle, and
the complex cepstrum can be represented using the inverse DTFT as

x̂[n] = 1
2π

∫ π

−π

log[X(ejω)]ejωndω

= 1
2π

∫ π

−π

[log |X(ejω)| + j � X(ejω)]ejωndω.

(13.13)

The term complex cepstrum distinguishes our more general definition from the
original definition of the cepstrum by Bogert et al. (1963), which was originally stated in
terms of the power spectrum of continuous-time signals. The use of the word complex
in this context implies that the complex logarithm is used in the definition. It does not
imply that the complex cepstrum is necessarily a complex-valued sequence. Indeed, as
we will see shortly, the definition we choose for the complex logarithm ensures that the
complex cepstrum of a real sequence will also be a real sequence.

The operation of mapping a sequence x[n] into its complex cepstrum x̂[n] is de-
noted as a discrete-time system operator D∗[·]; i.e., x̂ = D∗[x]. This operation is depicted
as the block diagram on the left in Figure 13.1. Similarly, since Eq. (13.9) is invertible
with the complex exponential function, we can also define the inverse system D−1∗ [·]

2In a somewhat more general definition of the complex cepstrum, x[n] and x̂[n] need not be restricted
to be stable. However, with the restriction of stability the important concepts can be illustrated with simpler
notation than in the general case.

984 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

ˆ ˆx[n] x[n]
D*[]

y[n] y[n]
D*

−1[]
Figure 13.1 System notation for the
mapping and inverse mapping between
a signal and its complex cepstrum.

which recovers x[n] from x̂[n]. The block diagram representation of D−1∗ [·] is shown on
the right in Figure 13.1. Specifically, D∗[·] and D−1∗ [·] in Figure 13.1 are defined so that if
ŷ[n] = x̂[n] in Figure 13.1, then y[n] = x[n]. In the context of homomorphic filtering of
convolved signals to be discussed in Section 13.8, D∗[·] is called the characteristic system
for convolution.

As introduced in Section 13.1, the cepstrum cx[n] of a signal3 is defined as the
inverse Fourier transform of the logarithm of the magnitude of the Fourier transform;
i.e.,

cx[n] = 1
2π

∫ π

−π

log |X(ejω)|ejωndω. (13.14)

Since the Fourier transform magnitude is real and nonnegative, no special considera-
tions are involved in defining the logarithm in Eq. (13.14). By comparing Eq. (13.14)
and Eq. (13.13), we see that cx[n] is the inverse transform of the real part of X̂(ejω).
Consequently cx[n] is equal to the conjugate-symmetric part of x̂[n]; i.e.,

cx[n] = x̂[n] + x̂∗[−n]
2

. (13.15)

The cepstrum is useful in many applications, and since it does not depend on the phase
of X(ejω), it is much easier to compute than the complex cepstrum. However, since it
is based on only the Fourier transform magnitude, it is not invertible, i.e., x[n] cannot
in general be recovered from cx[n], except in special cases. The complex cepstrum is
somewhat more difficult to compute, but it is invertible. Since the complex cepstrum
is a more general concept than the cepstrum, and since the properties of the cepstrum
can be derived from the properties of the complex cepstrum using Eq. (13.15), we will
emphasize the complex cepstrum in this chapter.

The additional difficulties encountered in defining and computing the complex
cepstrum are worthwhile for a variety of reasons. First, we see from Eq. (13.10) that the
complex logarithm has the effect of creating a new Fourier transform whose real and
imaginary parts are log |X(ejω)| and � X(ejω), respectively. Thus, we can obtain Hilbert
transform relations between these two quantities when the complex cepstrum is causal.
We discuss this point further in Section 13.5.2 and see in particular how it relates to
minimum-phase sequences. A second more general motivation, developed in Section
13.8, stems from the role that the complex cepstrum plays in defining a class of systems
for separating and filtering signals that are combined by convolution.

13.3 PROPERTIES OF THE COMPLEX LOGARITHM

Since the complex logarithm plays a key role in the definition of the complex cepstrum,
it is important to understand its definition and properties. Ambiguity in the definition

3cx [n] is also referred to as the real cepstrum to emphasize that it corresponds to only the real part of
the complex logarithm.

Section 13.4 Alternative Expressions for the Complex Cepstrum 985

of the complex logarithm causes serious computational issues. These will be discussed
in detail in Section 13.6. A sequence has a complex cepstrum if the logarithm of its
z-transform has a power series expansion, as in Eq. (13.11), where we have specified
the ROC to include the unit circle. This means that the Fourier transform

X̂(ejω) = log |X(ejω)| + j � X(ejω) (13.16)

must be a continuous, periodic function of ω, and consequently, both log |X(ejω)| and
� X(ejω) must be continuous functions of ω. Provided that X(z) does not have zeros on
the unit circle, the continuity of log |X(ejω)| is guaranteed, since X(ejω) is assumed to be
analytic on the unit circle. However, as previously discussed in Section 5.1.1, � X(ejω) is
in general ambiguous, since at each ω, any integer multiple of 2π can be added, and con-
tinuity of � X(ejω) is dependent on how the ambiguity is resolved. Since ARG[X(ejω)]
can be discontinuous, it is generally necessary to specify � X(ejω) explicitly in Eq. (13.16)
as the unwrapped (i.e., continuous) phase curve arg[X(ejω)].

It is important to note that if X(z) = X1(z)X2(z), then

arg[X(ejω)] = arg[X1(e
jω)] + arg[X2(e

jω)]. (13.17)

A similar additive property will not hold for ARG[X(ejω)], i.e., in general,

ARG[X(ejω)] �= ARG[X1(e
jω)] + ARG[X2(e

jω)]. (13.18)

Therefore, in order that X̂(ejω) be analytic (continuous) and have the property that if
X(ejω) = X1(e

jω)X2(e
jω), then

X̂(ejω) = X̂(ejω) + X̂2(e
jω), (13.19)

we must define X̂(ejω) as

X̂(ejω) = log |X(ejω)| + jarg[X(ejω)]. (13.20)

With x[n] real, arg[X(ejω)] can always be specified so that it is an odd periodic function
of ω. With arg[X(ejω)] an odd function of ω and log |X(ejω)| an even function of ω, the
complex cepstrum x̂[n] is guaranteed to be real.4

13.4 ALTERNATIVE EXPRESSIONS FOR THE COMPLEX
CEPSTRUM

So far we have defined the complex cepstrum as the sequence of coefficients in the power
series representation of X̂(z) = log[X(z)], and we have also given an integral formula in
Eq. (13.13) for determining x̂[n] from X̂(ejω) = log |X(ejω)|+ � X(ejω), where � X(ejω)

is the unwrapped phase function arg[X(ejω)]. The logarithmic derivative can be used
to derive other relations for the complex cepstrum that do not explicitly involve the
complex logarithm. Assuming that log[X(z)] is analytic, then

X̂′(z) = X′(z)
X(z)

(13.21)

4The approach outlined above to the problems presented by the complex logarithm can be developed
more formally through the concept of the Riemann surface (Brown and Churchill, 2008).

986 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

where ′ denotes differentiation with respect to z. From property 4 in Table 3.2, zX̂′(z)
is the z-transform of −nx̂[n], i.e.,

−nx̂[n] Z←→ zX̂′(z) (13.22)
Consequently, from Eq. (13.21),

−nx̂[n] Z←→ zX′(z)
X(z)

. (13.23)

Beginning with Eq. (13.21) we can also derive a difference equation that is satisfied
by x[n] and x̂[n]. Rearranging Eq. (13.21) and multiplying by z, we obtain

zX′(z) = zX̂′(z) · X(z). (13.24)
Using Eq. (13.22), the inverse z-transform of this equation is

−nx[n] =
∞∑

k=−∞
(−kx̂[k])x[n − k]. (13.25)

Dividing both sides by −n, we obtain

x[n] =
∞∑

k=−∞

(
k

n

)
x̂[k]x[n − k], n �= 0. (13.26)

The value of x̂[0] can be obtained by noting that

x̂[0] = 1
2π

∫ π

−π

X̂(ejω)dω. (13.27)

Since the imaginary part of X̂(ejω) is an odd function of ω, Eq. (13.27) becomes

x̂[0] = 1
2π

∫ π

−π

log |X(ejω)|dω. (13.28)

In summary, a signal and its complex cepstrum satisfy a nonlinear difference equa-
tion (Eq. (13.26)). Under certain conditions, this implicit relation between x̂[n] and x[n]
can be rearranged into a recursion formula that can be used in computation. Formulas
of this type are discussed in Section 13.6.4.

13.5 THE COMPLEX CEPSTRUM FOR EXPONENTIAL,
MINIMUM-PHASE AND MAXIMUM-PHASE
SEQUENCES

13.5.1 Exponential Sequences

If a sequence x[n] consists of a sum of complex exponential sequences, its z-transform
X(z) is a rational function of z. Such sequences are both useful and amenable to analysis.
In this section, we consider the complex cepstrum for stable sequences x[n] whose z-
transforms are of the form

X(z) =
Azr

Mi∏
k=1

(1 − akz
−1)

Mo∏
k=1

(1 − bkz)

Ni∏
k=1

(1 − ckz
−1)

No∏
k=1

(1 − dkz)

, (13.29)

Section 13.5 Properties of the Complex Cepstrum 987

where |ak|, |bk|, |ck|, and |dk| are all less than unity, so that factors of the form (1−akz
−1)

and (1 − ckz
−1) correspond to the Mi zeros and the Ni poles inside the unit circle, and

the factors (1 − bkz) and (1 − dkz) correspond to the Mo zeros and the No poles outside
the unit circle. Such z-transforms are characteristic of sequences composed of a sum
of stable exponential sequences. In the special case where there are no poles (i.e., the
denominator of Eq. (13.29) is unity), then the corresponding sequence x[n] is a sequence
of finite length (M + 1 = Mo + Mi + 1).

Through the properties of the complex logarithm, the product of terms in Eq. (13.29)
is transformed to the sum of logarithmic terms:

X̂(z) = log(A) + log(zr) +
Mi∑
k=1

log(1 − akz
−1) +

Mo∑
k=1

log(1 − bkz)

−
Ni∑

k=1

log(1 − ckz
−1) −

No∑
k=1

log(1 − dkz).

(13.30)

The properties of x̂[n] depend on the composite properties of the inverse transforms of
each term.

For real sequences, A is real, and if A is positive, the first term log(A) contributes
only to x̂[0]. Specifically, (see Problem 13.15),

x̂[0] = log |A|. (13.31)

If A is negative, it is less straightforward to determine the contribution to the complex
cepstrum due to the term log(A). The term zr corresponds only to a delay or advance
of the sequence x[n]. If r = 0, this term vanishes from Eq. (13.30). However, if r �= 0,
then the unwrapped phase function arg[X(ejω)] will include a linear term with slope
r . Consequently, with arg[X(ejω)] defined to be odd and periodic in ω and continuous
for |ω| < π , this linear-phase term will force a discontinuity in arg[X(ejω)] at ω = ±π ,
and X̂(z) will no longer be analytic on the unit circle. Although the cases of A negative
and/or r �= 0 can be formally accommodated, doing so seems to offer no real advantage,
because if two transforms of the form of Eq. (13.29) are multiplied together, we would
not expect to be able to determine how much of either A or r was contributed by each
component. This is analogous to the situation in ordinary linear filtering where two
signals, each with dc levels, have been added. Therefore, this question can be avoided in
practice by first determining the algebraic sign of A and the value of r and then altering
the input, so that its z-transform is of the form

X(z) =
|A|

Mi∏
k=1

(1 − akz
−1)

Mo∏
k=1

(1 − bkz)

Ni∏
k=1

(1 − ckz
−1)

No∏
k=1

(1 − dkz)

. (13.32)

988 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

Correspondingly, Eq. (13.30) becomes

X̂(z) = log |A| +
Mi∑
k=1

log(1 − akz
−1) +

Mo∑
k=1

log(1 − bkz)

−
Ni∑

k=1

log(1 − ckz
−1) −

No∑
k=1

log(1 − dkz).

(13.33)

With the exception of the term log |A|, which we have already considered, all the terms
in Eq. (13.33) are of the form log(1 −αz−1) and log(1 −βz). Bearing in mind that these
factors represent z-transforms with regions of convergence that include the unit circle,
we can make the power series expansions

log(1 − αz−1) = −
∞∑

n=1

αn

n
z−n, |z| > |α|, (13.34)

log(1 − βz) = −
∞∑

n=1

βn

n
zn, |z| < |β−1|. (13.35)

Using these expressions, we see that for signals with rational z-transforms as in
Eq. (13.32), x̂[n] has the general form

log |A|, n = 0, (13.36a)

x̂[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−

Mi∑
k=1

an
k

n
+

Ni∑
k=1

cn
k

n
, n > 0, (13.36b)

Mo∑
k=1

b−n
k

n
−

No∑
k=1

d−n
k

n
, n < 0. (13.36c)

Note that for the special case of a finite-length sequence, the second term would
be missing in each of Eqs. (13.36b) and (13.36c). Equations (13.36a) to (13.36c) suggest
the following general properties of the complex cepstrum:

Property 1: The complex cepstrum decays at least as fast as 1/|n|: Specifically,

|x̂[n]| < C
α|n|

|n| , −∞ < n < ∞,

where C is a constant and α equals the maximum of |ak|, |bk|, |ck|, and |dk|.5
Property 2: x̂[n] will have infinite duration, even if x[n] has finite duration.

Property 3: If x[n] is real, x̂[n] is also real.

5In practice, we generally deal with finite-length signals, which are represented by polynomials in z−1;
i.e., the numerator in Eq. (13.32). In many cases, the sequence may be hundreds or thousands of samples long.
For such sequences, as the sequence length increases, it is increasingly likely that almost all of the zeros of
the polynomial will cluster around the unit circle (Hughes and Nikeghbali, 2005). This implies that for long
finite-length sequences, the decay of the complex cepstrum is due primarily to the factor 1/n.

Section 13.5 Properties of the Complex Cepstrum 989

Properties 1 and 2 follow directly from Eqs. (13.36a) to (13.36c). We have suggested
property 3 earlier on the basis that for x[n] real, log |X(ejω)| is even and arg[X(ejω)] is
odd, so that the inverse transform of

X̂(ejω) = log |X(ejω)| + jarg[X(ejω)]
is real. To see property 3 in the context of this section, we note that if x[n] is real, then
the poles and zeros of X(z) are in complex conjugate pairs. Therefore, for every complex
term of the form αn/n in Eqs. (13.36a) to (13.36c) there will be a complex conjugate
term (α∗)n/n, so that their sum will be real.

13.5.2 Minimum-Phase and Maximum-Phase Sequences

As discussed in Chapters 5 and 12, a minimum-phase sequence is a real, causal, and
stable sequence with all the poles and zeros of the z-transform inside the unit circle.
Note that log[X(z)] has singularities at both the poles and the zeros of X(z). Since we
require that the ROC of log[X(z)] include the unit circle so that x̂[n] is stable, and since
causal sequences have an ROC of the form rR < |z|, it follows that there can be no
singularities of log[X(z)] on or outside the unit circle if x̂[n] = 0 for n < 0. Conversely,
if all the singularities of X̂(z) = log[X(z)] are inside the unit circle, then it follows that
x̂[n] = 0 for n < 0. Since the singularities of X̂(z) are the poles and the zeros of X(z),
the complex cepstrum of x[n] will be causal (x̂[n] = 0 for n < 0) if and only if the poles
and zeros of X(z) are inside the unit circle. In other words, x[n] is a minimum-phase
sequence if and only if its complex cepstrum is causal.

This is easily seen for the case of exponential or finite-length sequences by con-
sidering Eqs. (13.36a)–(13.36c). Clearly, all terms in Eq. (13.36c) will be zero if all the
coefficients bk and dk are zero, i.e., if there are no poles or zeros outside or on the unit
circle. Thus, another property of the complex cepstrum is

Property 4: The complex cepstrum x̂[n] = 0 for n < 0 if and only if x[n] is minimum
phase, i.e., X(z) has all its poles and zeros inside the unit circle.

Therefore, causality of the complex cepstrum is equivalent to the minimum phase lag,
minimum group delay, and minimum energy delay properties that also characterize
minimum-phase sequences.

Example 13.1 Complex Cepstrum of a Minimum-Phase Echo
System

The concept of the cepstrum arose initially from a consideration of echoes. As we
showed in Section 13.1, a signal with an echo is represented by a convolution
x[n] = v[n] ∗ p[n], where

p[n] = δ[n] + αδ[n − n0] Z←→ P(z) = 1 + αz−n0 . (13.37)

The zeros of P(z) are at locations zk = α1/n0ej2π(k+1/2)/n0 , and if |α| < 1, all the
zeros will lie inside the unit circle, in which case p[n] is a minimum-phase system. To

990 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

find the complex cepstrum p̂[n], we can use the power series expansion of log[P(z)]
as in Section 13.5.1 to obtain

P̂ (z) = log[1 + αz−n0] = −
∞∑

n=1

(−α)n

n
z−nn0 , (13.38)

from which it follows that

p̂[n] =
∞∑

m=1

(−1)m+1 αm

m
δ[n − mn0]. (13.39)

From Eq. (13.39), we see that v̂[n] = 0 for n < 0 for |α| < 1 as it should be for a
minimum-phase system. Furthermore, we see that the nonzero values of the complex
cepstrum for the minimum-phase echo system occur at positive integer multiples of n0.

Maximum-phase sequences are stable sequences whose poles and zeros are all
outside the unit circle. Thus, maximum-phase sequences are left-sided, and, by analogous
arguments, it follows that the complex cepstrum of a maximum-phase sequence is also
left-sided. Thus, another property of the complex cepstrum is:

Property 5: The complex cepstrum x̂[n] = 0 for n > 0 if and only if x[n] is maximum
phase; i.e., X(z) has all its poles and zeros outside the unit circle.

This property of the complex cepstrum is easily verified for exponential or finite-
length sequences by noting that if all the cks and aks are zero (i.e., no poles or zeros
inside the unit circle), then Eq. (13.36b) shows that x̂[n] = 0 for n > 0.

In Example 13.1, we determined the complex cepstrum of the impulse response
of the echo system when |α| < 1; i.e., when the echo is smaller than the direct signal. If
|α| > 1, the echo is larger than the direct signal, and the zeros of the system function
P(z) = 1 + αz−n0 lie outside the unit circle. In this case, the echo system is a maximum-
phase system.6 The corresponding complex cepstrum is

p̂[n] = log |α|δ[n] +
∞∑

m=1

(−1)m+1 α−m

m
δ[n + mn0]. (13.40)

From Eq. (13.40) we see that p̂[n] = 0 for n > 0 for |α| > 1 as it should be for
a maximum-phase system. In this case, we see that the nonzero values of the complex
cepstrum for the maximum-phase echo system occur at negative integer multiples of n0.

13.5.3 Relationship Between the Real Cepstrum and the
Complex Cepstrum

As discussed in Sections 13.1 and 13.2, the Fourier transform of the real cepstrum cx[n]
is the real part of the Fourier transform of the complex cepstrum x̂[n], and equivalently,
cx[n] corresponds to the even part of x̂[n]. i.e.,

cx[n] = x̂[n] + x̂[−n]
2

. (13.41)

6P(z) = z−n0 (α + zn0) has n0 poles at z = 0, which are ignored in computing p̂[n]

Section 13.5 Properties of the Complex Cepstrum 991

cx[n]

�min[n]

X(e j�) XR(e j�)

XR(e j�) = log |X(e j�)|

xmin[n] xmin[n]Fourier
transform

Inverse
Fourier

transform
log |·|

ˆ ˆ

ˆ

Figure 13.2 Determination of the complex cepstrum for minimum-phase signals.

If x̂[n] is causal, as it is if x[n] is minimum phase, then Eq. (13.41) is reversible,
i.e., x̂[n] can be recovered from cx[n] by applying an appropriate window to cx[n].
Specifically,

x̂[n] = cx[n]
min[n], (13.42a)

where

min[n] = 2u[n] − δ[n] =
⎧⎨⎩

2 n > 0
1 n = 0
0 n < 0

. (13.42b)

Equations (13.42a) and (13.42b) indicate how the complex cepstrum can be ob-
tained from the cepstrum and consequently also from the log magnitude alone if x[n] is
known to be minimum phase. This is also illustrated in block diagram form in Figure 13.2.

In the following example, we illustrate Eqs. (13.41) and (13.42a) for the minimum-
phase echo system of Example 13.1.

Example 13.2 Real Cepstrum of a Minimum-Phase
Echo System

Consider the complex cepstrum of the minimum-phase echo system as given in Eq. (13.39)
in Example 13.1. From Eq. (13.41) it follows that the real cepstrum for the minimum-
phase echo system is

cp[n] = 1
2
(

∞∑
m=1

(−1)m+1 αm

m
δ[n − mn0]

+
∞∑

m=1

(−1)m+1 αm

m
δ[−n − mn0]. (13.43)

Since δ[−n] = δ[n], Eq. (13.43) can be written in the more compact form

cp[n] =
∞∑

m=1

(−1)m+1 αm

2m

(
δ[n − mn0] + δ[n + mn0]) . (13.44)

Also note that if cp[n] is given by Eq. (13.44) and
min[n] is given by Eq. (13.42b), then

min[n]cp[n] is equal to p̂[n] in Eq. (13.39).

992 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

x[n]X(e j�) X(e j�)x[n] Fourier
transform

Complex
logarithm

Inverse
Fourier

transform

ˆ ˆ

D*[]

Figure 13.3 Cascade of three systems implementing the computation of the
complex cepstrum operation D∗[].

13.6 COMPUTATION OF THE COMPLEX CEPSTRUM

The practical use of the complex cepstrum requires accurate and efficient computational
methods to obtain it from a sampled signal. Implicit in all of the previous discussions
has been the assumption of uniqueness and continuity of the complex logarithm of
the Fourier transform of the input signal. If the mathematical representations obtained
above are to serve as the basis for computation of the complex cepstrum, or equivalently,
as the basis for realizations of the system D∗[·], then we must deal with the issues
associated with computing the Fourier transform and the complex logarithm.

The system D∗[·] is represented in terms of the Fourier transform by the equations

X(ejω) =
∞∑

n=−∞
x[n]e−jωn, (13.45a)

X̂(ejω) = log[X(ejω)], (13.45b)

x̂[n] = 1
2π

∫ π

−π

X̂(ejω)ejωndω. (13.45c)

These equations correspond to the cascade of three systems as depicted in Figure 13.3.
In computing the complex cepstrum numerically, we are limited to finite-length

input sequences, and we can compute the Fourier transform at only a finite number of
frequencies. That is, instead of using the DTFT, we must use the DFT. Thus, instead of
Eqs. (13.45a) to (13.45c), we have the computational realization

X[k] = X(ejω)

∣∣∣∣
ω=(2π/N)k

=
N−1∑
n=0

x[n]e−j (2π/N)kn, (13.46a)

X̂[k] = log[X(ejω)]
∣∣∣∣
ω=(2π/N)k

, (13.46b)

x̂p[n] = 1
N

N−1∑
k=0

X̂[k]ej (2π/N)kn. (13.46c)

These operations are depicted in Figure 13.4(a), and the corresponding operations for
realizing the inverse system are depicted in Figure 13.4(b).

Since in Eq. (13.46b) X̂[k] is a sampled version of X̂(ejω), it follows from the
discussion in Section 8.4 that x̂p[n] will be a time-aliased version of x̂[n], i.e., that x̂p[n]

Section 13.6 Computation of the Complex Cepstrum 993

yp[n]Yp[k] Yp[k]yp[n]
DFT Complex

exponential
IDFT

ˆ ˆ

D*
−1[]

(b)

xp[n]X[k] X[k]x[n]
DFT Complex

logarithm
IDFT

ˆ ˆ

D*[]

(a)

Figure 13.4 Approximate realization using the DFT of (a) D∗[·] and (b) D−1∗ [·].

is related to the desired x̂[n] by

x̂p[n] =
∞∑

r=−∞
x̂[n + rN]. (13.47)

However, we noted in Property 1 in Section 13.5 that x̂[n] decays faster than an exponen-
tial sequence, so it is to be expected that the approximation would become increasingly
better as N increases. By appending zeros to an input sequence, it is generally possible
to increase the sampling rate of the complex logarithm of the Fourier transform so that
severe time aliasing does not occur in the computation of the complex cepstrum.

13.6.1 Phase Unwrapping

Samples of X̂(ejω) as given by Eq. (13.46b) require samples of log|X(ejω)| and
arg[X(ejω)]. Samples of log|X(ejω)| at a suitable sampling rate can be computed by com-
puting the DFT of x[n] with zero padding. Samples ARG[X(ejω)], i.e., the phase modulo
2π are likewise straightforward to compute from samples of X(ejω) by using standard
inverse tangent routines available in most high-level computer languages. However, to
obtain the complex cepstrum or its aliased version x̂p[n], we require samples of the
unwrapped phase arg[X(ejω)]. Consequently, effective procedures for unwrapping the
phase, that is, obtaining samples of the unwrapped phase from samples of the phase mod-
ulo 2π , become an important computational aspect of obtaining the complex cepstrum.

To illustrate the issues, consider a finite-length causal input sequence whose Fourier
transform is of the form

X(ejω) =
M∑

n=0

x[n]e−jωn

= Ae−jωMo

Mi∏
k=1

(1 − ake
−jω)

Mo∏
k=1

(1 − bke
jω),

(13.48)

994 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

N/2

N/2

k

k

N/2
k

(a)

(b)

(c)

−�

�

−�

−3�

−2�

−4�

arg(X[k])

ARG(X[k])

2�r[k]

Figure 13.5 (a) Samples of
arg[X(ejω)]. (b) Principal value of
part (a). (c) Correction sequence for
obtaining arg from ARG.

where |ak| and |bk| are less than unity, M = Mo + Mi , and A is positive. A continuous-
phase curve for a sequence of this form is shown in Figure 13.5(a). The dots indicate
samples at frequencies ωk = (2π/N)k. Figure 13.5(b) shows the principal value and its
samples as computed from the DFT of the input sequence. One approach to unwrapping
the principal-value phase is based on the relation

arg(X[k]) = ARG(X[k]) + 2πr[k], (13.49)

where r[k] denotes an integer that determines the appropriate multiple of 2π to add to
the principal value at frequency ωk = 2πk/N . Figure 13.5(c) shows 2πr[k] required to
obtain Figure 13.5(a) from 13.5(b). This example suggests the following algorithm for
computing r[k] from ARG(X[k]) starting with r[0] = 0:

Section 13.6 Computation of the Complex Cepstrum 995

1. If ARG(X[k]) − ARG(X[k − 1]) > 2π − ε1, then r[k] = r[k − 1] − 1.

2. If ARG(X[k]) − ARG(X[k − 1]) < −(2π − ε1), then r[k] = r[k − 1] + 1.

3. Otherwise, r[k] = r[k − 1].
4. Repeat steps 1 − 3 for 1 ≤ k < N/2.

After r[k] is determined, Eq. (13.49) can be used to compute arg(X[k]) for 0 ≤ k < N/2.
At this stage, arg(X[k]) will contain a large linear-phase component due to the factor
e−jωMo in Eq. (13.48). This can be removed by adding 2πkMo/N to the unwrapped
phase over the interval 0 ≤ k < N/2. The values of arg(X[k]) for N/2 < k ≤ N − 1 can
be obtained by using symmetry. Finally, arg(X[N/2]) = 0.

The above algorithm works well if the samples of ARG(X[k]) are close enough
together so that the discontinuities can be detected reliably. The parameter ε1 is a toler-
ance recognizing that the magnitude of the difference between adjacent samples of the
principal-value phase will always be less than 2π . If ε1 is too large, a discontinuity will be
indicated where there is none. If ε1 is too small, the algorithm will miss a discontinuity
falling between two adjacent samples of a rapidly varying unwrapped phase function
arg[X(ejω)]. Obviously, increasing the sampling rate of the DFT by increasing N im-
proves the chances of correctly detecting discontinuities, and thus, correctly computing
arg(X[k]). If arg[X(ejω)] varies rapidly, then we expect x̂[n] to decay less rapidly than
if arg[X(ejω)] varied more slowly. Therefore, aliasing of x̂[n] is more of a problem for
rapidly varying phase. Increasing the value of N reduces the aliasing of the complex
cepstrum and also improves the chances of being able to correctly unwrap the phase of
X[k] by the previously described algorithm.

In some cases, the simple algorithm we just developed may fail because it is im-
possible or impractical to use a large enough value for N . Often, the aliasing for a given
N is acceptable, but principal-value discontinuities cannot be reliably detected. Tribo-
let (1977, 1979) proposed a modification of the algorithm that uses both the principal
value of the phase and the phase derivative to compute the unwrapped phase. As above,
Eq. (13.49) gives the set of permissible values at frequency ωk = (2π/N)k, and we seek
to determine r[k]. It is assumed that we know the phase derivative,

arg′(X[k]) = d

dω
arg[X(ejω)]

∣∣∣∣
ω=2πk/N

at all values of k. (A procedure for computing these samples of the phase derivative
will be developed in Section 13.6.2.) To compute arg(X[k]) we further assume that
arg(X[k − 1]) is known. Then, ãrg(X[k]), the estimate of arg(X[k]), is defined as

ãrg(X[k]) = arg(X[k − 1]) + 	ω

2
{arg′(X[k]) + arg′(X[k − 1])}. (13.50)

Equation (13.50) is obtained by applying trapezoidal numerical integration to the sam-
ples of the phase derivative. This estimate is said to be consistent if for some ε2 an integer
r[k] exists such that

|ãrg(X[k]) − ARG(X[k]) − 2πr[k]| < ε2 < π. (13.51)

Obviously, the estimate improves with decreasing numerical integration step size 	ω.
Initially, 	ω = 2π/N as provided by the DFT. If Eq. (13.51) cannot be satisfied by
an integer r[k], then 	ω is halved, and a new estimate of arg(X[k]) is computed with

996 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

the new step size. Then, Eq. (13.51) is evaluated with the new estimate. Increasingly
accurate estimates of arg(X[k]) are computed by numerical integration until Eq. (13.51)
can be satisfied by an integer r[k]. That resulting r[k] is used in Eq. (13.49) to finally
compute arg(X[k]). This unwrapped phase is then used to compute arg(X[k + 1]), and
so on.

Another approach to phase unwrapping for a finite-length sequence is based on
the fact that the z-transform of a finite-length sequence is a finite-order polynomial,
and therefore can be viewed as consisting of a product of 1st-order factors. For each
such factor, ARG[X(ejω)] and arg[X(ejω)] are equal, i.e., the phase for a single factor
will never require unwrapping. Furthermore, the unwrapped phase for the product of
the individual factors is the sum of the unwrapped phases of the individual factors.
Consequently, by treating a finite-length sequence of length N as the coefficients in an
N th-order polynomial, and by first factoring that polynomial into its 1st-order factors,
the unwrapped phase can be easily computed. For small values of N , conventional
polynomial-rooting algorithms can be applied. For large values, an effective algorithm
has been developed by Sitton et al. (2003) and has been successfully demonstrated with
polynomials of order in the millions. However, there are cases in which that algorithm
also fails, particularly in identifying roots that are not close to the unit circle.

In the discussion above, we have briefly described several algorithms for obtaining
the unwrapped phase. Karam and Oppenheim (2007) have also proposed combining
these algorithms to exploit their various advantages.

Other issues in computing the complex cepstrum from a sampled input signal x[n]
relate to the linear-phase term in arg[X(ejω)] and the sign of the overall scale factor
A. In our definition of the complex cepstrum, arg[X(ejω)] is required to be continuous,
odd and periodic in ω. Therefore, the sign of A must be positive, since if negative, a
phase discontinuity would occur at ω = 0. Furthermore, arg[X(ejω)] cannot contain a
linear term, since that would impose a discontinuity at ω = π . Consider, for example,
a finite-length causal sequence of length M + 1. The corresponding z-transform will be
of the form of Eq. (13.29) with No=Ni=0, and M=Mo+Mi . Also, since x[n] = 0, n < 0,
it follows that r = −Mo. Consequently, the Fourier transform takes the form

X(ejω) =
M∑

n=0

x[n]e−jωn

= Ae−jωMo

Mi∏
k=1

(1 − ake
−jω)

Mo∏
k=1

(1 − bke
jω),

(13.52)

with |ak| and |bk| less than unity. The sign of A is easily determined, since it will corre-
spond to the sign of X(ejω) at ω = 0, which, in turn, is easily computed as the sum of
all the terms in the input sequence.

13.6.2 Computation of the Complex Cepstrum Using the
Logarithmic Derivative

As an alternative to the explicit computation of the complex logarithm, a mathematical
representation based on the logarithmic derivative can be exploited. For real sequences,

Section 13.6 Computation of the Complex Cepstrum 997

the derivative of X̂(ejω) can be represented in the equivalent forms

X̂′(ejω) = dX̂(ejω)

dω
= d

dω
log |X(ejω)| + j

d

dω
arg[X(ejω)] (13.53a)

and

X̂′(ejω) = X′(ejω)

X(ejω)
, (13.53b)

where ′ represents differentiation with respect to ω. Since the DTFT of x[n] is

X(ejω) =
∞∑

n=−∞
x[n]e−jωn, (13.54)

its derivative with respect to ω is

X′(ejω) =
∞∑

n=−∞
(−jnx[n])e−jωn; (13.55)

i.e., X′(ejω) is the DTFT of −jnx[n]. Likewise, X̂′(ejω) is the Fourier transform of
−jnx̂[n]. Thus, x̂[n] can be determined for n �= 0 from

x̂[n] = −1
2πnj

∫ π

−π

X′(ejω)

X(ejω)
ejωndω, n �= 0. (13.56)

The value of x̂[0] can be determined from the log magnitude as

x̂[0] = 1
2π

∫ π

−π

log |X(ejω)|dω. (13.57)

Equations (13.54) to (13.57) represent the complex cepstrum in terms of the
DTFTs of x[n] and nx[n] and thus do not explicitly involve the unwrapped phase. For
finite-length sequences, samples of these transforms can be computed using the DFT,
thereby leading to the corresponding equations

X[k] =
N−1∑
n=0

x[n]e−j (2π/N)kn = X(ejω)

∣∣∣∣
ω=(2π/N)k

, (13.58a)

X′[k] = −j

N−1∑
n=0

nx[n]e−j (2π/N)kn = X′(ejω)

∣∣∣∣
ω=(2π/N)k

, (13.58b)

x̂dp[n] = − 1
jnN

N−1∑
k=0

X′[k]
X[k] ej (2π/N)kn, 1 ≤ n ≤ N − 1, (13.58c)

x̂dp[0] = 1
N

N−1∑
k=0

log |X[k]|, (13.58d)

where the subscript d refers to the use of the logarithmic derivative and the subscript
p is a reminder of the inherent periodicity of the DFT calculations. With the use of

998 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

Eqs. (13.58a) to (13.58d), we avoid the problems of computing the complex logarithm
at the cost, however, of more severe aliasing, since now

x̂dp[n] = 1
n

∞∑
r=−∞

(n + rN)x̂[n + rN], n �= 0. (13.59)

Thus, assuming that the sampled continuous phase curve is accurately computed, we
would expect that for a given value of N , x̂p[n] in Eq. (13.46c) would be a better ap-
proximation to x̂[n] than would x̂dp[n] in Eq. (13.58c).

13.6.3 Minimum-Phase Realizations for Minimum-Phase
Sequences

In the special case of minimum-phase sequences, the mathematical representation is
simplified, as indicated in Figure 13.2. A computational realization based on using the
DFT in place of the Fourier transform in Figure 13.2 is given by the equations

X[k] =
N−1∑
n=0

x[n]e−j (2π/N)kn, (13.60a)

cxp[n] = 1
N

N−1∑
k=0

log |X[k]|ej (2π/N)kn. (13.60b)

In this case, it is the cepstrum that is aliased; i.e.,

cxp[n] =
∞∑

r=−∞
cx[n + rN]. (13.61)

To compute the complex cepstrum from cxp[n] based on Figure 13.2, we write:

x̂cp[n] =
⎧⎨⎩

cxp[n], n = 0, N/2,

2cxp[n], 1 ≤ n < N/2,

0, N/2 < n ≤ N − 1.

(13.62)

Clearly, x̂cp[n] �= x̂p[n], since it is the even part of x̂[n] that is aliased, rather than x̂[n]
itself. Nevertheless, for large N , x̂cp[n] can be expected to be a reasonable approximation
to x̂[n] over the finite interval 0 ≤ n < N/2. Similarly, if x[n] is maximum phase, an
approximation to the complex cepstrum would be obtained from

x̂cp[n] =
⎧⎨⎩

cxp[n], n = 0, N/2,

0, 1 ≤ n < N/2,

2cxp[n], N/2 < n ≤ N − 1.

(13.63)

13.6.4 Recursive Computation of the Complex Cepstrum
for Minimum- and Maximum-Phase Sequences

For minimum-phase sequences, the difference Eq. (13.26) can be rearranged to provide
a recursion formula for x̂[n]. Since for minimum-phase sequences both x̂[n] = 0 and

Section 13.6 Computation of the Complex Cepstrum 999

x[n] = 0 for n < 0, Eq. (13.26) becomes

x[n] =
n∑

k=0

(
k

n

)
x̂[k]x[n − k], n > 0,

= x̂[n]x[0] +
n−1∑
k=0

(
k

n

)
x̂[k]x[n − k],

(13.64)

which is a recursion for D∗[] for minimum-phase signals. Solving for x̂[n] yields the
recursion formula

x̂[n] =

⎧⎪⎨⎪⎩
0, n < 0,

x[n]
x[0] −

n−1∑
k=0

(
k

n

)
x̂[k]x[n − k]

x[0] , n > 0.
(13.65)

Assuming x[0] > 0, the value of x̂[0] can be shown to be (see Problem 13.15)

x̂[0] = log(|A|) = log(|x[0]|). (13.66)

Therefore. Eqs. (13.65) and (13.66) constitute a procedure for computing the complex
cepstrum for minimum-phase signals. It also follows from Eq. (13.65) that this com-
putation is causal for minimum-phase inputs; i.e., the output at time n0 is dependent
only on the input for n ≤ n0, where n0 is arbitrary (see Problem 13.20). Similarly,
Eqs. (13.64) and (13.66) represent the computation of the minimum-phase sequence
from its complex cepstrum.

For maximum-phase signals, x̂[n] = 0, and x[n] = 0 for n > 0. Thus, in this case
Eq. (13.26) becomes

x[n] =
0∑

k=n

(
k

n

)
x̂[k]x[n − k], n < 0,

= x̂[n]x[0] +
0∑

k=n+1

(
k

n

)
x̂[k]x[n − k].

(13.67)

Solving for x̂[n], we have

x̂[n] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x[n]
x[0] −

0∑
k=n+1

(
k

n

)
x̂[k]x[n − k]

x[0] , n < 0,

log(x[0]), n = 0,

0, n > 0.

(13.68)

Equation (13.68) serves as a procedure for computing the complex cepstrum for a
maximum-phase sequence and Eq. (13.67) is a computational procedure for the inverse
characteristic system for convolution.

Thus we see that in the case of minimum-phase or maximum-phase sequences,
we also have the recursion formulas of Eqs. (13.64)–(13.68) as possible realizations of
the characteristic system and its inverse. These equations can be quite useful when the
input sequence is very short or when only a few samples of the complex cepstrum are
desired. With these formulas, of course, there is no aliasing error.

1000 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

13.6.5 The Use of Exponential Weighting

Exponential weighting of a sequence can be used to avoid or mitigate some of the
problems encountered in computing the complex cepstrum. Exponential weighting of
a sequence x[n] is defined by

w[n] = αnx[n]. (13.69)

The corresponding z-transform is

W(z) = X(α−1z). (13.70)

If the ROC of X(z) is rR < |z| < rL, then the ROC of W(z) is |α|rR < |z| < |α|rL, and
the poles and zeros of X(z) are shifted radially by the factor |α|; i.e., if z0 is a pole or
zero of X(z), then z0α is the corresponding pole or zero of W(z).

A convenient property of exponential weighting is that it commutes with convo-
lution. That is, if x[n] = x1[n] ∗ x2[n] and w[n] = anx[n], then

W(z) = X(α−1z) = X1(α
−1z)X2(α

−1z), (13.71)

so that

w[n] = (anx1[n]) ∗ (anx2[n])
= w1[n] ∗ w2[n]. (13.72)

Thus, in computing the complex cepstrum, if X(z) = X1(z)X2(z),

Ŵ (z) = log[W(z)]
= log[W1(z)] + log[W2(z)].

(13.73)

Exponential weighting can be exploited with cepstrum computation in a variety
of ways. For example, poles or zeros of X(z) on the unit circle require special care
in computing the complex cepstrum. It can be shown (Carslaw, 1952) that a factor
log(1 − ejθ e−jω) has a Fourier series

log(1 − ejθ e−jω) = −
∞∑

n=1

ejθn

n
e−jωn (13.74)

and thus, the contribution of such a term to the complex cepstrum is (ejθn/n)u[n − 1].
However, the log magnitude is infinite, and the phase is discontinuous with a jump of π

radians at ω = θ . This presents obvious computational difficulties that we would prefer
to avoid. By exponential weighting with 0 < α < 1, all poles and zeros are moved
radially inward. Therefore, a pole or zero on the unit circle will move inside the unit
circle.

As another example, consider a causal, stable signal x[n] that is nonminimum
phase. The exponentially weighted signal, w[n] = αnx[n], can be converted into a
minimum-phase sequence if α is chosen, so that |zmaxα| < 1, where zmax is the location
of the zero with the greatest magnitude.

Section 13.7 Computation of the Complex Cepstrum Using Polynomial Roots 1001

13.7 COMPUTATION OF THE COMPLEX CEPSTRUM
USING POLYNOMIAL ROOTS

In Section 13.6.1, we discussed the fact that for finite-length sequences, we could exploit
the fact that the z-transform is a finite-order polynomial, and that the total unwrapped
phase can be obtained by summing the unwrapped phases for each of the factors. If the
polynomial is first factored into its 1st-order terms using a polynomial rooting algorithm,
then the unwrapped phase for each factor is easily specified analytically. In a similar
manner the complex cepstrum for the finite-length sequence can be obtained by first
factoring the polynomial, and then summing the complex cepstra for each of the factors.

The basic approach is suggested by Section 13.5.1. If the sequence x[n] has finite
length, as is essentially always the case with signals obtained by sampling, then its z-
transform is a polynomial in z−1 of the form

X(z) =
M∑

n=0

x[n]z−n. (13.75)

Such an M th-order polynomial in z−1 can be represented as

X(z) = x[0]
Mi∏

m=1

(1 − amz−1)

Mo∏
m=1

(1 − b−1
m z−1), (13.76)

where the quantities am are the (complex) zeros that lie inside the unit circle, and the
quantities b−1

m are the zeros that are outside the unit circle; i.e., |am| < 1 and |bm| < 1.
We assume that no zeros lie precisely on the unit circle. If we factor a term −b−1

m z−1 out
of each factor of the product on the right in Eq. (13.76), that equation can be expressed
as

X(z) = Az−Mo

Mi∏
m=1

(1 − amz−1)

Mo∏
m=1

(1 − bmz), (13.77a)

where

A = x[0](−1)Mo

Mo∏
m=1

b−1
m . (13.77b)

This representation can be computed by using a polynomial rooting algorithm to find
the zeros am and 1/bm that lie inside and outside the unit circle, respectively, for the
polynomial whose coefficients are the sequence x[n].7

Given the numeric representation of the z-transform polynomial as in Eqs. (13.77a)
and (13.77b), numeric values of the complex cepstrum sequence can be computed from

7Perhaps not surprisingly, it is rare that a computed root of a polynomial is precisely on the unit circle.
In cases where this occurs, such roots can be moved by exponential weighting, as described in Section 13.6.5.

1002 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

Eqs. (13.36a)–(13.36c) as

x̂[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

log |A|, n = 0,

−
Mi∑

m=1

an
m

n
, n > 0,

Mo∑
m=1

b−n
m

n
, n < 0.

(13.78)

If A < 0, this fact can be recorded separately, along with the value of Mo, the number of
roots that are outside the unit circle. With this information and x̂[n], we have all that is
needed to reconstruct the original signal x[n]. Indeed, in Section 13.8.2, it will be shown
that, in principle, x[n] can be computed recursively from just M + 1 = Mo + Mi + 1
samples of x̂[n].

This method of computation is particularly useful when M = Mo +Mi is small, but
it is not limited to small M . Steiglitz and Dickinson (1982) first proposed this method
and reported successful rooting of polynomials with degree as high as M = 256, which
was a practical limit imposed by computational resources readily available at that time.
With the polynomial rooting algorithm of Sitton et al. (2003), the complex cepstrum
of extremely long finite-length sequences can be accurately computed. Among the ad-
vantages of this method are the fact that there is no aliasing and there are none of the
uncertainties associated with phase unwrapping.

13.8 DECONVOLUTION USING THE COMPLEX
CEPSTRUM

The complex cepstrum operator D∗[], plays a key role in the theory of homomorphic
systems, which is based on a generalization of the principle of superposition (Oppen-
heim, 1964, 1967, 1969a, Schafer, 1969 and Oppenheim, Schafer and Stockham, 1968). In
homomorphic filtering of convolved signals, the operator D∗[] is termed the character-
istic system for convolution since it has the special property of transforming convolution
into addition. To see this, suppose

x[n] = x1[n] ∗ x2[n] (13.79)

so that the corresponding z-transform is

X(z) = X1(z) · Xz(z). (13.80)

If the complex logarithm is computed as we have prescribed in the definition of the
complex cepstrum, then

X̂(z) = log[X(z)] = log[X1(z)] + log[X2(z)]
= X̂1(z) + X̂2(z),

(13.81)

which implies that the complex cepstrum is

x̂[n] = D∗[x1[n] ∗ x2[n]] = x̂1[n] + x̂2[n]. (13.82)

A similar analysis shows that if ŷ[n] = y1[n] + y2[n]. then it follows that
D−1∗ [ŷ1[n] + ŷ2[n]] = ŷ1[n] ∗ ŷ2[n]. If the cepstral components x̂1[n] and x̂2[n] occupy

Section 13.8 Deconvolution Using the Complex Cepstrum 1003

y[n]x[n]
D*[] D*

−1[]

* + + + + *Linear
system

L[]

x[n]ˆ y[n]ˆ

Figure 13.6 Canonic form for homomorphic systems where inputs and corre-
sponding outputs are combined by convolution.

different quefrency ranges, linear filtering can be applied to the complex cepstrum to
remove either x1[n] or x2[n]. If this is followed by transformation through the inverse
system D−1∗ [], the corresponding component will be removed in the output. This proce-
dure for separating convolved signals (deconvolution) is depicted in Figure 13.6, where
the system L[] is a linear (although not necessarily time invariant) system. The sym-
bols ∗ and + at the inputs and outputs of the component systems in Figure 13.6 denote
the operations of superposition that hold at each point in the diagram. Figure 13.6 is a
general representation of a class of systems that obey a generalized principle of super-
position with convolution as the operation for combining signals. All members of this
class of systems differ only in the linear part L[].

In the remainder of this section, we illustrate how cepstral analysis can be used for
the special deconvolution problems of decomposing a signal into either a convolution
of a minimum-phase and allpass component or minimum-phase and maximum-phase
component. In Section 13.9, we illustrate how cepstral analysis can be applied to de-
convolution of a signal convolved with an impulse train, representing for example, an
idealization of a multipath environment. In Section 13.10, we generalize this example
to illustrate how cepstral analysis has been successfully applied to speech processing.

13.8.1 Minimum-Phase/Allpass Homomorphic
Deconvolution

Any sequence x[n] for which the complex cepstrum exists can always be expressed as
the convolution of a minimum-phase and an allpass sequence as in

x[n] = xmin[n] ∗ xap[n]. (13.83)

In Eq. (13.83) xmin[n] and xap[n] denote minimum-phase and allpass components re-
spectively.

If x[n] is not minimum phase, then the system of Figure 13.2 with input x[n] and

min[n] given by Eq. (13.42b) produces the complex cepstrum of the minimum-phase
sequence that has the same Fourier transform magnitude as x[n]. If
max[n] =
min[−n]
is used, the output will be the complex cepstrum of the maximum-phase sequence having
the same Fourier transform magnitude as x[n].

We can obtain the complex cepstrum x̂min[n] of the sequence xmin[n] in Eq. (13.83)
through the operations of Figure 13.2. The complex cepstrum x̂ap[n] can be obtained
from x̂[n] by subtracting x̂min[n] from x̂[n], i.e.,

x̂ap[n] = x̂[n] − x̂min[n].
To obtain xmin[n] and xap[n], we apply the transformation D−1∗ to x̂min[n] and x̂ap[n].

1004 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

�min[n]

X(e j�) cx[n]x[n] xmin[n] xmin[n]
Fourier

transform

Inverse
Fourier

transform
log |·|

ˆ X̂min(e j�) Xmin(e j�)Fourier
transform

Inverse
Fourier

transform
exp (·)

xap[n]Xap(e j�) Inverse
Fourier

transform
	

Figure 13.7 Deconvolution of a sequence into minimum-phase and allpass components
using the cepstrum.

Although the approach outlined above to obtain xmin[n] and xap[n] is theoretically
correct, explicit evaluation of the complex cepstrum x̂[n] is required in its implementa-
tion. If we are interested only in obtaining xmin[n] and xap[n], evaluation of the complex
cepstrum and the associated need for phase unwrapping can be avoided. The basic strat-
egy is incorporated in the block diagram of Figure 13.7. This system relies on the fact
that

Xap(ejω) = X(ejω)

Xmin(ejω)
. (13.84a)

The magnitude of Xap(ejω) is therefore

|Xap(ejω)| = |X(ejω)|
|Xmin(ejω)| = 1 (13.84b)

and
� Xap(ejω) = � X(ejω) − � Xmin(e

jω). (13.84c)

Since xap[n] is obtained as the inverse Fourier transform of ej � Xap(ejω), (that is,
|Xap(ejω)| = 1), each of the phase functions in Eq. (13.84c) need only be known or
specified to within integer multiples of 2π . Therefore, even though as a natural conse-
quence of the procedure outlined in Figure 13.7, � Xmin(e

jω) = Im{X̂min(e
jω)} will be

an unwrapped phase function, � X(ejω) in Eq. (13.84c) can be computed modulo 2π .

13.8.2 Minimum-Phase/Maximum-Phase Homomorphic
Deconvolution

Another representation of a sequence is as the convolution of a minimum-phase se-
quence with a maximum-phase sequence as in

x[n] = xmn[n] ∗ xmx[n], (13.85)
where xmn[n] and xmx[n] denote minimum-phase and maximum-phase components,
respectively.8 In this case, the corresponding complex cepstrum is

x̂[n] = x̂mn[n] + x̂mx[n]. (13.86)

8In general the minimum-phase component xmn[n] in Eq. (13.85) will be different from xmin[n] in
Eq. (13.83).

Section 13.8 Deconvolution Using the Complex Cepstrum 1005

�mn[n]

x[n]
D*[·] D*

−1[·]
xmn[n] xmn[n]ˆ

�mx[n]

D*
−1[·]

xmx[n] xmx[n]ˆ

x[n]ˆ

Figure 13.8 The use of homomorphic deconvolution to separate a sequence into
minimum-phase and maximum-phase components.

To extract xmn[n] and xmx[n] from x[n], we specify x̂mn[n] as

x̂mn[n] =
mn[n]x̂[n], (13.87a)

where

mn[n] = u[n]. (13.87b)

Similarly, we specify x̂mx[n] as

x̂mx[n] =
mx[n]x̂[n] (13.88a)

where

mx[n] = u[−n − 1]. (13.88b)

xmn[n] and xmx[n] can be obtained from x̂mn[n] and x̂mx[n], respectively, as the output of
the inverse characteristic system D−1∗ [·]. The operations required for the decomposition
of Eq. (13.85) are depicted in Figure 13.8. This method of factoring a sequence into its
minimum- and maximum-phase parts has been used by Smith and Barnwell (1986) in
the design of filter banks. Note that we have arbitrarily assigned all of x̂[0] to x̂mn[0],
and we have set x̂mx[0] = 0. Obviously, other combinations are possible, since all that
is required is that x̂mn[0] + x̂mx[0] = x̂[0].

The recursion formulas of Section 13.6.4 can be combined with the representation
of Eq. (13.85) to yield an interesting result for finite-length sequences. Specifically, in
spite of the infinite extent of the complex cepstrum of a finite-length sequence, we can
show that for an input sequence of length M + 1, we need only M + 1 samples of x̂[n]
to determine x[n]. To see this, consider the z-transform of Eq. (13.85), i.e.,

X(z) = Xmn(z)Xmx(z), (13.89a)

where

Xmn(z) = A

Mi∏
k=1

(1 − akz
−1), (13.89b)

Xmx(z) =
Mo∏
k=1

(1 − bkz), (13.89c)

1006 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

with |ak| < 1 and |bk| < 1. Note that we have neglected the delay of Mo samples
that would be needed for a causal sequence, so that xmn[n] = 0 outside the interval
0 ≤ n ≤ Mi and xmx[n] = 0 outside the interval −Mo ≤ n ≤ 0. Since the sequence x[n]
is the convolution of xmn[n] and xmx[n], it is nonzero in the interval −Mo ≤ n ≤ Mi .
Using the previous recursion formulas, we can write

xmn[n] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, n < 0,

ex̂[0], n = 0,

x̂[n]xmn[0] +
n−1∑
k=0

(
k

n

)
x̂[k]xmn[n − k], n > 0,

(13.90)

and

xmx[n] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂[n] +

0∑
k=n+1

(
k

n

)
x̂[k]xmx[n − k], n < 0,

1, n = 0,

0, n > 0.

(13.91)

Clearly, we require Mi + 1 values of x̂[n] to compute xmn[n] and Mo values of x̂[n]
to compute xmx[n]. Thus, only Mi + Mo + 1 values of the infinite sequence x̂[n] are
required to completely recover the minimum-phase and maximum-phase components
of the finite-length sequence x[n].

As mentioned in Section 13.7, the result that we have just obtained could be used
to implement the inverse characteristic system for convolution when the cepstrum has
been computed by polynomial rooting. We simply need to compute xmn[n] and xmx[n]
by the recursions of Eqs. (13.90) and (13.91) and then reconstruct the original signal by
the convolution x[n] = xmn[n] ∗ xmx[n].

13.9 THE COMPLEX CEPSTRUM FOR A SIMPLE
MULTIPATH MODEL

As discussed in Example 13.1, a highly simplified model of multipath or reverberation
consists of representing the received signal as the convolution of the transmitted signal
with an impulse train. Specifically, with v[n] denoting a transmitted signal and p[n] the
impulse response of a multipath channel or other system generating multiple echoes,

x[n] = v[n] ∗ p[n], (13.92a)

or, in the z-transform domain,

X(z) = V (z)P (z). (13.92b)

In our analysis in this section, we choose p[n] to be of the form

p[n] = δ[n] + βδ[n − N0] + β2δ[n − 2N0], (13.93a)

and its z-transform is then

P(z) = 1 + βz−N0 + β2z−2N0 = 1 − β3z−3N0

1 − βz−N0
. (13.93b)

Section 13.9 The Complex Cepstrum for a Simple Multipath Model 1007

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Im
 {z

}

Re{z}

Figure 13.9 Pole-zero plot of the
z -transform X(z) = V(z)P(z) for the
example signal of Figure 13.10.

For example, p[n] might correspond to the impulse response of a multipath channel or
other system that generates multiple echoes at a spacing of N0 and 2N0. The component
v[n] will be taken to be the response of a 2nd-order system, such that

V (z) = b0 + b1z
−1

(1 − rejθ z−1)(1 − re−jθ z−1)
, |z| > |r|. (13.94a)

In the time domain, v[n] can be expressed as

v[n] = b0w[n] + b1w[n − 1], (13.94b)

where

w[n] = rn

4 sin2 θ
{cos(θn) − cos[θ(n + 2)]}u[n], θ �= 0, π. (13.94c)

Figure 13.9 shows the pole–zero plot of the z-transform X(z) = V (z)P (z) for the specific
set of parameters b0 = 0.98, b1 = 1, β = r = 0.9, θ = π/6, and N0 = 15. Figure 13.10
shows the signals v[n], p[n], and x[n] for these parameters. As seen in Figure 13.10, the
convolution of the pulse-like signal v[n] with the impulse train p[n] results in a series
of superimposed delayed copies (echoes) of v[n].

This signal model is a simplified version of models that are used in the analysis
and processing of signals in a variety of contexts, including communications systems,
speech processing, sonar, and seismic data analysis. In a communications context, v[n]
in Eqs. (13.92a) and (13.92b) might represent a signal transmitted over a multipath
channel, x[n] the received signal, and p[n] the channel impulse response. In speech
processing, v[n] would represent the combined effects of the glottal pulse shape and the
resonance effects of the human vocal tract, while p[n] would represent the periodicity
of the vocal excitation during voiced speech such as a vowel sound (Flanagan, 1972;
Rabiner and Schafer, 1978; Quatieri, 2002). Equation (13.94a) incorporates only one
resonance, while in the general speech model, the denominator would generally include
at least ten complex poles. In seismic data analysis, v[n] would represent the waveform

1008 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

−20 0 20 40 60 80
−2

−1

0

1

2

3

4

−0.5

0

0.5

1

1.0

−2

−1

0

1

2

3

4

A
m

pl
it

ud
e

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]

−20 0 20 40 60 80
Sample number [n]

−20 0 20 40 60 80
Sample number [n]

(a)

(b)

(c)

Figure 13.10 The sequences: (a) v [n],
(b) p[n], and (c) x [n] corresponding to
the pole–zero plot of Figure 13.9.

of an acoustic pulse propagating in the earth due to a dynamite explosion or similar
disturbance. The impulsive component p[n] would represent reflections at boundaries
between layers having different propagation characteristics. In the practical use of such

Section 13.9 The Complex Cepstrum for a Simple Multipath Model 1009

a model, there would be more impulses in p[n] than we assumed in Eq. (13.93a), and
they would be unequally spaced. Also, the component V (z) would generally involve
many more zeros, and often no poles are included in the model (Ulrych, 1971; Tribolet,
1979; Robinson and Treitel, 1980).

Although the model discussed above is a highly simplified representation of that
encountered in typical applications, it is analytically convenient and useful to obtain
exact formulas to compare with computed results obtained for sampled signals. Fur-
thermore, we will see that this simple model illustrates all the important properties of
the cepstrum of a signal with a rational z-transform.

In Section 13.9.1, we evaluate analytically the complex cepstrum for the received
signal x[n]. In Section 13.9.2, we illustrate the computation of the complex cepstrum
using the DFT, and in Section 13.9.3 illustrate the technique of homomorphic deconvo-
lution.

13.9.1 Computation of the Complex Cepstrum by
z -Transform Analysis

To determine an equation for x̂[n], the complex cepstrum of x[n] for the simple model
of Eq. (13.92a), we use the relations

x̂[n] = v̂[n] + p̂[n], (13.95a)

X̂(z) = V̂ (z) + P̂ (z), (13.95b)

X̂(z) = log[X(z)], (13.96a)

V̂ (z) = log[V (z)], (13.96b)

and

P̂ (z) = log[P(z)]. (13.96c)

To determine v̂[n], we can directly apply the results in Section 13.5. Specifically, to
express V (z) in the form of Eq. (13.29), we first note that for the specific signal X(z) in
Figure 13.9, the poles of V (z) are inside the unit circle and the zero is outside (r = 0.9
and b0/b1 = 0.98), so that in accordance with Eq. (13.29), we rewrite V (z) as

V (z) = b1z
−1(1 + (b0/b1)z)

(1 − rejθ z−1)(1 − re−jθ z−1)
, |z| > |r|. (13.97)

As discussed in Section 13.5, the factor z−1 contributes a linear component to the
unwrapped phase that will force a discontinuity at ω = ±π in the Fourier transform of
v̂[n], so V̂ (z) will not be analytic on the unit circle. To avoid this problem, we can alter
v[n] (and therefore also x[n]) with a one-sample time shift so that we evaluate instead
the complex cepstrum of v[n+1] and, consequently, also x[n+1]. If x[n] or v[n] is to be
resynthesized after some processing of the complex cepstrum, we can remember this
time shift and compensate for it at the final output.

With v[n] replaced by v[n + 1], and correspondingly V (z) replaced by zV (z), we
now consider V (z) to have the form

V (z) = b1(1 + (b0/b1)z)

(1 − rejθ z−1)(1 − re−jθ z−1)
. (13.98)

1010 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

From Eqs. (13.36a) to (13.36c), we can write v̂[n] exactly as

log b1, n = 0, (13.99a)

v̂[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n
[(rejθ)n + (re−jθ)n], n > 0, (13.99b)

1
n

(−b0

b1

)−n

, n < 0. (13.99c)

To determine p̂[n], we can evaluate the inverse z-transform of P̂ (z), which, from
Eq. (13.93b), is

P̂ (z) = log(1 − β3z−3N0) − log(1 − βz−N0), (13.100)
where for our example β = 0.9, and consequently, |β| < 1. One approach to determining
the inverse z-transform of Eq. (13.100) is to use the power series expansion of P̂ (z).
Specifically, since |β| < 1,

P̂ (z) = −
∞∑

k=1

β3k

k
z−3N0k +

∞∑
k=1

βk

k
z−N0k, (13.101)

from which it follows that p̂[n] is

p̂[n] = −
∞∑

k=1

β3k

k
δ[n − 3N0k] +

∞∑
k=1

βk

k
δ[n − N0k]. (13.102)

An alternative approach to obtaining p̂[n] is to use the property developed in
Problem 13.28.

From Eq. (13.95a), the complex cepstrum of x[n] is
x̂[n] = v̂[n] + p̂[n], (13.103)

where v̂[n] and p̂[n] are given by Eqs. (13.99a) to (13.99c) and (13.102), respectively.
The sequences v̂[n], p̂[n], and x̂[n] are shown in Figure 13.11.

The cepstrum of x[n], cx[n], is the even part of x̂[n], i.e.,
cx[n] = 1

2 (x̂[n] + x̂[−n]) (13.104)
and furthermore

cx[n] = cv[n] + cp[n]. (13.105)
From Eqs. (13.99a) to (13.99c),

cv[n] = log(b1)δ[n] +
∞∑

k=1

(−1)k(b0/b1)
−k

2k
(δ[n − k] + δ[n + k])

+
∞∑

k=1

rk cos(θk)

k
(δ[n − k] + δ[n + k]).

(13.106a)

and from Eq. (13.102),

cp[n] = −1
2

∞∑
k=1

β3k

k
{δ[n − 3N0k] + δ[n + 3N0k]}

+ 1
2

∞∑
k=1

βk

k
{δ[n − N0k] + δ[n + N0k]}.

(13.106b)

The sequences cv[n], cp[n], and cx[n] for this example are shown in Figure 13.12.

−100 −50 0 50 100

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

A
m

pl
it

ud
e

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]
(a)

−100 −50 0 50 100
Sample number [n]

(b)

−100 −50 0 50 100
Sample number [n]

(c)
Figure 13.11 The sequences: (a) v̂ [n],
(b) p̂[n], and (c) x̂ [n].

1011

−100 −50 0 50 100
−0.5

0

0.5

1

1.5

−0.5

0

0.5

1

1.5

−0.5

0

0.5

1

1.5

A
m

pl
it

ud
e

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]
(a)

−100 −50 0 50 100
Sample number [n]

(b)

−100 −50 0 50 100
Sample number [n]

(c)
Figure 13.12 The sequences:
(a) cv [n], (b) cp [n], and (c) cx [n].

1012

Section 13.9 The Complex Cepstrum for a Simple Multipath Model 1013

13.9.2 Computation of the Cepstrum Using the DFT

In Figures 13.11 and 13.12, we showed the complex cepstra and the cepstra corre-
sponding to evaluating the analytical expressions obtained in Section 13.9.1. In most
applications, we do not have simple mathematical formulas for the signal values, and
consequently, we cannot analytically determine x̂[n] or cx[n]. However, for finite-length
sequences, we can use either polynomial rooting or the DFT to compute the complex
cepstrum. In this section, we illustrate the use of the DFT in the computation of the
complex cepstrum and the cepstrum of x[n] for the example of this section.

To compute the complex cepstrum or the cepstrum using the DFT as in Fig-
ure 13.4(a), it is necessary that the input be of finite extent. Thus, for the signal model
discussed at the beginning of this section, x[n] must be truncated. In the examples dis-
cussed in this section, the signal x[n] in Figure 13.10(c) was truncated to N = 1024
samples and 1024-point DFTs were used in the system of Figure 13.4(a) to compute the
complex cepstrum and the cepstrum of the signal. Figure 13.13 shows the Fourier trans-
forms that are involved in the computation of the complex cepstrum. Figure 13.13(a)
shows the logarithm of the magnitude of the DFT of 1024 samples of x[n] in Figure 13.10,
with the DFT samples connected in the plot to suggest the appearance of the DTFT
of the finite-length input sequence. Figure 13.13(b) shows the principal value of the
phase. Note the discontinuities as the phase exceeds ±π and wraps around modulo 2π .
Figure 13.13(c) shows the continuous “unwrapped” phase curve obtained as discussed
in Section 13.6.1. As discussed above, and as is evident by carefully comparing Fig-
ures 13.13(b) and 13.13(c), a linear-phase component corresponding to a delay of one
sample has been removed so that the unwrapped phase curve is continuous at 0 and π .
Thus, the unwrapped phase of Figure 13.13(c) corresponds to x[n + 1] rather than x[n].

Figures 13.13(a) and 13.13(c) correspond to the computation of samples of the
real and imaginary parts, respectively, of the DTFT of the complex cepstrum. Only the
frequency range 0 ≤ ω ≤ π is shown, since the function of Figure 13.13(a) is even and
periodic with period 2π , and the function of Figure 13.13(c) is odd and periodic with
period 2π . In examining the plots in Figures 13.13(a) and 13.13(c), we note that they
have the general appearance of a rapidly varying, periodic (in frequency) component
added to a more slowly varying component. The periodically varying component in fact
corresponds to P̂ (ejω) and the more slowly varying component to V̂ (ejω).

In Figure 13.14(a), we show the inverse Fourier transform of the complex log-
arithm of the DFT, i.e., the time-aliased complex cepstrum x̂p[n]. Note the impulses
at integer multiples of N0 = 15. These are contributed by p̂[n] and correspond to the
rapidly varying periodic component observed in the logarithm of the DFT. We see also
that since the input signal is not minimum phase, the complex cepstrum is nonzero for
n < 0.9

Since a large number of points were used in computing the DFTs, the time-aliased
complex cepstrum differs very little from the exact values that would be obtained by

9In using the DFT to obtain the inverse Fourier transform of Figures 13.13(a) and 13.13(c), the values
associated with n < 0 would normally appear in the interval N/2 < n ≤ N − 1. Traditionally, time sequences
are displayed with n = 0 in the center, so we have repositioned x̂p[n] accordingly and have shown only a total
of 201 points symmetrically about n = 0.

−6

−4

−2

2

4

6

−4

−2

2

4

−4

−2

2

4

R
ad

ia
ns

R
ad

ia
ns

dB

Radian frequency �

0

0

0

0 0.2� 0.4� 0.6� 0.8� �

(a)

Radian frequency �

0 0.2� 0.4� 0.6� 0.8� �

(b)

Radian frequency �

0 0.2� 0.4� 0.6� 0.8� �

(c)

Figure 13.13 Fourier transforms of
x [n] in Figure 13.10. (a) Log magnitude.
(b) Principal value of the phase.
(c) Continuous “unwrapped” phase after
removing a linear-phase component
from part (b). The DFT samples are
connected by straight lines.

1014

Section 13.9 The Complex Cepstrum for a Simple Multipath Model 1015

−100 −50 0 50 100

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]
(a)

−100 −50 0 50 100
Sample number [n]

(b)

Figure 13.14 (a) Complex cepstrum
x̂p [n] of sequence in Figure 13.10(c).
(b) Cepstrum cx [n] of sequence in
Figure 13.10(c).

evaluating Eqs. (13.99a) to (13.99c), (13.102), and (13.103) for the specific values of the
parameters used to generate the input signal of Figure 13.10.

The time-aliased cepstrum cxp[n] for this example is shown in Figure 13.14(b). As
with the complex cepstrum, impulses at multiples of 15 are evident, corresponding to
the periodic component of the logarithm of the magnitude of the Fourier transform.

As mentioned at the beginning of this section, convolution of a signal v[n] with
an impulse train such as p[n] is a model for a signal containing multiple echoes. Since
x[n] is a convolution of v[n] and p[n], the echo times are often not easily detected by
examining x[n]. In the cepstral domain, however, the effect of p[n] is present as an
additive impulse train, and consequently, the presence and location of the echoes are
often more evident. As discussed in Section 13.1, it was this observation that motivated
the proposal by Bogert, Healy and Tukey (1963) that the cepstrum be used as a means
for detecting echoes. This same idea was later used by Noll (1967) as a basis for detecting
vocal pitch in speech signals.

1016 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

(a)

(b)

x[n]
D*[·] D*

−1[·]
y[n]

� [n]

y[n]ˆx[n]ˆ

x[n]ˆ y[n]ˆFrequency-
invariant

linear filter

Figure 13.15 (a) System for homomorphic deconvolution. (b) Time-domain rep-
resentation of frequency-invariant filtering.

13.9.3 Homomorphic Deconvolution for the Multipath
Model

For the multipath model that is the basis for Section 13.9, the slowly varying component
of the complex logarithm, and equivalently the “low-time” (low-quefrency) portion
of the complex cepstrum, were mainly due to v[n]. Correspondingly, the more rapidly
varying component of the complex logarithm and the “high-time” (high-quefrency)
portion of the complex cepstrum were due primarily to p[n]. This suggests that the
two convolved components of x[n] can be separated by applying linear filtering to the
logarithm of the Fourier transform (i.e., frequency invariant filtering), or, equivalently
the complex cepstrum components can be separated by windowing or time gating the
complex cepstrum.

Figure 13.15(a) depicts the operations involved in separation of the components
of a convolution by filtering the complex logarithm of the Fourier transform of a sig-
nal. The frequency-invariant linear filter can be implemented by convolution in the
frequency domain or, as indicated in Figure 13.15(b), by multiplication in the time do-
main. Figure 13.16(a) shows the time response of a lowpass frequency-invariant linear
system as required for recovering an approximation to v[n], and Figure 13.16(b) shows
the time response of a highpass frequency-invariant linear system for recovering an
approximation to p[n].10

Figure 13.17 shows the result of lowpass frequency-invariant filtering. The more
rapidly varying curves in Figures 13.17(a) and 13.17(b) are the complex logarithm of
the Fourier transform of the input signal, i.e., the Fourier transform of the complex cep-
strum. The slowly varying (dashed) curves in Figures 13.17(a) and 13.17(b) are the real
and imaginary parts, respectively, of the Fourier transform of ŷ[n], when the frequency-
invariant linear system
[n] is of the form of Figure 13.16(a) with N1 = 14, N2 = 14, and
with the system of Figure 13.15 implemented using DFTs of length N = 1024. Figure
13.17(c) shows the corresponding output y[n]. This sequence is the approximation to

10Figure 13.16 assumes that the systems D∗[·] and D−1∗ [·] are implemented using the DFT as in
Figure 13.4.

Section 13.9 The Complex Cepstrum for a Simple Multipath Model 1017

−N2 0

(a)

N1

� [n]

1

N − 1
n

 N− N2

−N2 0

(b)

N1

� [n]

1

N − 1
n

 N− N2

Figure 13.16 Time response of
frequency-invariant linear systems for
homomorphic deconvolution.
(a) Lowpass system. (b) Highpass
system. (Solid line indicates envelope of
the sequence �[n] as it would be applied
in a DFT implementation. The dashed
line indicates the periodic extension.)

v[n] obtained by homomorphic deconvolution. To relate this output y[n] to v[n], re-
call that in computing the unwrapped phase, a linear-phase component was removed,
corresponding to a one-sample time shift of v[n]. Consequently, y[n] in Figure 13.17(c)
corresponds to an approximation to v[n+1] obtained by homomorphic deconvolution.

This type of filtering has been successfully used in speech processing to recover
the vocal tract response information (Oppenheim, 1969b; Schafer and Rabiner, 1970)
and in seismic signal analysis to recover seismic wavelets (Ulrych, 1971; Tribolet, 1979).

Figure 13.18 shows the result of highpass frequency-invariant filtering. The rapidly
varying curves in Figures 13.18(a) and (b) are the real and imaginary parts, respectively,
of the Fourier transform of ŷ[n] when the frequency-invariant linear system
[n] is of
the form of Figure 13.16(b) with N1 = 14 and N2 = 512 (i.e., the negative-time parts are
completely removed). Again, the system is implemented using a 1024-point DFT. Figure
13.18(c) shows the corresponding output y[n]. This sequence is the approximation to
p[n] obtained by homomorphic deconvolution. In contrast to the use of the cepstrum to
detect echoes or periodicity, this approach seeks to obtain the impulse train that specifies
the location and size of the repeated copies of v[n].

13.9.4 Minimum-Phase Decomposition

In Section 13.8.1, we discussed ways that homomorphic deconvolution could be used
to decompose a sequence into minimum-phase and allpass components or minimum-
phase and maximum-phase components. We will apply these techniques to the signal
model of Section 13.9. Specifically, for the parameters of the example, the z-transform
of the input is

X(z) = V (z)P (z) = (0.98 + z−1)(1 + 0.9z−15 + 0.81z−30)

(1 − 0.9ejπ/6z−1)(1 − 0.9e−jπ/6z−1)
. (13.107)

−2

−1

0

1

2

3

4

A
m

pl
it

ud
e

−20 0 20 40 60 80
Sample number [n]

(c)

−6

−4

−2

2

4

6

−4

−2

2

4

R
ad

ia
ns

dB

Radian frequency �

0

0

0 0.2� 0.4� 0.6� 0.8� �

(a)

Radian frequency �

0 0.2� 0.4� 0.6� 0.8� �

(b)

Figure 13.17 Lowpass
frequency-invariant linear filtering in the
system of Figure 13.15. (a) Real parts of
the Fourier transforms of the input (solid
line) and output (dashed line) of the
lowpass system with N1 = 14 and
N2 = 14 in Figure 13.16(a).
(b) Imaginary parts of the input (solid
line) and output (dashed line).
(c) Output sequence y [n] for the input of
Figure 13.10(c).

1018

−0.5

0

0.5

1

1.5

A
m

pl
it

ud
e

−20 0 20 40 60 80
Sample number [n]

(c)

−2

2

−4

−2

2

4

R
ad

ia
ns

dB

Radian frequency �

0

0

0 0.2� 0.4� 0.6� 0.8� �

(a)

Radian frequency �

0 0.2� 0.4� 0.6� 0.8� �

(b)

Figure 13.18 Illustration of highpass
frequency-invariant linear filtering in the
system of Figure 13.15. (a) Real part of
the Fourier transform of the output of
the highpass frequency-invariant system
with N1 = 14 and N2 = 512 in
Figure 13.16(b). (b) Imaginary part for
conditions of part (a). (c) Output
sequence y [n] for the input of
Figure 13.10.

1019

1020 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

First, we can write X(z) as the product of a minimum-phase z-transform and an allpass
z-transform; i.e.,

X(z) = Xmin(z)Xap(z), (13.108)

where

Xmin(z) = (1 + 0.98z−1)(1 + 0.9z−15 + 0.81z−30)

(1 − 0.9ejπ/6z−1)(1 − 0.9e−jπ/6z−1)
(13.109)

and

Xap(z) = 0.98 + z−1

1 + 0.98z−1
. (13.110)

The sequences xmin[n] and xap[n] can be found using the partial fraction expan-
sion methods of Chapter 3, and the corresponding complex cepstra x̂min[n] and x̂ap[n]
can be found using the power series technique of Section 13.5 (see Problem 13.25).
Alternatively, x̂min[n] and x̂ap[n] can be obtained exactly from x̂[n] by the operations
discussed in Section 13.8.1 and as depicted in Figure 13.7. If the characteristic systems
in Figure 13.7 are implemented using the DFT, then the separation is only approximate
since xap[n] is infinitely long, but the approximation error can be small over the interval
where xap[n] is large if the DFT length is large enough. Figure 13.19(a) shows the com-
plex cepstrum for x[n] as computed using a 1024-point DFT, again with a one-sample
time delay removed from v[n] so that the phase is continuous at π . Figure 13.19(b) shows
the complex cepstrum of the minimum-phase component x̂min[n], and Figure 13.19(c)
shows the complex cepstrum of the allpass component x̂ap[n] as obtained by the oper-
ations of Figure 13.7 with D∗[·] implemented as in Figure 13.4(a).

Using the DFT as in Figure 13.4(b) to implement the system D−1∗ [·] gives the ap-
proximations to the minimum-phase and allpass components shown in Figures 13.20(a)
and 13.20(b), respectively. Since all the zeros of P(z) are inside the unit circle, all of P(z)

is included in the minimum-phase z-transform or, equivalently, p̂[n] is entirely included
in x̂min[n]. Thus, the minimum-phase component consists of delayed and scaled replicas
of the minimum-phase component of v[n]. Therefore, the minimum-phase component
of Figure 13.20(a) appears very similar to the input shown in Figure 13.10(c). From
Eq. (13.110), the allpass component can be shown to be

xap[n] = 0.98δ[n] + 0.0396(−0.98)n−1u[n − 1]. (13.111)

The result of Figure 13.20(b) is very close to this ideal result for small values of n where
the sequence values are of significant amplitude. This example illustrates a technique
of decomposition that has been applied by Bauman, Lipshitz and Vanderkooy (1985)
in the analysis and characterization of the response of electroacoustic transducers. A
similar decomposition technique can be used to factor magnitude-squared functions as
required in digital filter design (see Problem 13.27).

As an alternative to the minimum-phase/allpass decomposition, we can express
X(z)as the product of a minimum-phase z-transform and a maximum-phase z-transform;
i.e.,

X(z) = Xmn(z)Xmx(z), (13.112)

where

Xmn(z) = z−1(1 + 0.9z−15 + 0.81z−30)

(1 − 0.9ejπ/6z−1)(1 − 0.9e−jπ/6z−1)
(13.113)

−100 −50 0 50 100

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1.5

1

2.5

2

3

−1.5

−1

−0.5

0

0.5

1

1.5

A
m

pl
it

ud
e

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]
(a)

−100 −50 0 50 100
Sample number [n]

(b)

−100 −50 0 50 100
Sample number [n]

(c)

Figure 13.19 (a) Complex cepstrum of
x [n] = xminn ∗ xap [n]. (b) Complex
cepstrum of xmin [n]. (c) Complex
cepstrum of xap [n].

1021

1022 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

−20 0 20 40 60 80
−2

−1

0

1

2

3

4

−0.5

0

0.5

1

1.5

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]

−20 0 20 40 60 80
Sample number [n]

(a)

(b)

Figure 13.20 (a) Minimum-phase
output. (b) Allpass output obtained as
depicted in Figure 13.7.

and

Xmx(z) = 0.98z + 1. (13.114)

The sequences xmn[n] and xmx[n] can be found using the partial fraction expansion
methods of Chapter 3, and the corresponding complex cepstra x̂mn[n] and x̂mx[n] can be
found using the power series technique of Section 13.5 (see Problem 13.25). Alterna-
tively, x̂mn[n] and x̂mx[n] can be obtained exactly from x̂[n] by the operations discussed
in Section 13.8.2 and as depicted in Figure 13.8, where

mn[n] = u[n] (13.115)

and

mx[n] = u[−n − 1]. (13.116)

That is, the minimum-phase sequence is now defined by the positive time part of the
complex cepstrum and the maximum-phase part is defined by the negative time part
of the complex cepstrum. If the characteristic systems in Figure 13.8 are implemented
using the DFT, the negative time part of the complex cepstrum is positioned in the

Section 13.9 The Complex Cepstrum for a Simple Multipath Model 1023

last half of the DFT interval. In this case, the separation of the minimum-phase and
maximum-phase components is only approximate because of time aliasing, but the
time-aliasing error can be made small by choosing a sufficiently large DFT length.
Figure 13.19(a) shows the complex cepstrum of x[n] as computed using a 1024-point
DFT. Figure 13.21 shows the two output sequences that are obtained from the complex
cepstrum of Figure 13.19(a) using Eqs. (13.87) and (13.88) as in Fig 13.8 with the inverse
characteristic system being implemented using the DFT as in Figure 13.4(b). As before,
since p̂[n] is entirely included in x̂mn[n], the corresponding output xmn[n] consists of
delayed and scaled replicas of a minimum-phase sequence, thus, it also looks very much
like the input sequence. However, a careful comparison of Figures 13.20(a) and 13.21(a)
shows that xmin[n] �= xmn[n]. From Eq. (13.114), the maximum-phase sequence is

xmx[n] = 0.98δ[n + 1] + δ[n]. (13.117)

Figure 13.21(b) is very close to this ideal result. (Note the shift due to the linear phase
removed in the phase unwrapping.) This technique of minimum-phase/maximum-phase
decomposition was used by Smith and Barnwell (1984) in the design and implementation
of exact reconstruction filter banks for speech analysis and coding.

−20 0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

A
m

pl
it

ud
e

A
m

pl
it

ud
e

Sample number [n]

−20 0 20 40 60 80
Sample number [n]

(b)

(a)

Figure 13.21 (a) Minimum-phase
output. (b) Maximum-phase output
obtained as depicted in Figure 13.8.

1024 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

13.9.5 Generalizations

The example in Section 13.9 considered a simple exponential signal that was convolved
with an impulse train to produce a series of delayed and scaled replicas of the exponential
signal. This model illustrates many of the features of the complex cepstrum and of
homomorphic filtering.

In particular, in more general models associated with speech, communication, and
seismic applications an appropriate signal model consists of the convolution of two com-
ponents. One component has the characteristics of v[n], specifically a Fourier transform
that is slowly varying in frequency. The second has the characteristics of p[n], i.e., an
echo pattern or impulse train for which the Fourier transform is more rapidly varying
and quasiperiodic in frequency. Thus, the contributions of the two components would
be separated in the complex cepstrum or the cepstrum, and, furthermore, the complex
cepstrum or the cepstrum would contain impulses at multiples of the echo delays. Thus,
homomorphic filtering can be used to separate the convolutional components of the
signal, or the cepstrum can be used to detect echo delays. In the next section, we will
illustrate the use of these general properties of the cepstrum in applications to speech
analysis.

13.10 APPLICATIONS TO SPEECH PROCESSING

Cepstrum techniques have been applied successfully to speech analysis in a variety of
ways. As discussed briefly in this section, the previous theoretical discussion and the
extended example of Section 13.9 apply in a relatively straightforward way to speech
analysis.

13.10.1 The Speech Model

As we briefly described in Section 10.4.1, there are three basic classes of speech sounds
corresponding to different forms of excitation of the vocal tract. Specifically:

• Voiced sounds are produced by exciting the vocal tract with quasiperiodic pulses
of airflow caused by the opening and closing of the glottis.

• Fricative sounds are produced by forming a constriction somewhere in the vocal
tract and forcing air through the constriction so that turbulence is created, thereby
producing a noise-like excitation.

• Plosive sounds are produced by completely closing off the vocal tract, building up
pressure behind the closure, and then abruptly releasing the pressure.

In each case, the speech signal is produced by exciting the vocal tract system (an acous-
tic transmission system) with a wideband excitation. The vocal tract shape changes
relatively slowly with time, thus, it can be modeled as a slowly time-varying filter that
imposes its frequency-response properties on the spectrum of the excitation. The vocal
tract is characterized by its natural frequencies (called formants), which correspond to
resonances in its frequency response.

Section 13.10 Applications to Speech Processing 1025

s[n]

p[n]

r[n]

Time-varying
discrete-time

system

Impulse
train

generator

Random
number

generator Amplitude

Speech
samples

Pitch period

System coefficients
(vocal tract parameters)

Figure 13.22 Discrete-time model of speech production.

If we assume that the excitation sources and the vocal tract shape are independent,
we arrive at the discrete-time model of Figure 13.22 as a representation of the sampled
speech waveform. In this model, samples of the speech signal are assumed to be the
output of a time-varying discrete-time system that models the resonances of the vocal
tract system. The mode of excitation of the system switches between periodic impulses
and random noise, depending on the type of sound being produced.

Since the vocal tract shape changes rather slowly in continuous speech, it is rea-
sonable to assume that the discrete-time system in the model has fixed properties over a
time interval on the order of 10 ms. Thus, the discrete-time system may be characterized
in each such time interval by an impulse response or a frequency response or a set of
coefficients for an IIR system. Specifically, a model for the system function of the vocal
tract takes the form

V (z) =

K∑
k=0

bkz
−k

P∑
k=0

akz
−k

(13.118)

or, equivalently,

V (z) =
Az−Ko

Ki∏
k=1

(1 − αkz
−1)

Ko∏
k=1

(1 − βkz)

[P/2]∏
k=1

(1 − rke
jθk z−1)(1 − rke

−jθk z−1)

, (13.119)

where the quantities rke
jθk (with |rh| < 1 are the complex natural frequencies of the

vocal tract, which, of course, are dependent on the vocal tract shape and consequently
are time varying. The zeros ofV (z)account for the finite-duration glottal pulse waveform
and for the zeros of transmission caused by the constrictions of the vocal tract in the
creation of nasal voiced sounds and fricatives. Such zeros are often not included, because
it is very difficult to estimate their locations from only the speech waveform. Also, it has

1026 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

been shown (Atal and Hanauer, 1971) that the spectral shape of the speech signal can be
accurately modeled using no zeros, if we include extra poles beyond the number needed
just to account for the vocal tract resonances. The zeros are included in our analysis,
because they are necessary for an accurate representation of the complex cepstrum of
speech. Note that we include the possibility of zeros outside the unit circle.

The vocal tract system is excited by an excitation sequence p[n], which is a train
of impulses when modeling voiced speech sounds and r[n], which is a pseudorandom
noise sequence when modeling unvoiced speech sounds, such as fricatives and plosives.

Many of the fundamental problems of speech processing reduce to the estimation
of the parameters of the model of Figure 13.22. These parameters are as follows:

• The coefficients ofV (z) in Eq. (13.118) or the pole and zero locations in Eq. (13.119)

• The mode of excitation of the vocal tract system; i.e., a periodic impulse train or
random noise

• The amplitude of the excitation signal

• The pitch period of the speech excitation for voiced speech.

Homomorphic deconvolution can be applied to the estimation of the parameters if it
is assumed that the model is valid over a short time interval, so that a short segment of
length L samples of the sampled speech signal can be thought of as the convolution

s[n] = v[n] ∗ p[n] for 0 ≤ n ≤ L − 1, (13.120)

where v[n] is the impulse response of the vocal tract and p[n] is either periodic (for
voiced speech) or random noise (for unvoiced speech). Obviously, Eq. (13.120) is not
valid at the edges of the interval, because of pulses that occur before the beginning of
the analysis interval and pulses that end after the end of the interval. To mitigate the
effect of the “discontinuities” of the model at the ends of the interval, the speech signal
s[n] can be multiplied by a window w[n] that tapers smoothly to zero at both ends. Thus,
the input to the homomorphic deconvolution system is

x[n] = w[n]s[n]. (13.121)

Let us first consider the case of voiced speech. If w[n] varies slowly with respect
to the variations of v[n], then the analysis is greatly simplified if we assume that

x[n] = v[n] ∗ pw[n], (13.122)

where

pw[n] = w[n]p[n]. (13.123)

(See Oppenheim and Schafer, 1968.) A more detailed analysis without this assumption
leads to essentially the same conclusions as below (Verhelst and Steenhaut, 1986). For
voiced speech, p[n] is a train of impulses of the form

p[n] =
M−1∑
k=0

δ[n − kN0] (13.124)

so that

pw[n] =
M−1∑
k=0

w[kN0]δ[n − kN0], (13.125)

Section 13.10 Applications to Speech Processing 1027

where we have assumed that the pitch period is N0 and that M periods are spanned by
the window.

The complex cepstra of x[n], v[n], and pw[n] are related by

x̂[n] = v̂[n] + p̂w[n]. (13.126)

To obtain p̂w[n], we define a sequence

wN0 [k] =
{

w[kN0], k = 0, 1, . . . , M − 1,

0, otherwise,
(13.127)

whose Fourier transform is

Pw(ejω) =
M−1∑
k=0

w[kN0]e−ωkN0 = WN0(e
jωN0). (13.128)

Thus, Pw(ejω) and P̂w(ejω) are both periodic with period 2π/N0, and the complex cep-
strum of pw[n] is

p̂w[n] =
{

ŵN0 [n/N0], n = 0, ±N0, ±2N0, . . . ,

0, otherwise.
(13.129)

The periodicity of the complex logarithm resulting from the periodicity of the voiced
speech signal is manifest in the complex cepstrum as impulses spaced at integer multiples
of N0 samples (the pitch period). If the sequence wN0 [n] is minimum phase, then p̂w[n]
will be zero for n < 0. Otherwise, p̂w[n] will have impulses spaced at intervals of N0
samples for both positive and negative values of n. In either case, the contribution of
p̂w[n] to x̂[n] will be found in the interval |n| ≥ N0.

From the power series expansion of the complex logarithm of V (z), it can be shown
that the contribution to the complex cepstrum due to v[n] is

v̂[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0∑
k=1

β−n
k

n
, n < 0,

log |A|, n = 0,

−
Ki∑
k=1

αn
k

n
+

[P/2]∑
k=1

2rn
k

n
cos(θkn), n > 0.

(13.130)

As with the simpler example in Section 13.9.1, the term z−K0 in Eq. (13.119)
represents a linear-phase factor that would be removed in obtaining the unwrapped
phase and the complex cepstrum. Consequently, v̂[n] in Eq. (13.130) more accurately is
the complex cepstrum of v[n + K0].

From Eq. (13.130), we see that the contributions of the vocal tract response to
the complex cepstrum occupy the full range −∞ < n < ∞, but they are concentrated
around n = 0. We note also that since the vocal tract resonances are represented by
poles inside the unit circle, their contribution to the complex cepstrum is zero for n < 0.

1028 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

13.10.2 Example of Homomorphic Deconvolution of
Speech

For speech sampled at 10,000 samples/s, the pitch period N0 will range from about 25
samples for a high-pitched voice up to about 150 samples for a very low-pitched voice.
Since the vocal tract component of the complex cepstrum v̂[n] decays rapidly, the peaks
of p̂w[n] stand out from v̂[n]. In other words, in the complex logarithm, the vocal tract
components are slowly varying, and the excitation components are rapidly varying. This
is illustrated by the following example. Figure 13.23(a) shows a segment of a speech wave

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.5

0

0.5

1

Input Speech Segment

0 5 10 15 20 25 30 35 40 45 50

High Quefrency Component of the Input

0 5 10 15 20 25 30 35 40 45 50
Time (msec)

(c)

Time (msec)
(b)

Time (msec)
(a)

Low Quefrency Component of the Input

Figure 13.23 Homomorphic deconvolution of speech. (a) Segment of speech weighted by
a Hamming window. (b) High quefrency component of the signal in (a). (c) Low quefrency
component of the signal in (a).

Section 13.10 Applications to Speech Processing 1029

0 500 1000 1500 2000 2500 3000 3500 4000
−8

−6

−4

−2

0

2

4
L

og
 m

ag
ni

tu
de

 (
dB

)
Log Magnitude

−15

−10

−5

0

5

10

P
ha

se
 (

ra
d)

Unwrapped Phase Curve

Frequency (Hz)
(a)

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)
(b)

Figure 13.24 Complex logarithm of the signal of Figure 13.23(a): (a) Log magnitude.
(b) Unwrapped phase.

multiplied by a Hamming window of length 401 samples (50 ms time duration at a sam-
pling rate of 8000 samples/s). Figure 13.24 shows the complex logarithm (log magnitude
and unwrapped phase) of the DFT of the signal in Figure 13.23(a).11 Note the rapidly
varying, almost periodic component due to pw[n] and the slowly varying component
due to v[n]. These properties are manifest in the complex cepstrum of Figure 13.25
in the form of impulses at multiples of approximately 13 ms (the period of the input
speech segment) due to p̂w[n] and in the samples in the region |nT | < 5 ms, which we
attribute to v̂[n]. As in the previous section, frequency-invariant filtering can be used

11In all the figures of this section, the samples of all sequences were connected for ease in plotting.

1030 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

−20 −15 −10 −5 0 5 10 15 20
−3

−2

−1

0

1

2

3

Quefrency (msec)

Complex Cepstrum of Speech Segment

Figure 13.25 Complex cepstrum of the signal in Figure 13.23(a) (inverse DTFT of the
complex logarithm in Figure 13.24).

to separate the components of the convolutional model of the speech signal. Lowpass
filtering of the complex logarithm can be used to recover an approximation to v[n], and
highpass filtering can be used to obtain pw[n]. Figure 13.23(c) shows an approximation
to v[n] obtained by using a lowpass frequency-invariant filter as in Figure 13.16(a) with
N1 = 30 and N2 = 30. The slowly varying dotted curves in Figure 13.24 show the com-
plex logarithm of the DTFT of the low quefrency component shown in Figure 13.23(c).
On the other hand, Figure 13.23(b) is an approximation to pw[n] obtained by applying
to the complex cepstrum a symmetrical highpass frequency-invariant filter as in Fig-
ure 13.16(b) with N1 = 95 and N2 = 95. In both cases, the inverse characteristic system
was implemented by using 1024-point DFTs, as in Figure 13.4(b).

13.10.3 Estimating the Parameters of the Speech Model

Although homomorphic deconvolution can be successfully applied in separating the
components of a speech waveform, in many speech processing applications we are
interested only in estimating the parameters in a parametric representation of the speech
signal. Since the properties of the speech signal change rather slowly with time, it is
common to estimate the parameters of the model of Figure 13.22 at intervals of about
10 ms (100 times/s). In this case, the time-dependent Fourier transform discussed in
Chapter 10 serves as the basis for time-dependent homomorphic analysis. For example,
it may be sufficient to examine segments of speech selected about every 10 ms (100
samples at 10,000 Hz sampling rate) to determine the mode of excitation of the model
(voiced or unvoiced) and, for voiced speech, the pitch period. Or we may wish to track
the variation of the vocal tract resonances (formants). For such problems, the phase
computation can be avoided by using the cepstrum, which requires only the logarithm
of the magnitude of the Fourier transform. Since the cepstrum is the even part of the

Section 13.10 Applications to Speech Processing 1031

Speech A B C

(a)

Data
window

Input speech segment
(normalized and weighted
by a Hamming window) Cepstrum

Analysis for Voiced Speech

(b)

0 0 0 1 2 3 4 54 8 12 16 20

60
40
20
0

−20
−40
−60

60
40
20
0

−20
−40
−60

10 20
Time (ms) Time (ms) Frequency (kHz)

C

E

D
A

A
D

C E

30 40

Spectra

Input speech segment
(normalized and weighted
by a Hamming window) Cepstrum

Analysis for Unvoiced Speech

(c)

0 0 0 1 2 3 4 54 8 12 16 2010 20
Time (ms) Time (ms) Frequency (kHz)

30 40

Spectra

IDFTDFT
E

DFTlog |·|
D

Cepstrum
window

Figure 13.26 (a) System for cepstrum analysis of speech signals. (b) Analysis for voice
speech. (c) Analysis for unvoiced speech.

complex cepstrum, our previous discussion suggests that the low-time portion of cx[n]
should correspond to the slowly varying components of the log magnitude of the Fourier
transform of the speech segment, and for voiced speech, the cepstrum should contain
impulses at multiples of the pitch period. An example is shown in Figure 13.26.

Figure 13.26(a) shows the operations involved in estimating the speech parame-
ters using the cepstrum. Figure 13.26(b) shows a typical result for voiced speech. The
windowed speech signal is labeled A, log |X[k]| is labeled C, and the cepstrum cx[n] is
labeled D. The peak in the cepstrum at about 8 ms indicates that this segment of speech
is voiced with that period. The smoothed spectrum, or spectrum envelope, obtained by
frequency-invariant lowpass filtering with cutoff below 8 ms is labeled E and is super-
imposed on C. The situation for unvoiced speech, shown in Figure 13.26(c), is similar,
except that the random nature of the excitation component of the input speech segment

1032 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

causes a rapidly varying random component in log |X[k]| instead of a periodic compo-
nent. Thus, in the cepstrum the low-time components correspond as before to the vocal
tract system function; however, since the rapid variations in log |X[k]| are not periodic,
no strong peak appears in the cepstrum. Therefore, the presence or absence of a peak
in the cepstrum in the normal pitch period range serves as a very good voiced/unvoiced
detector and pitch period estimator. The result of lowpass frequency-invariant filtering
in the unvoiced case is similar to that in the voiced case. A smoothed spectrum envelope
estimate is obtained as in E.

In speech analysis applications, the operations of Figure 13.26(a) are applied re-
peatedly to sequential segments of the speech waveform. The length of the segments
must be carefully selected. If the segments are too long, the properties of the speech
signal will change too much across the segment. If the segments are too short, there
will not be enough of the signal to obtain a strong indication of periodicity. Usually
the segment length is set at about three to four times the average pitch period of the
speech signal. Figure 13.27 shows an example of how the cepstrum can be used for pitch
detection and for estimation of the vocal tract resonance frequencies. Figure 13.27(a)
shows a sequence of cepstra computed for speech waveform segments selected at 20-ms
intervals. The existence of a prominent peak throughout the sequence of speech seg-
ments indicates that the speech was voiced throughout. The location of the cepstrum
peak indicates the value of the pitch period in each corresponding time interval. Figure
13.27(b) shows the log magnitude with the corresponding smoothed spectra superim-
posed. The lines connect estimates of the vocal tract resonances obtained by a heuristic
peak-picking algorithm. (See Schafer and Rabiner, 1970.)

13.10.4 Applications

As indicated previously, cepstrum analysis methods have found widespread application
in speech processing problems. One of the most successful applications is in pitch de-
tection (Noll, 1967). They also have been used successfully in speech analysis/synthesis
systems for low bit-rate coding of the speech signal (Oppenheim, 1969b; Schafer and
Rabiner, 1970).

Cepstrum representations of speech have also been used with considerable suc-
cess in pattern recognition problems associated with speech processing such as speaker
identification (Atal, 1976), speaker verification (Furui, 1981) and speech recognition
(Davis and Mermelstein, 1980). Although the technique of linear predictive analysis of
Chapter 11 is the most widely used method of obtaining a representation of the vocal
tract component of the speech model, the linear predictive model representation is of-
ten transformed to a cepstrum representation for use in pattern recognition problems
(Schroeder, 1981; Juang, Rabiner and Wilpon 1987). This transformation is explored in
Problem 13.30.

13.11 SUMMARY

In this chapter, we discussed the technique of cepstrum analysis and homomorphic
deconvolution. We focused primarily on definitions and properties of the complex cep-
strum and on the practical problems in the computation of the complex cepstrum. An

(a) (b)

Time (ms)

0 8 164 12 206 142 0 2 3 4110 18

Frequency (kHz)

Figure 13.27 (a) Cepstra and (b) log spectra for sequential segments of voiced
speech.

1033

1034 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

idealized example was discussed to illustrate the use of cepstrum analysis and homo-
morphic deconvolution for separating components of a convolution. The application
of cepstrum analysis techniques to speech processing problems was discussed in some
detail as an illustration of their use in a real application.

Problems

Basic Problems

13.1. (a) Consider a discrete-time system that is linear in the conventional sense. If y[n] =
T {x[n]} is the output when the input is x[n], then the zero signal 0[n] is the signal that
can be added to x[n] such that T {x[n] + 0[n]} = y[n] + T {0[n]} = y[n]. What is the
zero signal for conventional linear systems?

(b) Consider a discrete-time system y[n] = T {x[n]} that is homomorphic, with con-
volution as the operation for combining signals at both the input and the output.
What is the zero signal for such a system; i.e., what is the signal 0[n] such that
T {x[n] ∗ 0[n]} = y[n] ∗ T {0[n]} = y[n]?

(c) Consider a discrete-time system y[n] = T {x[n]} that is homomorphic, with con-
volution as the operation for combining signals at both the input and the output.
What is the zero signal for such a system; i.e., what is the signal 0[n] such that
T {x[n] ∗ 0[n]} = y[n] ∗ T {0[n]} = y[n]?

13.2. Let x1[n] and x2[n] denote two sequences and x̂1[n] and x̂2[n] their corresponding complex
cepstra. If x1[n] ∗ x2[n] = δ[n], determine the relationship between x̂1[n] and x̂2[n].

13.3. In considering the implementation of homomorphic systems for convolution, we restricted
our attention to input signals with rational z-transforms of the form of Eq. (13.32). If an
input sequence x[n] has a rational z-transform but has either a negative gain constant or
an amount of delay not represented by Eq. (13.32), then we can obtain a z-transform of
the form of Eq. (13.32) by shifting x[n] appropriately and multiplying by −1. The complex
cepstrum may then be computed using Eq. (13.33).

Suppose that x[n] = δ[n] − 2δ[n − 1], and define y[n] = αx[n − r], where α = ±1
and r is an integer. Find α and r such that Y (z) is in the form of Eq. (13.32), and then find
ŷ[n].

13.4. In Section 13.5.1, we stated that linear-phase contributions should be removed from the
unwrapped phase curve before computation of the complex cepstrum. This problem is
concerned with the effect of not removing the linear-phase component due to the factor
zr in Eq. (13.29).

Specifically, assume that the input to the characteristic system for convolution is
x[n] = δ[n + r]. Show that formal application of the Fourier transform definition

x̂[n] = 1
2π

∫ π

−π
log[X(ejω)]ejωndω (P13.4-1)

leads to

x̂[n] =
⎧⎨⎩ r

cos(πn)

n
, n �= 0,

0, n = 0.

The advantage of removing the linear-phase component of the phase is clear from this
result, since for large r such a component would dominate the complex cepstrum.

Chapter 13 Problems 1035

13.5. Suppose that the z-transform of s[n] is

S(z) = (1 − 1
2 z−1)(1 − 1

4 z)

(1 − 1
3z−1)(1 − 1

5z)
.

Determine the pole locations of the z-transform of nŝ[n], other than poles at |z| = 0 or ∞.

13.6. Suppose that the complex cepstrum of y[n] is ŷ[n] = ŝ[n]+2δ[n]. Determine y[n] in terms
of s[n].

13.7. Determine the complex cepstrum of x[n] = 2δ[n] − 2δ[n − 1] + 0.5δ[n − 2], shifting x[n]
or changing its sign, if necessary.

13.8. Suppose that the z-transform of a stable sequence x[n] is given by

X(z) = 1 − 1
2 z−1

1 + 1
2 z

,

and that a stable sequence y[n] has complex cepstrum ŷ[n] = x̂[−n], where x̂[n] is the
complex cepstrum of x[n]. Determine y[n].

13.9. Equations (13.65) and (13.68) are recursive relationships that can be used to compute the
complex cepstrum x̂[n] when the input sequence x[n] is minimum phase and maximum
phase, respectively.

(a) Use Eq. (13.65) to compute recursively the complex cepstrum of the sequence
x[n] = anu[n], where |a| < 1.

(b) Use Eq. (13.68) to compute recursively the complex cepstrum of the sequence
x[n] = δ[n] − aδ[n + 1], where |a| < 1.

13.10. ARG{X(ejω)} represents the principal value of the phase of X(ejω), and arg{X(ejω)}
represents the continuous phase of X(ejω). Suppose that ARG{X(ejω)} has been sampled
at frequencies ωk = 2πk/N to obtain ARG{X[k]} = ARG{X(ej (2π/N)k)} as shown in
Figure P13.10. Assuming that |arg{X[k]}−arg{X[k −1]}| < π for all k, determine and plot
the sequence r[k] as in Eq. (13.49) and arg{X[k]} for 0 ≤ k ≤ 10.

−�

�

ARG{X[k]}

5 10
k

Figure P13.10

1036 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

13.11. Let x̂[n] be the complex cepstrum of a real-valued sequence x[n]. Specify whether each
of the following statements is true or false. Give brief justifications for your answers.

Statement 1: If x1[n] = x[−n] then x̂1[n] = x̂[−n].
Statement 2: Since x[n] is real-valued, the complex cepstrum x̂[n] must also be real-valued.

Advanced Problems

13.12. Consider the system depicted in Figure P13.12, where S1 is an LTI system with impulse
response h1[n] and S2 is a homomorphic system with convolution as the input and output
operations; i.e., the transformation T2{·} satisfies

T2{w1[n] ∗ w2[n]} = T2{w1[n]} ∗ T2{w2[n]}.
Suppose that the complex cepstrum of the input x[n] is x̂[n] = δ[n] + δ[n − 1]. Find a
closed-form expression for h1[n] such that the output is y[n] = δ[n].

x[n]
h1[n]

S1 S2

T2{ · }
y[n]w[n]

Figure P13.12

13.13. The complex cepstrum of a finite length signal x[n] is computed as shown in Figure P13.13-1.
Suppose we know that x[n] is minimum phase (all poles and zeros are inside the unit circle).
We use the system shown in Figure P13.13-2 to find the real cepstrum of x[n]. Explain how
to construct x̂[n] from cx [n].

log[X(e j�)]
x[n]

DTFT
x̂[n]Inverse

DTFT
Figure P13.13-1

log|X(e j�)|
x[n]

DTFT
cx[n]Inverse

DTFT
Figure P13.13-2

13.14. Consider the class of sequences that are real and stable and whose z-transforms are of the
form

X(z) = |A|

Mi∏
k=1

(1 − akz
−1)

Mo∏
k=1

(1 − bkz)

Ni∏
k=1

(1 − ckz
−1)

No∏
k=1

(1 − dkz)

,

where |ak |, |bk |, |ck |, |dk | < 1. Let x̂[n] denote the complex cepstrum of x[n].
(a) Let y[n] = x[−n]. Determine ŷ[n] in terms of x̂[n].
(b) If x[n] is causal, is it also minimum phase? Explain.

Chapter 13 Problems 1037

(c) Suppose that x[n] is a finite-duration sequence such that

X(z) = |A|
Mi∏
k=1

(1 − akz
−1)

Mo∏
k=1

(1 − bkz),

with |ak | < 1 and |bk | < 1. The function X(z) has zeros inside and outside the unit
circle. Suppose that we wish to determine y[n] such that |Y (ejω)| = |X(ejω)| and
Y (z) has no zeros outside the unit circle. One approach that achieves this objective is
depicted in Figure P13.14. Determine the required sequence
[n]. A possible applica-
tion of the system in Figure P13.14 is to stabilize an unstable system by applying the
transformation of Figure P13.14 to the sequence of coefficients of the denominator
of the system function.

�[n]

Y(e j�)X(e j�)
log|·| expF −1 F

Figure P13.14

13.15. It can be shown (see Problem 3.50) that if x[n] = 0 for n < 0, then

x[0] = lim
z→∞ X(z).

This result was called the initial value theorem for right-sided sequences.

(a) Prove a similar result for left-sided sequences, i.e., for sequences such that x[n] = 0
for n > 0.

(b) Use the initial value theorems to prove that x̂[0] = log(x[0]) if x[n] is a minimum-
phase sequence.

(c) Use the initial value theorems to prove that x̂[0] = log(x[0]) if x[n] is a maximum-
phase sequence.

(d) Use the initial value theorems to prove that x̂[0] = log |A| when X(z) is given by
Eq. (13.32). Is this result consistent with the results of parts (b) and (c)?

13.16. Consider a sequence x[n] with complex cepstrum x̂[n], such that x̂[n] = −x̂[−n]. Deter-
mine the quantity

E =
∞∑

n=−∞
x2[n].

13.17. Consider a real, stable, even, two-sided sequence h[n]. The Fourier transform of h[n] is
positive for all ω, i.e.,

H(ejω) > 0, −π < ω ≤ π.

Assume that the z-transform of h[n] exists. Do not assume that H(z) is rational.

(a) Show that there exists a minimum-phase signal g[n], such that

H(z) = G(z)G(z−1),

where G(z) is the z-transform of a sequence g[n], which has the property that g[n] = 0
for n < 0. State explicitly the relationship between ĥ[n] and ĝ[n], the complex cepstra
of h[n] and g[n], respectively.

1038 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

(b) Given a stable signal s[n], with rational z-transform

S(z) = (1 − 2z−1)(1 − 1
2 z−1)

(1 − 4z−1)(1 − 1
3z−1)

.

Define h[n] = s[n] ∗ s[−n]. Find G(z) (as in part (a)) in terms of S(z).
(c) Consider the system in Figure P13.17, where
[n] is defined as

[n] = u[n − 1] + (−1)nu[n − 1].
Determine the most general conditions on x[n] such that y[n] = x[n] for all n.

� [n]

X(e j�)x[n]

y[n]

Fourier
transform

Inverse
Fourier

transform
log |X(e j�)|

Inverse
Fourier

transform

Fourier
transform

Complex
exponential

Figure P13.17

13.18. Consider a maximum-phase signal x[n].
(a) Show that the complex cepstrum x̂[n] of a maximum-phase signal is related to its

cepstrum cx [n] by

x̂[n] = cx [n]
max [n],
where
max [n] = 2u[−n] − δ[n].

(b) Using the relationships in part (a), show that

arg{X(ejω)} = 1
2π

P
∫ π

−π
log |X(ejθ)| cot

(
ω − θ

2

)
dθ.

(c) Also show that

log |X(ejω)| = x̂[0] − 1
2π

P
∫ π

−π
arg{X(ejθ)} cot

(
ω − θ

2

)
dθ.

13.19. Consider a sequence x[n] with Fourier transform X(ejω) and complex cepstrum x̂[n]. A
new signal y[n] is obtained by homomorphic filtering where

ŷ[n] = (x̂[n] − x̂[−n])u[n − 1].

(a) Show that y[n] is a minimum-phase sequence.
(b) What is the phase of Y (ejω)?
(c) Obtain a relationship between arg[Y (ejω)] and log |Y (ejω)|.
(d) If x[n] is minimum phase, how is y[n] related to x[n]?

Chapter 13 Problems 1039

13.20. Equation (13.65) represents a recursive relationship between a sequence x[n] and its com-
plex cepstrum x̂[n]. Show from Eq. (13.65) that the characteristic system D∗[·] behaves as
a causal system for minimum-phase inputs; i.e., show that for minimum-phase inputs, x̂[n]
is dependent only on x[k] for k ≤ n.

13.21. Describe a procedure for computing a causal sequence x[n], for which

X(z) = −z3 (1 − 0.95z−1)2/5

(1 − 0.9z−1)7/13
.

13.22. The sequence

h[n] = δ[n] + αδ[n − n0]
is a simplified model for the impulse response of a system that introduces an echo.

(a) Determine the complex cepstrum ĥ[n] for this sequence. Sketch the result.
(b) Determine and sketch the cepstrum ch[n].
(c) Suppose that an approximation to the complex cepstrum is computed using N -point

DFTs as in Eqs. (13.46a) to (13.46c). Obtain a closed-form expression for the approx-
imation ĥp[n], 0 ≤ n ≤ N − 1, for the case n0 = N/6. Assume that phase unwrapping
can be accurately done. What happens if N is not divisible by n0?

(d) Repeat part (c) for the cepstrum approximation cxp[n], 0 ≤ n ≤ N − 1, as computed
using Eqs. (13.60a) and (13.60b).

(e) If the largest impulse in the cepstrum approximation cxp[n] is to be used to detect the
value of the echo delay n0, how large must N be to avoid ambiguity? Assume that
accurate phase unwrapping can be achieved with this value of N .

13.23. Let x[n] be a finite-length minimum-phase sequence with complex cepstrum x̂[n], and
define y[n] as

y[n] = αnx[n]
with complex cepstrum ŷ[n].
(a) If 0 < α < 1, how is ŷ[n] related to x̂[n]?
(b) How should α be chosen so that y[n] is no longer minimum phase?
(c) How should α be chosen so that if linear-phase terms are removed before computing

the complex cepstrum, then ŷ[n] = 0 for n > 0?

13.24. Consider a minimum-phase sequence x[n] with z-transform X(z) and complex cepstrum
x̂[n]. A new complex cepstrum is defined by the relation

ŷ[n] = (αn − 1)x̂[n].
Determine the z-transform Y (z). Is the result also minimum phase?

13.25. Section 13.9.4 contains an example of how the complex cepstrum can be used to obtain
two different decompositions involving convolution of a minimum-phase sequence with
another sequence. In that example,

X(z) = (0.98 + z−1)(1 + 0.9z−15 + 0.81z−30)

(1 − 0.9ejπ/6z−1)(1 − 0.9e−jπ/6z−1)
.

(a) In one decomposition, X(z) = Xmin(z)Xap(z) where

Xmin(z) = (1 + 0.98z−1)(1 + 0.9z−15 + 0.81z−30)

(1 − 0.9ejπ/6z−1)(1 − 0.9e−jπ/6z−1)

1040 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

and

Xap(z) = (0.98 + z−1)

(1 + 0.98z−1)
.

Use the power series expansion of the logarithmic terms to find the complex cepstra
x̂min[n], x̂ap[n], and x̂[n]. Plot these sequences and compare your plots with those in
Figure 13.19.

(b) In the second decomposition, X(z) = Xmn(z)Xmx(z) where

Xmn(z) = z−1(1 + 0.9z−15 + 0.81z−30)

(1 − 0.9ejπ/6z−1)(1 − 0.9e−jπ/6z−1)
and

Xmx(z) = (0.98z + 1).

Use the power series expansion of the logarithmic terms to find the complex cepstra
and show that x̂mn[n] �= x̂min[n] but that x̂[n] = x̂mn[n] + x̂mx [n] is the same as in
part (a). Note that

(1 + 0.9z−15 + 0.81z−30) = (1 − (0.9)3z−45)

(1 − 0.9z−15)
.

13.26. Suppose that s[n] = h[n] ∗ g[n] ∗ p[n], where h[n] is a minimum-phase sequence, g[n] is a
maximum-phase sequence, and p[n] is

p[n] =
4∑

k=0

αkδ[n − kn0],

where αk and n0 are not known. Develop a method to separate h[n] from s[n].

Extension Problems

13.27. Let x[n] be a sequence with z-transform X(z) and complex cepstrum x̂[n]. The magnitude-
squared function for X(z) is

V (z) = X(z)X∗(1/z∗).

Since V (ejω) = |X(ejω)|2 ≥ 0, the complex cepstrum v̂[n] corresponding to V (z) can be
computed without phase unwrapping.
(a) Obtain a relationship between the complex cepstrum v̂[n] and the complex cepstrum

x̂[n].
(b) Express the complex cepstrum v̂[n] in terms of the cepstrum cx [n].
(c) Determine the sequence
[n] such that

x̂min[n] =
[n]v̂[n]
is the complex cepstrum of a minimum-phase sequence xmin[n] for which

|Xmin(ejω)|2 = V (ejω).

(d) Suppose thatX(z) is as given by Eq. (13.32). Use the result of part (c) and Eqs. (13.36a),
(13.36b), and (13.36c) to find the complex cepstrum of the minimum-phase sequence,
and work backward to find Xmin(z).

The technique employed in part (d) may be used in general to obtain a minimum-phase
factorization of a magnitude-squared function.

13.28. Let x̂[n] be the complex cepstrum of x[n]. Define a sequence xe[n] to be

xe[n] =
{

x[n/N], n = 0, ±N, ±2N, . . . ,

0, otherwise.

Show that the complex cepstrum of xe[n] is given by

x̂e[n] =
{

x̂[n/N], n = 0, ±N,±2N, . . . ,

0, otherwise.

Chapter 13 Problems 1041

13.29. In speech analysis, synthesis, and coding, the speech signal is commonly modeled over a
short time interval as the response of an LTI system excited by an excitation that switches
between a train of equally spaced pulses for voiced sounds and a wideband random noise
source for unvoiced sounds. To use homomorphic deconvolution to separate the compo-
nents of the speech model, the speech signal s[n] = v[n] ∗ p[n] is multiplied by a window
sequence w[n] to obtain x[n] = s[n]w[n]. To simplify the analysis, x[n] is approximated by

x[n] = (v[n] ∗ p[n]) · w[n] � v[n] ∗ (p[n] · w[n]) = v[n] ∗ pw[n]
where pw[n] = p[n]w[n] as in Eq. (13.123).

(a) Give an example of p[n], v[n], and w[n] for which the above assumption may be a
poor approximation.

(b) One approach to estimating the excitation parameters (voiced/unvoiced decision and
pulse spacing for voiced speech) is to compute the real cepstrum cx [n] of the win-
dowed segment of speech x[n] as depicted in Figure P13.29-1. For the model of Sec-
tion 13.10.1, express cx [n] in terms of the complex cepstrum x̂[n]. How would you use
cx [n] to estimate the excitation parameters?

x[n] cx[n]
logF | · | F −1

Figure P13.29-1

(c) Suppose that we replace the log operation in Figure P13.29-1 with the “squaring”
operation so that the resulting system is as depicted in Figure P13.29-2. Can the new
“cepstrum” qx [n] be used to estimate the excitation parameters? Explain.

x[n] qx[n]
(·)2F | · | F −1

Figure P13.29-2

13.30. Consider a stable LTI system with impulse response h[n] and all-pole system function

H(z) = G

1 −
N∑

k=1

akz
−k

.

Such all-pole systems arise in linear-predictive analysis. It is of interest to compute the
complex cepstrum directly from the coefficients of H(z).

(a) Determine ĥ[0].
(b) Show that

ĥ[n] = an +
n−1∑
k=1

(
k

n

)
ĥ[k]an−k, n ≥ 1.

With the relations in parts (a) and (b), the complex cepstrum can be computed without
phase unwrapping and without solving for the roots of the denominator of H(z).

13.31. A somewhat more general model for echo than the system in Problem 13.22 is the system
depicted in Figure P13.31. The impulse response of this system is

h[n] = δ[n] + αg[n − n0],
where αg[n] is the impulse response of the echo path.

1042 Chapter 13 Cepstrum Analysis and Homomorphic Deconvolution

�[n − n0]

s[n] x[n]

�g[n]

Figure P13.31

(a) Assuming that

max−π<ω<π
|αG(ejω)| < 1,

show that the complex cepstrum ĥ[n] has the form

ĥ[n] =
∞∑

k=1

(−1)k+1 αk

k
gk[n − kn0],

and determine an expression for gk[n] in terms of g[n].
(b) For the conditions of part (a), determine and sketch the complex cepstrum ĥ[n] when

g[n] = δ[n].
(c) For the conditions of part (a), determine and sketch the complex cepstrum ĥ[n] when

g[n] = anu[n]. What condition must be satisfied by α and a so that the result of part
(a) applies?

(d) For the conditions of part (a), determine and sketch the complex cepstrum ĥ[n] when
g[n] = a0δ[n] + a1δ[n − n1]. What condition must be satisfied by α, a0, a1, and n1 so
that the result of part (a) applies?

13.32. An interesting use of exponential weighting is in computing the complex cepstrum without
phase unwrapping. Assume that X(z) has no poles and zeros on the unit circle. Then
it is possible to find an exponential weighting factor α in the product w[n] = αnx[n],
such that none of the poles or zeros of X(z) are shifted across the unit circle in forming
W(z) = X(α−1z).

(a) Assuming that no poles or zeros of X(z) move across the unit circle, show that

ŵ[n] = αnx̂[n]. (P13.32-1)

(b) Now suppose that instead of the complex cepstrum, we compute cx [n] and cw[n]. Use
the result of part (a) to obtain expressions for both cx [n] and cw[n] in terms of x̂[n].

(c) Now show that

x̂[n] = 2(cx [n] − αncw[n])
1 − α2n

, n �= 0. (P13.32-2)

(d) Since cx [n] and cw[n] can be computed from log |X(ejω)| and log |W(ejω)|, respec-
tively, Eq. (P13.32-2) is the basis for computing the complex cepstrum without com-
puting the phase of X(ejω). Discuss some potential problems that might arise with
this approach.

A

Random Signals

In this appendix, we collect and summarize a number of results and establish the notation
relating to the representation of random signals. We make no attempt here to provide a
detailed discussion of the difficult and subtle mathematical issues of the underlying the-
ory. Although our approach is not rigorous, we have summarized the important results
and the mathematical assumptions implicit in their derivation. Detailed presentation
of the theory of random signals are found in texts such as Davenport (1970), Papoulis
(1984), Gray and Davidson (2004), Kay (2006), and Bertsekas and Tsitsiklis (2008).

A.1 DISCRETE-TIME RANDOM PROCESSES

The fundamental concept in the mathematical representation of random signals is that
of a random process. In our discussion of random processes as models for discrete-time
signals, we assume that the reader is familiar with the basic concepts of probability, such
as random variables, probability distributions, and averages.

In using the random-process model in practical signal-processing applications, we
consider a particular sequence to be one of an ensemble of sample sequences. Given
a discrete-time signal, the structure, i.e., the underlying probability law, of the corre-
sponding random process is generally not known and must somehow be inferred. It
may be possible to make reasonable assumptions about the structure of the process, or
it may be possible to estimate the properties of a random-process representation from
a finite segment of a typical sample sequence.

Formally, a random process is an indexed family of random variables {xn} charac-
terized by a set of probability distribution functions that, in general, may be a function
of the index n. In using the concept of a random process as a model for discrete-time

1043

1044 App. A Random Signals

signals, the index n is associated with the time index. In other words, each sample value
x[n] of a random signal is assumed to have resulted from a mechanism that is governed
by a probability law. An individual random variable xn is described by the probability
distribution function

Pxn(xn, n) = Probability [xn ≤ xn], (A.1)

where xn denotes the random variable and xn is a particular value of xn.1 If xn takes
on a continuous range of values, it is equivalently specified by the probability density
function

pxn(xn, n) = ∂Pxn(xn, n)

∂xn

, (A.2)

or the probability distribution function

Pxn(xn, n) =
∫ xn

−∞
pxn(x, n)dx. (A.3)

The interdependence of two random variables xn and xm of a random process is
described by the joint probability distribution function

Pxn,xm(xn, n, xm, m) = Probability [xn ≤ xn and xm ≤ xm] (A.4)

and by the joint probability density

pxn,xm(xn, n, xm, m) = ∂2Pxn,xm(xn, n, xm, m)

∂xn∂xm

. (A.5)

Two random variables are statistically independent if knowledge of the value of
one does not affect the probability density of the other. If all the random variables of a
collection of random variables, {xn}, are statistically independent, then

Pxn,xm(xn, n, xm, m) = Pxn(xn, n) · Pxm(xm, m) m �= n. (A.6)

A complete characterization of a random process requires the specification of all
possible joint probability distributions. As we have indicated, these probability distribu-
tions may be a function of the time indices m and n. In the case where all the probability
distributions are independent of a shift of time origin, the random process is said to be
stationary. For example, the 2nd-order distribution of a stationary process satisfies

Pxn+k,xm+k(xn+k, n + k, xm+k, m + k) = Pxnxm(xn, n, xm, m) for all k. (A.7)

In many of the applications of discrete-time signal processing, random processes
serve as models for signals in the sense that a particular signal can be considered a sample
sequence of a random process. Although the details of such signals are unpredictable—
making a deterministic approach to signal representation inappropriate—certain av-
erage properties of the ensemble can be determined, given the probability law of the
process. These average properties often serve as a useful, although incomplete, charac-
terization of such signals.

1In this appendix, boldface type is used to denote the random variables and regular type denotes
dummy variables of probability functions.

Section A.2 Averages 1045

A.2 AVERAGES

It is often useful to characterize a random variable by averages such as the mean and
variance. Since a random process is an indexed set of random variables, we may likewise
characterize the process by statistical averages of the random variables making up the
random process. Such averages are called ensemble averages. We begin the discussion
of averages with some definitions.

A.2.1 Definitions

The average, or mean, of a random process is defined as

mxn = E{xn} =
∫ ∞

−∞
xpxn(x, n)dx, (A.8)

where E denotes an operator called mathematical expectation. In general, the mean
(expected value) may depend on n. In addition, if g(·) is a single-valued function, then
g(xn) is a random variable, and the set of random variables {g(xn)} defines a new random
process. To compute averages of this new process, we can derive probability distributions
of the new random variables. Alternatvely, it can be shown that

E{g(xn)} =
∫ ∞

−∞
g(x)pxn(x, n)dx. (A.9)

If the random variables are discrete—i.e., if they have quantized values—the integrals
become summations over all possible values of the random variable. In that case E{g(x)}
has the form

E{g(xn)} =
∑
x

g(x)p̂xn(x, n). (A.10)

In cases where we are interested in the relationship between multiple random
processes, we must be concerned with multiple sets of random variables. For example,
for two sets of random variables, {xn} and {ym}, the expected value of a function of the
two random variables is defined as

E{g(xn, ym)} =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)pxn,ym

(x, n, y, m)dx dy, (A.11)

where pxn,ym
(xm, n, ym, m) is the joint probability density of the random variables xn

and ym.
The mathematical expectation operator is a linear operator; that is, it can be shown

that

1. E{xn + ym} = E{xn} + E{ym}; i.e., the average of a sum is the sum of the averages.

2. E{axn} = aE{xn}; i.e., the average of a constant times xn is equal to the constant
times the average of xn.

In general, the average of a product of two random variables is not equal to the
product of the averages. When this property holds, however, the two random variables
are said to be linearly independent or uncorrelated. That is, xn and ym are linearly inde-
pendent or uncorrelated if

E{xnym} = E{xm} · E{ym}. (A.12)

1046 App. A Random Signals

It is easy to see from Eqs. (A.11) and (A.12) that a sufficient condition for linear inde-
pendence is

pxn,ym
(xn, n, ym, m) = pxn(xn, n) · pym

(ym, m). (A.13)

However, Eq. (A.13) is a stronger statement of independence than Eq. (A.12). As
previously stated, random variables satisfying Eq. (A.13) are said to be statistically
independent. If Eq. (A.13) holds for all values of n and m, the random processes {xn} and
{ym} are said to be statistically independent. Statistically independent random processes
are also linearly independent; but the converse is not true: Linear independence does
not imply statistical independence.

It can be seen from Eqs. (A.9)–(A.11) that averages generally are functions of the
time index. For stationary processes, the mean is the same for all the random variables
that constitute the process; i.e., the mean of a stationary process is a constant, which we
denote simply mx .

In addition to the mean of a random process, as defined in Eq. (A.8), a number
of other averages are particularly important within the context of signal processing.
These are defined next. For notational convenience, we assume that the probability
distributions are continuous. Corresponding definitions for discrete random processes
can be obtained by applying Eq. (A.10).

The mean-square value of xn is the average of |xn|2; i.e.,

E{|xn|2} = mean square =
∫ ∞

−∞
|x|2pxn(x, n)dx. (A.14)

The mean-square value is sometimes referred to as the average power.
The variance of xn is the mean-square value of [xn − mxn]; i.e.,

var[xn] = E{|(xn − mxn)|2} = σ 2
xn

. (A.15)

Since the average of a sum is the sum of the averages, it follows that Eq. (A.15) can be
written as

var[xn] = E{|xn|2} − |mxn |2. (A.16)

In general, the mean-square value and the variance are functions of time; however, they
are constant for stationary processes.

The mean, mean square, and variance are simple averages that provide only a small
amount of information about a process. A more useful average is the autocorrelation
sequence, which is defined as

φxx[n, m] = E{xnx∗
m}

=
∫ ∞

−∞

∫ ∞

−∞
xnx

∗
mpxn,xm(xn, n, xm, m)dxn dxm,

(A.17)

where ∗ denotes complex conjugation. The autocovariance sequence of a random pro-
cess is defined as

γxx[n, m] = E{(xn − mxn)(xm − mxm)∗}, (A.18)

which can be written as

γxx[n, m] = φxx[n, m] − mxnm
∗
xm

. (A.19)

Section A.2 Averages 1047

Note that, in general, both the autocorrelation and autocovariance are two-dimensional
sequences, i.e., functions of two discrete variables.

The autocorrelation sequence is a measure of the dependence between values of
the random processes at different times. In this sense, it partially describes the time
variation of a random signal. A measure of the dependence between two different
random signals is obtained from the cross-correlation sequence. If {xn} and {ym} are
two random processes, their cross-correlation is

φxy[n, m] = E{xny∗
m}

=
∫ ∞

−∞

∫ ∞

−∞
xy∗pxn,ym

(x, n, y, m)dx dy,
(A.20)

wherepxn,ym
(x, n, y, m) is the joint probability density of xn and ym. The cross-covariance

function is defined as

γxy[n, m] = E{(xn − mxn)(ym − mym)∗}
= φxy[n, m] − mxnm

∗
ym

.
(A.21)

As we have pointed out, the statistical properties of a random process generally
vary with time. However, a stationary random process is characterized by an equilibrium
condition in which the statistical properties are invariant to a shift of time origin. This
means that the 1st-order probability distribution is independent of time. Similarly, all the
joint probability functions are also invariant to a shift of time origin; i.e., the 2nd-order
joint probability distributions depend only on the time difference (m − n). First-order
averages such as the mean and variance are independent of time; 2nd-order averages,
such as the autocorrelation φxx[n, m], are dependent on the time difference (m − n).
Thus, for a stationary process, we can write

mx = E{xn}, (A.22)

σ 2
x = E{|(xn − mx)|2}, (A.23)

both independent of n. If we now denote the time difference by m, we have

φxx[n + m, n] = φxx[m] = E{xn+mx∗
n}. (A.24)

That is, the autocorrelation sequence of a stationary random process is a one-dimensional
sequence, a function of the time difference m.

In many instances, we encounter random processes that are not stationary in the
strict sense—i.e., their probability distributions are not time invariant—but Eqs. (A.22)–
(A.24) still hold. Such random processes are said to be wide-sense stationary.

A.2.2 Time Averages

In a signal-processing context, the notion of an ensemble of signals is a convenient math-
ematical concept that allows us to use the theory of probability to represent the signals.
However, in a practical situation, we always have available at most a finite number
of finite-length sequences rather than an infinite ensemble of sequences. For example,
we might wish to infer the probability law or certain averages of the random-process
representation from measurements on a single member of the ensemble. When the
probability distributions are independent of time, intuition suggests that the amplitude

1048 App. A Random Signals

distribution (histogram) of a long segment of an individual sequence of samples should
be approximately equal to the single probability density that describes each of the ran-
dom variables of the random-process model. Similarly, the arithmetic average of a large
number of samples of a single sequence should be very close to the mean of the process.
To formalize these intuitive notions, we define the time average of a random process as

〈xn〉 = lim
L→∞

1
2L + 1

L∑
n=−L

xn. (A.25)

Similarly, the time autocorrelation sequence is defined as

〈xn+mx∗
n〉 = lim

L→∞
1

2L + 1

L∑
n=−L

xn+mx∗
n. (A.26)

It can be shown that the preceding limits exist if {xn} is a stationary process with fi-
nite mean. As defined in Eqs. (A.25) and (A.26), these time averages are functions
of an infinite set of random variables and thus are properly viewed as random vari-
ables themselves. However, under the condition known as ergodicity, the time averages
in Eqs. (A.25) and (A.26) are equal to constants in the sense that the time averages
of almost all possible sample sequences are equal to the same constant. Furthermore,
they are equal to the corresponding ensemble average.2 That is, for any single sample
sequence {x[n]} for −∞ < n < ∞,

〈x[n]〉 = lim
L→∞

1
2L + 1

L∑
n=−L

x[n] = E{xn} = mx (A.27)

and

〈x[n + m]x∗[n]〉 = lim
L→∞

1
2L + 1

L∑
n=−L

x[n + m]x∗[n] = E{xn+mx∗
n} = φxx[m]. (A.28)

The time-average operator 〈·〉 has the same properties as the ensemble-average operator
E{·}. Thus, we generally do not distinguish between the random variable xn and its value
in a sample sequence, x[n]. For example, the expression E{x[n]} should be interpreted
as E{xn} = 〈x[n]〉. In general, for ergodic processes, time averages equal ensemble
averages.

In practice, it is common to assume that a given sequence is a sample sequence of
an ergodic random process so that averages can be computed from a single sequence.
Of course, we generally cannot compute with the limits in Eqs. (A.27) and (A.28), but
instead the quantities

m̂x = 1
L

L−1∑
n=0

x[n], (A.29)

σ̂ 2
x = 1

L

L−1∑
n=0

|x[n] − m̂x |2, (A.30)

2A more precise statement is that the random variables 〈xn〉 and 〈xn+mx∗
n〉 have means equal to mx

and φxx [m], respectively, and their variances are zero.

Section A.3 Properties of Correlation and Covariance Sequences of Stationary Processes 1049

and

〈x[n + m]x∗[n]〉L = 1
L

L−1∑
n=0

x[n + m]x∗[n] (A.31)

or similar quantities are often computed as estimates of the mean, variance, and au-
tocorrelation. m̂x and σ̂ 2

x are referred to as the sample mean and sample variance,
respectively. The estimation of averages of a random process from a finite segment of
data is a problem of statistics, which we touch on briefly in Chapter 10.

A.3 PROPERTIES OF CORRELATION AND COVARIANCE
SEQUENCES OF STATIONARY PROCESSES

Several useful properties of correlation and covariance functions follow in a straight-
forward way from the definitions. These properties are given in this section.

Consider two real stationary random processes {xn} and {yn} with autocorrelation,
autocovariance, cross-correlation, and cross-covariance being given, respectively, by

φxx[m] = E{xn+mx∗
n}, (A.32)

γxx[m] = E{(xn+m − mx)(xn − mx)
∗}, (A.33)

φxy[m] = E{xn+my∗
n}, (A.34)

γxy[m] = E{(xn+m − mx)(yn − my)
∗}, (A.35)

where mx and my are the means of the two processes. The following properties are easily
derived by simple manipulations of the definitions:

Property 1

γxx[m] = φxx[m] − |mx |2, (A.36a)

γxy[m] = φxy[m] − mxm
∗
y. (A.36b)

These results follow directly from Eqs. (A.19) and (A.21), and they indicate that the
correlation and covariance sequences are identical for zero-mean processes.

Property 2

φxx[0] = E[|xn|2] = Mean-square value, (A.37a)

γxx[0] = σ 2
x = Variance. (A.37b)

Property 3

φxx[−m] = φ∗
xx[m], (A.38a)

γxx[−m] = γ ∗
xx[m], (A.38b)

φxy[−m] = φ∗
yx[m], (A.38c)

γxy[−m] = γ ∗
yx[m]. (A.38d)

1050 App. A Random Signals

Property 4

|φxy[m]|2 ≤ φxx[0]φyy[0], (A.39a)

|γxy[m]|2 ≤ γxx[0]γyy[0]. (A.39b)

In particular,

|φxx[m]| ≤ φxx[0], (A.40a)

|γxx[m]| ≤ γxx[0]. (A.40b)

Property 5. If yn = xn−n0 , then

φyy[m] = φxx[m], (A.41a)

γyy[m] = γxx[m]. (A.41b)

Property 6. For many random processes, the random variables become
uncorrelated as they become more separated in time. If this is true,

lim
m→∞ γxx[m] = 0, (A.42a)

lim
m→∞ φxx[m] = |mx |2, (A.42b)

lim
m→∞ γxy[m] = 0, (A.42c)

lim
m→∞ φxy[m] = mxm

∗
y. (A.42d)

The essence of these results is that the correlation and covariance are finite-energy
sequences that tend to die out for large values of m. Thus, it is often possible to represent
these sequences in terms of their Fourier transforms or z-transforms.

A.4 FOURIER TRANSFORM REPRESENTATION
OF RANDOM SIGNALS

Although the Fourier transform of a random signal does not exist except in a generalized
sense, the autocovariance and autocorrelation sequences of such a signal are aperiodic
sequences for which the transform does exist. The spectral representation of the cor-
relation functions plays an important role in describing the input–output relations for
a linear time-invariant system when the input is a random signal. Therefore, it is of
interest to consider the properties of correlation and covariance sequences and their
corresponding Fourier and z-transforms.

We define �xx(e
jω), �xx(e

jω), �xy(e
jω), and �xy(e

jω) as the DTFTs of φxx[m],
γxx[m], φxy[m], and γxy[m], respectively. Since these functions are all DTFTs of se-
quences, they must be periodic with period 2π . From Eqs. (A.36a) and (A.36b), it
follows that, over one period |ω| ≤ π ,

�xx(e
jω) = �xx(e

jω) + 2π |mx |2δ(ω), |ω| ≤ π, (A.43a)

and

�xy(e
jω) = �xy(e

jω) + 2πmxm
∗
yδ(ω), |ω| ≤ π. (A.43b)

Section A.4 Fourier Transform Representation of Random Signals 1051

In the case of zero-mean processes (mx = 0 and my = 0), the correlation and covariance
functions are identical so that �xx(e

jω) = �xx(e
jω) and �xy(e

jω) = �xy(e
jω).

From the inverse Fourier transform equation, it follows that

γxx[m] = 1
2π

∫ π

−π

�xx(e
jω)ejωmdω, (A.44a)

φxx[m] = 1
2π

∫ π

−π

�xx(e
jω)ejωmdω, (A.44b)

and, consequently,

E{|x[n]|2} = φxx[0] = σ 2
x = 1

2π

∫ π

−π

�xx(e
jω)dω, (A.45a)

σ 2
x = γxx[0] = 1

2π

∫ π

−π

�xx(e
jω)dω. (A.45b)

Sometimes it is notationally convenient to define the quantity

Pxx(ω) = �xx(e
jω), (A.46)

in which case Eqs. (A.45a) and (A.45b) are expressed as

E{|x[n]|2} = 1
2π

∫ π

−π

Pxx(ω)dω, (A.47a)

σ 2
x = 1

2π

∫ π

−π

Pxx(ω)dω. (A.47b)

Thus, the area under Pxx(ω) for −π ≤ ω ≤ π is proportional to the average power in
the signal. In fact, as we discussed in Section 2.10, the integral of Pxx(ω) over a band
of frequencies is proportional to the power in the signal in that band. For this reason,
the function Pxx(ω) is called the power density spectrum, or simply, the power spectrum.
When Pxx(ω) is a constant independent of ω, the random process is referred to as a
white-noise process, or simply, white noise. When Pxx(ω) is constant over a band and
zero otherwise, we refer to it as bandlimited white noise.

From Eq. (A.38a), it can be shown that Pxx(ω) = P ∗
xx(ω); i.e., Pxx(ω) is always

real valued. Furthermore, for real random processes, φxx[m] = φxx[−m], so in the real
case, Pxx(ω) is both real and even; i.e.,

Pxx(ω) = Pxx(−ω). (A.48)

An additional important property is that the power density spectrum is nonnegative;
i.e., Pxx(ω) ≥ 0 for all ω. This point is discussed in Section 2.10.

The cross power density spectrum is defined as

Pxy(ω) = �xy(e
jω). (A.49)

1052 App. A Random Signals

This function is generally complex, and from Eq. (A.38c), it follows that

Pxy(ω) = P ∗
yx(ω). (A.50)

Finally, as shown in Section 2.10, if x[n] is a random signal input to a linear time-invariant
discrete-time system with frequency response H(ejω), and if y[n] is the corresponding
output, then

�yy(e
jω) = |H(ejω)|2�xx(e

jω) (A.51)

and

�xy(e
jω) = H(ejω)�xx(e

jω). (A.52)

Example A.1 Noise Power Output of Ideal Lowpass Filter

Suppose that x[n] is a zero-mean white-noise sequence with φxx [m] = σ 2
x δ[m] and

power spectrum �xx(ejω) = σ 2
x for |ω| ≤ π , and furthermore, assume that x[n] is

the input to an ideal lowpass filter with cutoff frequency ωc. Then from Eq. (A.51), it
follows that the output y[n] would be a bandlimited white noise process whose power
spectrum would be

�yy(ejω) =
{

σ 2
x , |ω| < ωc,

0, ωc < |ω| ≤ π.
(A.53)

Using the inverse Fourier transform, we obtain the autocorrelation sequence

φyy [m] = sin(ωcm)

πm
σ 2
x . (A.54)

Now, using Eq. (A.45a), we get for the average power of the output,

E{y2[n]} = φyy [0] = 1
2π

∫ ωc

−ωc

σ 2
x dω = σ 2

x

ωc

π
. (A.55)

A.5 USE OF THE z -TRANSFORM IN AVERAGE POWER
COMPUTATIONS

To carry out average power calculations using Eq. (A.45a), we must evaluate an in-
tegral of the power spectrum as was done in Example A.1. While the integral in that
example was easy to evaluate, such integrals in general are difficult to evaluate as real
integrals. However, a result based on the z-transform makes the calculation of average
output power straightforward in the important case of systems that have rational system
functions.

In general, the z-transform can be used to represent the covariance function but
not a correlation function. This is because when a signal has nonzero average value, its
correlation function will contain an additive constant component that does not have a
z-transform representation. When the average value is zero, however, the covariance
and correlation functions are, of course, equal. If the z-transform of γxx[m] exists, then
since γxx[−m] = γ ∗

xx[m] it follows that in general

�xx(z) = �∗
xx(1/z∗). (A.56)

Section A.5 Use of the z -Transform in Average Power Computations 1053

Furthermore, since γxx[m] is two sided and conjugate-symmetric, it follows that the
region of convergence of �xx(z) must be of the form

ra < |z| <
1
ra

where necessarily 0 < ra < 1. In the important case when �xx(z) is a rational function of
z, Eq. (A.56) implies that the poles and zeros of �xx(z) must occur in complex-conjugate
reciprocal pairs.

The major advantage of the z-transform representation is that when �xx(z) is a
rational function, the average power of the random signal can be computed easily using
the relation

E{|x[n] − mx |2} = σ 2
x = γxx[0] =

⎧⎨⎩
Inverse z-transform

of �xx(z),
evaluated for m = 0

⎫⎬⎭ . (A.57)

It is straightforward to evaluate the right-hand side of this equation using a method based
on the observation that when �xx(z) is a rational function of z, γxx[m] can be computed
for all m by employing a partial fraction expansion. Then to obtain the average power,
we can simply evaluate γxx[m] for m = 0.

The z-transform is also useful in determining the autocovariance and average
power of the output of an LTI system when the input is a random signal. Generalizing
Eq. (A.51) leads to

�yy(z) = H(z)H ∗(1/z∗)�xx(z), (A.58)

and from the properties of the z-transform and Eq. (A.58), it follows that the autoco-
variance of the output is the convolution

γyy[m] = h[m] ∗ h∗[−m] ∗ γxx[m]. (A.59)

This result is particularly useful in quantization noise analysis where we need to com-
pute the average output power when the input to a linear difference equation is a
zero-mean white noise signal with average power σ 2

x . Since the autocovariance of
such an input is γxx[m] = σ 2

x δ[m], it follows that the autocovariance of the output is
γyy[m] = σ 2

x (h[m] ∗h∗[−m]), i.e., the covariance of the output is proportional to the de-
terministic autocorrelation of the impulse response of the LTI system. From this result
it follows that

E{y2[n]} = γyy[0] = σ 2
x

∞∑
n=−∞

|h[n]|2. (A.60)

As an alternative to computing the sum of squares of the impulse response sequence,
which can be rather difficult for IIR systems, we can apply the method suggested in
Eq. (A.57) to obtain E{y2[n]} from a partial fraction expansion of �yy(z). Recall that
for a white noise input with γxx[m] = σ 2

x δ[m], the z-transform is �xx(z) = σ 2
x so �yy(z) =

σ 2
x H(z)H ∗(1/z∗). Therefore, Eq. (A.57) applied to the output of the system gives

E{y2[n]} = γyy[0] =
⎧⎨⎩

Inverse z-transform of
�yy(z) = H(z)H ∗(1/z∗)σ 2

x ,
evaluated for m = 0

⎫⎬⎭ . (A.61)

1054 App. A Random Signals

Now consider the special case of a stable and causal system having a rational
system function of the form

H(z) = A

M∏
m=1

(1 − cmz−1)

N∏
k=1

(1 − dkz
−1)

|z| > max
k

{|dk|}, (A.62)

where maxk{|dk|} < 1 and M < N . Such a system function might describe the relation-
ship between an internal round-off noise source and the output of a system implemented
with fixed-point arithmetic. Substituting Eq. (A.62) for H(z) in Eq. (A.58) gives

�yy(z) = σ 2
x H(z)H ∗(1/z∗) = σ 2

x |A|2

M∏
m=1

(1 − cmz−1)(1 − c∗
mz)

N∏
k=1

(1 − dkz
−1)(1 − d∗

k z)

. (A.63)

Since we have assumed that |dk| < 1 for all k, all of the original poles are inside the
unit circle and therefore the other poles at (d∗

k)−1 are at conjugate reciprocal locations
outside the unit circle. The region of convergence for �yy(z) is therefore maxk |dk| <

|z| < mink |(d∗
k)−1|. For such rational functions, it can be shown that since M < N , the

partial fraction expansion has the form

�yy(z) = σ 2
x

(
N∑

k=1

(
Ak

1 − dkz−1
− A∗

k

1 − (d∗
k)−1z−1

))
, (A.64)

where the coefficients are found from

Ak = H(z)H ∗(1/z∗)(1 − dkz
−1)

∣∣∣
z=dk

. (A.65)

Since the poles at z = dk are inside the inner boundary of the region of convergence,
each of them corresponds to a right-sided sequence, while the poles at z = (d∗

k)−1 each
correspond to a left-sided sequence. Thus, the autocovariance function corresponding
to Eq. (A.64) is

γyy[n] = σ 2
x

N∑
k=1

(Ak(dk)
nu[n] + A∗

k(d
∗
k)−nu[−n − 1]),

from which it follows that we can obtain the average power from

σ 2
y = γyy[0] = σ 2

x

(
N∑

k=1

Ak

)
, (A.66)

where the quantities Ak are given by Eq. (A.65).
Thus, the computation of the total average power of the output of a system with

rational system function and white noise input reduces to the straightforward problem
of finding partial fraction expansion coefficients for the z-transform of the output auto-
correlation function. The utility of this approach is illustrated by the following example.

Section A.5 Use of the z -Transform in Average Power Computations 1055

Example A.2 Noise Power Output of a 2nd-Order IIR Filter

Consider a system with impulse response

h[n] = rn sin θ(n + 1)

sin θ
u[n] (A.67)

and system function

H(z) = 1

(1 − rejθ z−1)(1 − re−jθ z−1)
. (A.68)

When the input is white noise with total average power σ 2
x , the z-transform of the

autocovariance function of the output is

�yy(z) = σ 2
x

(
1

(1 − rejθ z−1)(1 − re−jθ z−1)

)(
1

(1 − re−jθ z)(1 − rejθ z)

)
(A.69)

from which we obtain, using Eq. (A.65),

E{y2[n]} = σ 2
x

[(
1

(1 − re−jθ z−1)

)(
1

(1 − re−jθ z)(1 − rejθ z)

)∣∣∣∣
z=rejθ

+
(

1

(1 − rejθ z−1)

)(
1

(1 − re−jθ z)(1 − rejθ z)

)∣∣∣∣
z=re−jθ

]
.

(A.70)

Making the indicated substitutions, placing both terms over a common denominator,
and doing some algebra leads to

E{y2[n]} = σ 2
x

(
1 + r2

1 − r2

)(
1

1 − 2r2 cos(2θ) + r4

)
. (A.71)

Thus, using the partial fraction expansion of �yy(z), we have effectively evaluated the
expression

E{y2[n]} = σ 2
x

∞∑
n=−∞

|h[n]|2 = σ 2
x

∞∑
n=0

∣∣∣∣ rn sin θ(n + 1)

sin θ

∣∣∣∣2 ,

which would be difficult to sum in closed form, and the expression

E{y2[n]} = 1
2π

∫ π

−π
σ 2
x |H(ejω)|2dω = σ 2

x

2π

∫ π

−π

dω

|(1 − rejθ e−jω)(1 − re−jθ e−jω)|2 ,

which would be difficult to evaluate as an integral over the real variable ω.

The result of Example A.2 is an illustration of the power of the partial fraction
method in evaluating average power formulas. In Chapter 6, we make use of this tech-
nique in the analysis of quantization effects in the implementation of digital filters.

B

Continuous-Time

Filters

The techniques discussed in Chapter 7 for designing IIR digital filters rely on the avail-
ability of appropriate continuous-time filter designs. In this appendix,we briefly sum-
marize the characteristics of several classes of lowpass filter approximations that we
referred to in Chapter 7. More detailed discussions of these classes of filters appear in
Guillemin (1957), Weinberg (1975) and Parks and Burrus (1987), and extensive design
tables and formulas are found in Zverev (1967). Design programs for all the common
continuous-time approximations and transformations to digital filters are available in
MATLAB, Simulink, and LabVIEW.

B.1 BUTTERWORTH LOWPASS FILTERS

Butterworth lowpass filters are defined by the property that the magnitude response is
maximally flat in the passband. For an N th-order lowpass filter, this means that the first
(2N − 1) derivatives of the magnitude-squared function are zero at � = 0. Another
property is that the magnitude response is monotonic in the passband and the stopband.
The magnitude-squared function for a continuous-time Butterworth lowpass filter has
the form

|Hc(j�)|2 = 1
1 + (j�/j�c)2N

. (B.1)

This function is plotted in Figure B.1.
As the parameterN in Eq. (B.1) increases, the filter characteristics become sharper:

that is, they remain close to unity over more of the passband and become close to zero
more rapidly in the stopband, although the magnitude-squared function at the cutoff
frequency �c will always be equal to one-half because of the nature of Eq. (B.1). The

1056

Section B.1 Butterworth Lowpass Filters 1057

�c0

1

1
2

|Hc(j�)| 2

�

Figure B.1 Magnitude-squared
function for continuous-time
Butterworth filter.

�c0

1

1
2

|Hc(j�)|

�

N = 2

N = 4

N = 8

Figure B.2 Dependence of Butterworth
magnitude characteristics on the
order N .

dependence of the Butterworth filter characteristic on the parameter N is indicated in
Figure B.2, which shows |Hc(j�)| for several values of N .

From the magnitude-squared function in Eq. (B.1), we observe by substituting
j� = s that Hc(s)Hc(−s) must be of the form

Hc(s)Hc(−s) = 1
1 + (s/j�c)2N

. (B.2)

The roots of the denominator polynomial (the poles of the magnitude-squared function)
are therefore located at values of s satisfying 1 + (s/j�c)

2N = 0; i.e.,

sk = (−1)1/2N(j�c) = �ce
(jπ/2N)(2k+N−1), k = 0, 1, . . . , 2N − 1. (B.3)

Thus, there are 2N poles equally spaced in angle on a circle of radius �c in the s-plane.
The poles are symmetrically located with respect to the imaginary axis. A pole never
falls on the imaginary axis, and one occurs on the real axis for N odd, but not for N

even. The angular spacing between the poles on the circle is π/N radians. For example,
for N = 3, the poles are spaced by π/3 radians, or 60 degrees, as indicated in Figure B.3.
To determine the system function of the analog filter to associate with the Butterworth
magnitude-squared function, we perform the factorization Hc(s)Hc(−s). The poles of
the magnitude-squared function always occur in pairs; i.e., if there is a pole at s = sk ,
then a pole also occurs at s = −sk . Consequently, to construct Hc(s) from the magnitude-
squared function, we would choose the one pole from each such pair. To obtain a stable
and causal filter, we should choose all the poles on the left-half-plane part of the s-plane.

With this approach, Hc(s) would be

Hc(s) = �3
c

(s + �c)(s − �cej2π/3)(s − �ce−j2π/3)
,

which can be written as

Hc(s) = �3
c

s3 + 2�cs2 + 2�cs + �3
c

.

In general the numerator of Hc(s) would be �N
c to ensure that |Hc(0) = 1.

1058 App. B Continuous-Time Filters

�c

s-planeIm

Re

60

Figure B.3 s-plane pole locations for
the magnitude-squared function of
3rd-order Butterworth filter.

B.2 CHEBYSHEV FILTERS

In a Butterworth filter, the magnitude response is monotonic in both the passband
and the stopband. Consequently, if the filter specifications are in terms of maximum
passband and stopband approximation error, the specifications are exceeded toward the
low-frequency end of the passband and above the stopband cutoff frequency. A more
efficient approach, which usually leads to a lower order filter, is to distribute the accuracy
of the approximation uniformly over the passband or the stopband (or both). This is
accomplished by choosing an approximation that has an equiripple behavior rather
than a monotonic behavior. The class of Chebyshev filters has the property that the
magnitude of the frequency response is either equiripple in the passband and monotonic
in the stopband (referred to as a type I Chebyshev filter) or monotonic in the passband
and equiripple in the stopband (a type II Chebyshev filter). The frequency response of
a type I Chebyshev filter is shown in Figure B.4. The magnitude-squared function for
this filter is of the form

|Hc(j�)|2 = 1

1 + ε2V 2
N(�/�c)

, (B.4)

where VN(x) is the N th-order Chebyshev polynomial defined as

VN(x) = cos(N cos−1 x). (B.5)

For example, for N = 0, V0(x) = 1; for N = 1, V1(x) = cos(cos−1 x) = x; for N = 2,
V2(x) = cos(2 cos−1 x) = 2x2 − 1; and so on.

�c

1 – �
1

Hc(j�)

�
Figure B.4 Type I Chebyshev lowpass
filter approximation.

Section B.2 Chebyshev Filters 1059

a�c

�

b�c

s-plane3

Figure B.5 Location of poles for the
magnitude-squared function of 3rd-order
type I lowpass Chebyshev filter.

From Eq. (B.5), which defines the Chebyshev polynomials, it is straightforward
to obtain a recurrence formula from which VN+1(x) can be obtained from VN(x) and
VN−1(x). By applying trigonometric identities to Eq. (B.5), it follows that

VN+1(x) = 2xVN(x) − VN−1(x). (B.6)

From Eq. (B.5), we note that V 2
N(x) varies between zero and unity for 0 < x < 1. For

x > 1, cos−1 x is imaginary, so VN(x) behaves as a hyperbolic cosine and consequently
increases monotonically. Referring to Eq. (B.4), we see that |Hc(j�)|2 ripples between
1 and 1/(1 + ε2) for 0 ≤ �/�c ≤ 1 and decreases monotonically for �/�c > 1. Three
parameters are required to specify the filter: ε, �c, and N . In a typical design, ε is
specified by the allowable passband ripple and �c is specified by the desired passband
cutoff frequency. The order N is then chosen so that the stopband specifications are
met.

The poles of the Chebyshev filter lie on an ellipse in the s-plane. As shown in
Figure B.5, the ellipse is defined by two circles whose diameters are equal to the minor
and major axes of the ellipse. The length of the minor axis is 2a�c, where

a = 1
2 (α1/N − α−1/N) (B.7)

with

α = ε−1 +
√

1 + ε−2. (B.8)

The length of the major axis is 2b�c, where

b = 1
2 (α1/N + α−1/N). (B.9)

To locate the poles of the Chebyshev filter on the ellipse, we first identify the points on
the major and minor circles equally spaced in angle with a spacing of π/N in such a way
that the points are symmetrically located with respect to the imaginary axis and such
that a point never falls on the imaginary axis and a point occurs on the real axis for N

odd but not for N even. This division of the major and minor circles corresponds exactly
to the manner in which the circle is divided in locating the poles of a Butterworth filter
as in Eq. (B.3). The poles of a Chebyshev filter fall on the ellipse, with the ordinate

1060 App. B Continuous-Time Filters

specified by the points identified on the major circle and the abscissa specified by the
points identified on the minor circle. In Figure B.5, the poles are shown for N = 3.

A type II Chebyshev lowpass filter can be related to a type I filter through a
transformation. Specifically, if in Eq. (B.4) we replace the term ε2V 2

N(�/�c) by its
reciprocal and also replace the argument of V 2

N by its reciprocal, we obtain

|Hc(j�)|2 = 1

1 + [ε2V 2
N(�c/�)]−1

. (B.10)

This is the analytic form for the type II Chebyshev lowpass filter. One approach to
designing a type II Chebyshev filter is to first design a type I filter and then apply the
transformation of Eq. (B.10).

B.3 ELLIPTIC FILTERS

If we distribute the error uniformly across the entire passband or across the entire stop-
band, as in the Chebyshev cases, we are able to meet the design specifications with
a lower order filter than if we permit a monotonically varying error in the passband
and stopband, as in the Butterworth case. We note that in the type I Chebyshev ap-
proximation, the stopband error decreases monotonically with frequency, raising the
possibility of further improvements if we distribute the stopband error uniformly across
the stopband. This suggests the lowpass filter approximation in Figure B.6. Indeed, it
can be shown (Papoulis, 1957) that this type of approximation (i.e., equiripple error in
the passband and the stopband) is the best that can be achieved for a given filter order
N , in the sense that for given values of �p, δ1, and δ2, the transition band (�s − �p) is
as small as possible.

This class of approximations, referred to as elliptic filters, has the form

|Hc(j�)|2 = 1

1 + ε2U2
N(�)

, (B.11)

where UN(�) is a Jacobian elliptic function. To obtain equiripple error in both the
passband and the stopband, elliptic filters must have both poles and zeros. As can be
seen from Figure B.6, such a filter will have zeros on the j�-axis of the s-plane. A
discussion of elliptic filter design, even on a superficial level, is beyond the scope of this
appendix. The reader is referred to the texts by Guillemin (1957), Storer (1957), Gold
and Rader (1969) and Parks and Burrus (1987) for more detailed discussions.

�p �s0

�2

1 – �1

1

Hc(j�)

�
Figure B.6 Equiripple approximation
in both passband and stopband.

C

Answers to Selected

Basic Problems

This appendix contains the answers to the first 20 basic problems in Chapter 2
through 10.

Answers to Basic Problems in Chapter 2

2.1. (a) Always (2), (3), (5). If g[n] is bounded, (1).
(b) (3).
(c) Always (1), (3), (4). If n0 = 0, (2) and (5).
(d) Always (1), (3), (4). If n0 = 0, (5). If n0 ≥ 0, (2).
(e) (1), (2), (4), (5).
(f) Always (1), (2), (4), (5). If b = 0, (3).
(g) (1), (3).
(h) (1), (5).

2.2. (a) N4 = N 0 + N 2, N 5 = N 1 + N 3.
(b) At most N + M − 1 nonzero points.

2.3.

y[n] =

⎧⎪⎨⎪⎩
a−n

1 − a
, n < 0,

1
1 − a

, n ≥ 0.

2.4. y[n] = 8[(1/2) n − (1/4) n]u[n].
2.5. (a) yh[n] = A 1(2) n + A 2(3) n.

1061

1062 App. C Answers to Selected Basic Problems

(b) h[n] = 2(3n − 2n)u[n].
(c) s[n] = [−8(2)(n−1) + 9(3)(n−1) + 1]u[n].

2.6. (a)

H(ejω) = 1 + 2e−jω + e−j2ω

1 − 1
2e−jω

.

(b) y[n] + 1
2y[n − 1] + 3

4y[n − 2] = x[n] − 1
2x[n − 1] + x[n − 3].

2.7. (a) Periodic, N = 12.
(b) Periodic, N = 8.
(c) Not periodic.
(d) Not periodic.

2.8. y[n] = 3(−1/2) nu[n] + 2(1/3) nu[n].
2.9. (a)

h[n] = 2
[(

1
2

)n

−
(

1
3

)n]
u[n],

H(ejω) =
1
3e−jω

1 − 5
6e−jω + 1

6e−j2ω
,

s[n] =
[
−2
(

1
2

)n

+
(

1
3

)n

+ 1
]

u[n].
(b) yh[n] = A 1(1/2) n + A 2(1/3) n.

(c) y[n] = 4(1/2) n − 3(1/3) n − 2(1/2) nu[−n − 1] + 2(1/3) nu[−n − 1]. Other
answers are possible.

2.10. (a)

y[n] =
{

a−1/(1 − a−1), n ≥ −1,

a n/(1 − a−1), n ≤ −2.

(b)

y[n] =
{

1, n ≥ 3,

2 (n−3), n ≤ 2.

(c)

y[n] =
{

1, n ≥ 0,

2 n, n ≤ −1.

(d)

y[n] =
⎧⎨⎩

0, n ≥ 9,

1 − 2 (n−9), 8 ≥ n ≥ −1,

2 (n+1) − 2 (n−9), −2 ≥ n.

2.11. y[n] = 2
√

2 sin(π(n + 1)/4).

2.12. (a) y[n] = n!u[n].
(b) The system is linear.
(c) The system is not time invariant.

App. C Answers to Selected Basic Problems 1063

2.13. (a), (b), and (e) are eigenfunctions of stable LTI systems.

2.14. (a) (iv).

(b) (i).

(c) (iii), h[n] = (1/2) nu[n].
2.15. (a) Not LTI. Inputs δ[n] and δ[n − 1] violate TI.

(b) Not causal. Consider x[n] = δ[n − 1].
(c) Stable.

2.16. (a) yh[n] = A 1(1/2) n + A 2(−1/4) n.

(b) Causal: hc[n] = 2(1/2) nu[n] + (−1/4) nu[n].
Anticausal: hac[n] = −2(1/2) nu[−n − 1] − (−1/4) nu[−n − 1].

(c) hc[n] is absolutely summable, hac[n] is not.

(d) yp[n] = (1/3)(−1/4) nu[n] + (2/3)(1/2) nu[n] + 4(n + 1)(1/2)(n+1)u[n + 1].
2.17. (a)

R (ejω) = e−jωM/2
sin
(
ω
(

M+1
2

))
sin
(

ω
2

) .

(b) W(ejω) = (1/2)R (ejω) − (1/4)R (ej (ω−2π/M)) − (1/4)R (ej (ω+2π/M)).

2.18. Systems (a) and (b) are causal.

2.19. Systems (b), (c), (e), and (f) are stable.

2.20. (a) h[n] = (−1/a)n−1u[n − 1].
(b) The system will be stable for |a| > 1.

Answers to Basic Problems in Chapter 3

3.1. (a)
1

1 − 1
2z−1

, |z| > 1
2 .

(b)
1

1 − 1
2z−1

, |z| < 1
2 .

(c)
− 1

2z−1

1 − 1
2z−1

, |z| < 1
2 .

(d) 1, all z.

(e) z−1, z �= 0.

(f) z, |z| < ∞.

(g)
1 −
(

1
2

)10
z−10

1 − 1
2z−1

, |z| �= 0.

3.2. X (z) = (1 − z−N)2

(1 − z−1)2
.

1064 App. C Answers to Selected Basic Problems

3.3. (a) Xa(z) = z−1(α − α−1)

(1 − αz−1)(1 − α−1z−1)
, ROC: |α| < |z| < |α−1|.

(b) Xb(z) = 1 − z−N

1 − z−1
, ROC: z �= 0.

(c) Xc(z) = (1 − z−N)2

(1 − z−1)2
, ROC: z �= 0.

3.4. (a) (1/3) < |z| < 2, two sided.

(b) Two sequences. (1/3) < |z| < 2 and 2 < |z| < 3.

(c) No. Causal sequence has |z| > 3, which does not include the unit circle.

3.5. x[n] = 2δ[n + 1] + 5δ[n] − 4δ[n − 1] − 3δ[n − 2].
3.6. (a) x[n] =

(
− 1

2

)n
u[n], Fourier transform exists.

(b) x[n] = −(− 1
2)nu[−n − 1], Fourier transform does not exist.

(c) x[n] = 4
(
− 1

2

)n
u[n] − 3

(
− 1

4

)n
u[n], Fourier transform exists.

(d) x[n] =
(
− 1

2

)n
u[n], Fourier transform exists.

(e) x[n] = −(a−(n+1))u[n] + a−(n−1)u[n − 1], Fourier transform exists if |a| > 1.

3.7. (a) H(z) = 1 − z−1

1 + z−1
, |z| > 1.

(b) ROC{Y (z)} = |z| > 1.

(c) y[n] =
[
− 1

3

(
1
2

)n + 1
3 (−1)n

]
u[n].

3.8. (a) h[n] =
(
− 3

4

)n
u[n] −

(
− 3

4

)n−1
u[n − 1].

(b) y[n] = 8
13

(
− 3

4

)n
u[n] − 8

13

(
1
3

)n
u[n].

(c) The system is stable.

3.9. (a) |z| > (1/2).

(b) Yes. The ROC includes the unit circle.

(c) X (z) = 1 − 1
2z−1

1 − 2z−1
, ROC: |z| < 2.

(d) h[n] = 2
(

1
2

)n
u[n] −

(
− 1

4

)n
u[n].

3.10. (a) |z| > 3
4 .

(b) 0 < |z| < ∞.

(c) |z| < 2.

(d) |z| > 1.

(e) |z| < ∞.

(f) 1
2 < |z| <

√
13.

App. C Answers to Selected Basic Problems 1065

3.11. (a) Causal.
(b) Not causal.
(c) Causal.
(d) Not causal.

3.12. (a)

�2 Re

Im

1
2

Figure P3.12

(b)

Re

Im

1
3

2
3

1
2

–

Figure P3.12

(c)

–2 Re

Im

2
3

3
2

Figure P3.12

1066 App. C Answers to Selected Basic Problems

3.13. g[11] = − 1
11! + 3

9! − 2
7! .

3.14. A 1 = A 2 = 1/2, α1 = −1/2, α2 = 1/2.

3.15. h[n] =
(

1
2

)n
(u[n] − u[n − 10]). The system is causal.

3.16. (a) H(z) = 1 − 2z−1

1 − 2
3z−1

, |z| > 2
3 .

(b) h[n] =
(

2
3

)n
u[n] − 2

(
2
3

)(n−1)

u[n − 1].
(c) y[n] − 2

3y[n − 1] = x[n] − 2x[n − 1].
(d) The system is stable and causal.

3.17. h[0] can be 0, 1/3, or 1. To be painstakingly literal, h[0] can also be 2/3, due
to the impulse response h[n] = (2/3)(2) nu[n] − (1/3)(1/2) nu[−n − 1], which
satisfies the difference equation but has no ROC. This noncausal system with no
ROC can be implemented as the parallel combination of its causal and anticausal
components.

3.18. (a) h[n] = −2δ[n] + 1
3 (− 1

2) nu[n] + 8
3u[n].

(b) y[n] = 18
5

2n.

3.19. (a) |z| > 1/2.

(b) 1/3 < |z| < 2.

(c) |z| > 1/3.

3.20. (a) |z| > 2/3.

(b) |z| > 1/6.

Answers to Basic Problems in Chapter 4

4.1. x[n] = sin(πn/2).

4.2. �0 = 250π, 1750π.

4.3. (a) T = 1/12,000. (b) Not unique. T = 5/12,000.

4.4. (a) T = 1/100. (b) Not unique. T = 11/100.

4.5. (a) T ≤ 1/10,000. (b) 625 Hz. (c) 1250 Hz.
4.6. (a) Hc(j�) = 1/(a + j�).

(b) Hd(ejω) = T/(1 − e−aT e−jω).

(c) |Hd(ejω)| = T/(1 + e−αT).

4.7. (a)

Xc(j�) = Sc(j�)(1 + αe−j�τd),

X (ejω) =
(

1
T

)
Sc

(
jω

T

)(
1 + αe−jωτd/T

)
for |ω| ≤ π.

(b) H(ejω) = 1 + αe−jωτd/T .

(c) (i) h[n] = δ[n] + αδ[n − 1].
(ii) h[n] = δ[n] + α

sin(π(n−1/2))
π(n−1/2)

.

App. C Answers to Selected Basic Problems 1067

4.8. (a) T ≤ 1/20,000.
(b) h[n] = T u[n].
(c) T X (ejω)|ω=0.

(d) T ≤ 1/10,000.

4.9. (a) X
(
ej (ω+π)

) = X
(
ej (ω+π−π)

) = X
(
ejω
)
.

(b) x[3] = 0.

(c) x[n] =
{

y[n/2], n even,
0, n odd.

4.10. (a) x[n] = cos(2πn/3).

(b) x[n] = − sin(2πn/3).

(c) x[n] = sin(2πn/5)/(πn/5000).

4.11. (a) T = 1/40, T = 9/40.

(b) T = 1/20, unique.
4.12. (a) (i) yc(t) = −6π sin(6πt).

(ii) yc(t) = −6π sin(6πt).

(b) (i) Yes.
(ii) No.

4.13. (a) y[n] = sin
(

πn
2 − π

4

)
.

(b) Same y[n].
(c) hc(t) has no effect on T .

4.14. (a) No.
(b) Yes.
(c) No.
(d) Yes.
(e) Yes. (No information is lost; however, the signal cannot be recovered by the

system in Figure P3.21.)
4.15. (a) Yes.

(b) No.
(c) Yes.

4.16. (a) M/L = 5/2, unique.
(b) M/L = 2/3; unique.

4.17. (a) x̃d [n] = (4/3) sin (πn/2) /(πn).

(b) x̃d [n] = 0.

4.18. (a) ω 0 = 2π/3.

(b) ω 0 = 3π/5.

(c) ω 0 = π.

4.19. T ≤ π/�0.

4.20. (a) Fs ≥ 2000 Hz.
(b) Fs ≥ 4000 Hz.

1068 App. C Answers to Selected Basic Problems

Answers to Basic Problems in Chapter 5

5.1. x[n] = y[n], ωc = π .
5.2. (a) Poles: z = 3, 1/3, Zeros: z = 0, ∞.

(b) h[n] = −(3/8)(1/3) nu[n] − (3/8)3 nu[−n − 1].
5.3. (a), (d) are the impulse responses.

5.4. (a) H(z) = 1 − 2z−1

1 − 3
4z−1

, |z| > 3/4.

(b) h[n] = (3/4) nu[n] − 2(3/4)n−1u[n − 1].
(c) y[n] − (3/4)y[n − 1] = x[n] − 2x[n − 1].
(d) Stable and causal.

5.5. (a) y[n]−(7/12)y[n−1]+(1/12)y[n−2] = 3x[n]−(19/6)x[n−1]+(2/3)x[n−2].
(b) h[n] = 3δ[n] − (2/3)(1/3) n−1u[n − 1] − (3/4)(1/4) n−1u[n − 1].
(c) Stable.

5.6. (a) X (z) = 1

(1 − 1
2z−1)(1 − 2z−1)

,
1
2

< |z| < 2.

(b) 1
2 < |z| < 2.

(c) h[n] = δ[n] − δ[n − 2].
5.7. (a) H(z) = 1 − z−1

(1 − 1
2z−1)(1 + 3

4z−1)
, |z| >

3
4

.

(b) h[n] = −(2/5)(1/2) nu[n] + (7/5)(−3/4) nu[n].
(c) y[n] + (1/4)y[n − 1] − (3/8)y[n − 2] = x[n] − x[n − 1].

5.8. (a) H(z) = z−1

1 − 3
2z−1 − z−2

, |z| > 2.

(b) h[n] = −(2/5)(−1/2) nu[n] + (2/5)(2) nu[n].
(c) h[n] = −(2/5)(−1/2) nu[n] − (2/5)(2) nu[−n − 1].

5.9.

h[n] =
[
−4

3
(2) n−1 + 1

3

(
1
2

)n−1
]

u[−n], |z| <
1
2
,

h[n] = −4
3
(2) n−1u[−n] − 1

3

(
1
2

)n−1

u[n − 1], 1
2

< |z| < 2,

h[n] = 4
3
(2) n−1u[n − 1] − 1

3

(
1
2

)n−1

u[n − 1], |z| > 2.

5.10. Hi(z) cannot be causal and stable. The zero of a H(z) at z = ∞ is a pole of Hi(z).
The existence of a pole at z = ∞ implies that the system is not causal.

5.11. (a) Cannot be determined.
(b) Cannot be determined.
(c) False.
(d) True.

App. C Answers to Selected Basic Problems 1069

5.12. (a) Stable.
(b)

H 1(z) = −9
(1 + 0.2z−1)

(
1 − 1

3z−1
) (

1 + 1
3z−1
)

(1 − j0.9z−1)(1 + j0.9z−1)
,

H ap(z) =
(
z−1 − 1

3

) (
z−1 + 1

3

)
(

1 − 1
3z−1
) (

1 + 1
3z−1
) .

5.13. H 1(z), H 3(z), and H 4(z) are allpass systems.
5.14. (a) 5.

(b) 1
2 .

5.15. (a) α = 1, β = 0, A (ejω) = 1 + 4 cos(ω). The system is a generalized linear-
phase system but not a linear-phase system, because A (ejω) is not nonneg-
ative for all ω.

(b) Not a generalized linear-phase or a linear-phase system.
(c) α = 1, β = 0, A (ejω) = 3 + 2 cos(ω). Linear phase, since |H(ejω)| =

A (ejω) ≥ 0 for all ω.
(d) α = 1/2, β = 0, A (ejω) = 2 cos(ω/2). Generalized linear phase, because

A (ejω) is not nonnegative at all ω.
(e) α = 1, β = π/2, A (ejω) = 2 sin(ω). Generalized linear phase, because

β �= 0.
5.16. h[n] is not necessarily causal. Both h[n] = δ[n − α] and h[n] = δ[n + 1] +

δ[n − (2α + 1)] will have this phase.
5.17. H 2(z) and H 3(z) are minimum-phase systems.

5.18. (a) Hmin(z) =
2
(

1 − 1
2z−1
)

1 + 1
3z−1

.

(b) Hmin(z) = 3
(

1 − 1
2
z−1
)

.

(c) Hmin(z) = 9
4

(
1 − 1

3z−1
) (

1 − 1
4z−1
)

(
1 − 3

4z−1
)2 .

5.19. h1[n] : 2, h2[n] : 3/2, h3[n] : 2, h4[n] : 3, h5[n] : 3, h6[n] : 7/2.
5.20. Systems H 1(z) and H 3(z) have a linear phase and can be implemented by a

real-valued difference equation.

Answers to Basic Problems in Chapter 6

6.1. Network 1:

H(z) = 1
1 − 2r cos θz−1 + r2z−2

.

1070 App. C Answers to Selected Basic Problems

Network 2:

H(z) = r sin θz−1

1 − 2r cos θz−1 + r2z−2
.

Both systems have the same denominators and thus the same poles.

6.2. y[n] − 3y[n − 1] − y[n − 2] − y[n − 3] = x[n] − 2x[n − 1] + x[n − 2].
6.3. The system in Part (d) is the same as that in Part (a).

6.4. (a)

H(z) = 2 + 1
4z−1

1 + 1
4z−1 − 3

8z−2
.

(b)

y[n] + 1
4
y[n − 1] − 3

8
y[n − 2] = 2x[n] + 1

4
x[n − 1].

6.5. (a)

y[n] − 4y[n − 1] + 7y[n − 3] + 2y[n − 4] = x[n].
(b)

H(z) = 1
1 − 4z−1 + 7z−3 + 2z−4

.

(c) Two multiplications and four additions.

(d) No. It requires at least four delays to implement a 4th-order system.

6.6.

–1
–1

–2

–1

–2

0

1
1 1

2 3

(a)

3

4

4

5 6 7 –1 0

1
1 1

2 3

(b)

(c) (d)

3

4

4

5 6 7

–1
–1 –1 –1 –1

0 1

1 1

2 2

3 3

2

3 4

5

6 7 8 9 –1 0 1

1 1

2 2

2

3

3

4

5 6 7 8

Figure P6.6

App. C Answers to Selected Basic Problems 1071

6.7.

z–1

z–1

x [n] y [n]

1–
4

1
4 Figure P6.7

6.8. y[n] − 2y[n − 2] = 3x[n − 1] + x[n − 2].
6.9. (a) h[1] = 2.

(b) y[n] + y[n − 1] − 8y[n − 2] = x[n] + 3x[n − 1] + x[n − 2] − 8x[n − 3].
6.10. (a)

y[n] = x[n] + v[n − 1].

v[n] = 2x[n] + 1
2
y[n] + w[n − 1].

w[n] = x[n] + 1
2
y[n].

(b)

z–1
x [n]

1–
2

z–1

y[n]

Figure P6.10

(c) The poles are at z = −1/2 and z = 1. Since the second pole is on the unit
circle, the system is not stable.

6.11. (a)

z–1
x [n]

z–1

y [n]

1
2

–6

z–1

8
Figure P6.11

1072 App. C Answers to Selected Basic Problems

(b)

z–1
x [n]

z–1

y [n]

1
2

–6

z–1

8
Figure P6.11

6.12. y[n] − 8y[n − 1] = −2x[n] + 6x[n − 1] + 2x[n − 2].
6.13.

x [n]

1
2

–

z–1

z–1

z–1

z–1
y [n]

1
4

1
8

Figure P6.13

6.14.

z–1

z–1
y [n]

5
6

1
6

x [n]

1
2

1
2

Figure P6.14

6.15.

z–1

z–1
y [n]

–1
–

– 1
2

x [n]

1
6

7
6

Figure P6.15

App. C Answers to Selected Basic Problems 1073

6.16. (a)

z–1

z–1
y [n]

–2

3

– 1
2 1

4

z–1
x [n]

Figure P6.16

(b) Both systems have the system function

H(z) =
(

1 − 1
2z−1
)

(1 − 2z−1 + 3z−2)

1 − 1
4z−2

.

6.17. (a)
z–1 z–1 z–1

y [n]

– 1
3

1
6

1 1
x [n]

Figure P6.17-1

(b)
z–1 z–1 z–1

y [n]

– 1
3

1
6

1

x [n] Figure P6.17-2

6.18. If a = 2/3, the overall system function is

H(z) = 1 + 2z−1

1 + 1
4z−1 − 3

8z−2
.

If a = −2, the overall system function is

H(z) = 1 − 2
3z−1

1 + 1
4z−1 − 3

8z−2
.

6.19.

z–1

z–1

y [n]

1
3

2
3

–8

–

9

x [n]

Figure P6.19

1074 App. C Answers to Selected Basic Problems

6.20.

5
2

– 1
4

5
4

z–1

z–1z–1

z–1
y [n]

2

–1

x [n]

Figure P6.20

Answers to Basic Problems in Chapter 7

7.1. (a)

H 1(z) = 1 − e−aT cos(bT)z−1

1 − 2e−aT cos(bT)z−1 + e−2aT z−2
, ROC: |z| > e−aT .

(b)

H 2(z)=(1 − z−1)S 2(z), ROC: |z| > e−aT , where

S 2(z)= a

a2 + b 2

1
1 − z−1

− 1
2(a + jb)

1
1 − e−(a+jb)T z−1

− 1
2(a − jb)

1
1 − e−(a−jb)T z−1

.

(c) They are not equal.

7.2. (a)

Hc(j�)

1

0.2 �

Td

0.3 �

Td

0.89125

0.17783

�

Figure P7.2

(b) N = 6, �cTd = 0.7032.

(c) The poles in the s-plane are on a circle of radius R = 0.7032/Td . They map
to poles in the z-plane at z = e skTd . The factors of Td cancel out, leaving the
pole locations in the z-plane for H(z) independent of Td .

App. C Answers to Selected Basic Problems 1075

7.3. (a) δ̂2 = δ2/(1 + δ1), δ̂1 = 2δ1/(1 + δ1).
(b)

δ2 = 0.18806, δ1 = 0.05750

H(z) = 0.3036 − 0.4723z−1

1 − 1.2971z−1 + 0.6949z−2
+ −2.2660 + 1.2114z−1

1 − 1.0691z−1 + 0.3699z−2

+ 1.9624 − 0.6665z−1

1 − 0.9972z−1 + 0.2570z−2

(c) Use the same δ1 and δ2.

H(z) = 0.0007802(1 + z−1)6

(1 − 1.2686z−1 + 0.7051z−2)(1 − 1.0106z−1 + 0.3583z−2)(1 − 0.9044z−1 + 0.2155z−2)
.

7.4. (a)

Hc(s) = 1
s + 0.1

− 0.5
s + 0.2

.

The answer is not unique. Another possibility is

Hc(s) = 1
s + 0.1 + j2 π

− 0.5
s + 0.2 + j2 π

.

(b)

Hc(s) = 2(1 + s)

0.1813 + 1.8187s
− 1 + s

0.3297 + 1.6703s
.

This answer is unique.
7.5. (a) M + 1 = 91, β = 3.3953.

(b) M/2 = 45.

(c) hd [n] = sin [0.625π(n − 45)]
π(n − 45)

− sin [0.3π(n − 45)]
π(n − 45)

.

7.6. (a) δ = 0.03, β = 2.181.
(b) 	ω = 0.05π , M = 63.

7.7.

0.99 ≤ |H(ejω)| ≤ 1.01, |ω| ≤ 0.2π,

|H(ejω)| ≤ 0.01, 0.22π ≤ |ω| ≤ π

7.8. (a) Six alternations. L = 5, so this does not satisfy the alternation theorem and
is not optimal.

(b) Seven alternations, which satisfies the alternation theorem for L = 5.
7.9. ωc = 0.4π.

7.10. ωc = 2.3842 rad.
7.11. �c = 2 π(1250) rad/sec.
7.12. �c = 2000 rad/sec.
7.13. T = 50 μs. This T is unique.
7.14. T = 1.46 ms. This T is unique.

1076 App. C Answers to Selected Basic Problems

7.15. Hamming and Hanning: M + 1 = 81, Blackman: M + 1 = 121.

7.16. β = 2.6524, M = 181.

7.17.

|Hc(j�)| < 0.02, |�| ≤ 2π(20) rad/sec,
0.95 < |Hc(j�)| < 1.05, 2π(30) ≤ |�| ≤ 2π(70) rad/sec,

|Hc(j�)| < 0.001, 2π(75) rad/sec ≤ |�|.
7.18.

|Hc(j�)| < 0.04, |�| ≤ 324.91 rad/sec,
0.995 < |Hc(j�)| < 1.005, |�| ≥ 509.52 rad/sec.

7.19. T = 0.41667 ms. This T is unique.

7.20. True.

Answers to Basic Problems in Chapter 8

8.1. (a) x[n] is periodic with period N = 6.

(b) T will not avoid aliasing.

(c)

X̃[k] = 2π

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a 0 + a 6 + a−6, k = 0,

a 1 + a 7 + a−5, k = 1,

a 2 + a 8 + a−4, k = 2,

a 3 + a 9 + a−3 + a−9, k = 3,

a 4 + a−2 + a−8, k = 4,

a 5 + a−1 + a−7, k = 5.

8.2. (a)

X̃3[k] =
{

3X̃[k/3], for k = 3
,

0, otherwise.

(b)

X̃[k] =
{

3, k = 0,

−1, k = 1.

X̃3[k] =
⎧⎨⎩

9, k = 0,

0, k = 1, 2, 4, 5,

−3, k = 3.

8.3. (a) x̃2[n].
(b) None of the sequences.

(c) x̃1[n] and x̃3[n].

App. C Answers to Selected Basic Problems 1077

8.4. (a)

X (ejω) = 1
1 − αe−jω

.

(b)

X̃[k] = 1
1 − αe−j (2π/N) k

.

(c)

X̃[k] = X (ejω)|ω=(2πk/N).

8.5. (a) X [k] = 1.

(b) X [k] = W
kn 0
N .

(c)

X [k] =
{

N/2, k = 0, N/2,

0, otherwise.

(d)

X [k] =
⎧⎨⎩

N/2, k = 0,

e−j (πk/N)(N/2−1)(−1)(k−1)/2 1
sin(kπ/N)

, k odd,
0, otherwise.

(e)

X [k] = 1 − aN

1 − aW k
N

.

8.6. (a)

X (ejω) = 1 − ej (ω 0−ω)N

1 − ej (ω 0−ω)
.

(b)

X [k] = 1 − ejω 0N

1 − ejω 0W k
N

.

(c)

X [k] =
{

N, k = k 0
0, otherwise.

8.7.

0 1–1

2 2

1 1

2 3 4 5 n

x1[n]

Figure P8.7

8.8.

y[n] =
{

1024
1023

(
1
2

) n

, 0 ≤ n ≤ 9,

0, otherwise.

1078 App. C Answers to Selected Basic Problems

8.9. (a) 1. Let x1[n] =∑m x[n + 5m] for n = 0, 1, . . . 4.
2. Let X1[k] be the five-point FFT of x1[n]. M = 5.
3. X1[2] is X (ejω) at ω = 4π/5.

(b) Define x2[n] = �mW
−(n+9m)

27 x[n + 9m] for n = 0, . . . , 8.
Compute X2[k], the 9-point DFT of x2[n].
X2[2] = X(ejω)

∣∣
ω=10π/27.

8.10. X2[k] = (−1) kX1[k].
8.11.

–1 0 1

1

5

6

2

2

3

3

4

4

5 6 7 n Figure P8.11

8.12. (a)

X [k] =
{

2, k = 1, 3,

0, k = 0, 2.

(b)

H [k] =

⎧⎪⎪⎨⎪⎪⎩
15, k = 0,

−3 + j6, k = 1,

−5, k = 2,

−3 − j6, k = 3.

(c) y[n] = −3δ[n] − 6δ[n − 1] + 3δ[n − 2] + 6δ[n − 3].
(d) y[n] = −3δ[n] − 6δ[n − 1] + 3δ[n − 2] + 6δ[n − 3].

8.13.

–1 0 1

1 1

2

2 2

3 4 5

y [n]

Figure P8.13

8.14. x3[2] = 9.
8.15. a = −1. This is unique.
8.16. b = 3. This is unique.
8.17. N = 9.
8.18. c = 2.
8.19. m = 2. This is not unique. Any m = 2 + 6
 for integer
 works.
8.20. N = 5. This is unique.

App. C Answers to Selected Basic Problems 1079

Answers to Basic Problems in Chapter 9

9.1. If the input is (1/N)X [((−n))N], the output of the DFT program will be x[n],
the IDFT of X [k].

9.2.

X = AD − BD + CA − DA = AC − BD

Y = AD − BD + BC + BD = BC + AD.

9.3.

y[32] = X(e−j2π(7/32)) = X(ej2π(25/32)).

9.4. ωk = 7π/16.
9.5.

a = −√
2

b = −e−j (6π/8).

9.6. (a) The gain is −W 2
N .

(b) There is one path. In general, there is only one path from any input sample
to any output sample.

(c) By tracing paths, we see

X [2] = x[0] · 1 + x[1]W 2
8 − x[2] − x[3]W 2

8 + . . .

x[4] + x[5]W 2
8 − x[6] − x[7]W 2

8 .

9.7. (a) Store x[n] in A [·] in bit-reversed order, and D[·] will contain X [k] in se-
quential (normal) order.

(b)

D[r] =
{

8, r = 3,

0, otherwise.

(c)

C[r] =
{

1, r = 0, 1, 2, 3,

0, otherwise.

9.8. (a) N/2 butterflies with 2(m−1) different coefficients.
(b) y[n] = W 2v−m

N y[n − 1] + x[n].
(c) Period: 2m, Frequency: 2π2−m.

9.9. Statement 1.
9.10.

y[n] = X (ejω)|ω=(2π/7)+(2π/21)(n−19).

9.11. (a) 2m−1.
(b) 2m.

9.12. r[n] = e−j (2π/19)nW n2/2 where W = e−j (2π/10).

1080 App. C Answers to Selected Basic Problems

9.13. x[0], x[8], x[4], x[12], x[2], x[10], x[6], x[14], x[1], x[9], x[5], x[13], x[3], x[11],
x[7], x[15].

9.14. False.
9.15. m = 1.
9.16.

r =

⎧⎪⎪⎨⎪⎪⎩
0, m = 1,

0, 4, m = 2,

0, 2, 4, 6, m = 3,

0, 1, 2, 3, 4, 5, 6, 7, m = 4.

9.17. N = 64.
9.18. m = 3 or 4.
9.19. Decimation-in-time.
9.20. 1021 is prime, so the program must implement the full DFT equations and cannot

exploit any FFT algorithm. The computation time goes as N 2. Contrastingly, 1024
is a power of 2 and can exploit the N log N computation time of the FFT.

Answers to Basic Problems in Chapter 10

10.1. (a) f = 1500 Hz.
(b) f = −2000 Hz.

10.2. N = 2048 and 10000 Hz < f < 10240 Hz.
10.3. (a) T = 2πk 0/(N�0).

(b) Not unique. T = (2π/�0)(1 − k 0/N).

10.4.
Xc(j2π(4200)) = 5 × 10−4

Xc(−j2π(4200)) = 5 × 10−4

Xc(j2π(1000)) = 10−4

Xc(−j2π(1000)) = 10−4

10.5. L = 1024.

10.6. x2[n] will have two distinct peaks.
10.7. 	� = 2π(2.44) rad/sec.
10.8. N ≥ 1600.
10.9.

X 0[k] =
{

18, k = 3, 33,

0, otherwise.

X1[k] =
{

18, k = 9, 27,

0, otherwise.

Xr [k] = 0 for r �= 0, 1.

10.10. ω 0 = 0.25π rad/sample, λ = π/76000 rad/sample2.
10.11. 	f = 9.77 Hz.

App. C Answers to Selected Basic Problems 1081

10.12. The peaks will not have the same height. The peak from the rectangular window
will be bigger.

10.13. (a) A = 21 dB.
(b) Weak components will be visible if their amplitude exceeds 0.0891.

10.14. (a) 320 samples.
(b) 400 DFT/second.
(c) N = 256.
(d) 62.5 Hz.

10.15. (a) X [200] = 1 − j .
(b)

X (j2π(4000)) = 5 × 10−5(1 − j)

X (−j2π(4000)) = 5 × 10−5(1 + j).

10.16. Rectangular, Hanning, Hamming, and Bartlett windows work.
10.17. T > 1/1024 sec.
10.18. x2[n], x3[n], x6[n].
10.19. Methods 2 and 5 will improve the resolution.
10.20. L = M + 1 = 262.

Bibliography

Adams, J. W., and Wilson, J. A. N., “A New Approach to FIR Digital Filters with Fewer Multiplies and
Reduced Sensitivity,” IEEE Trans. of Circuits and Systems, Vol. 30, pp. 277–283, May 1983.

Ahmed, N., Natarajan, T., and Rao, K. R., “Discrete Cosine Transform,” IEEE Trans. on Computers, Vol. C-23,
pp. 90–93, Jan. 1974.

Allen, J., and Rabiner, L., “A Unified Approach to Short-time Fourier Analysis and Synthesis,” Proc. IEEE
Trans. on Computers, Vol. 65, pp. 1558–1564, Nov. 1977.

Atal, B. S., and Hanauer, S. L., “Speech Analysis and Synthesis by Linear Prediction of the Speech Wave,” J.
Acoustical Society of America, Vol. 50, pp. 637–655, 1971.

Atal, B. S., “Automatic Recognition of Speakers from their Voices,” IEEE Proceedings, Vol. 64, No. 4, pp. 460–
475, Apr. 1976.

Andrews, H. C., and Hunt, B. R., Digital Image Restoration, Prentice Hall, Englewood Cliffs, NJ, 1977.
Bagchi, S., and Mitra, S., The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing,

Springer, New York, NY, 1999.
Baran, T. A., and Oppenheim, A. V., “Design and Implementation of Discrete-time Filters for Efficient

Rate-conversion Systems,” Proceedings of the 41st Annual Asilomar Conference on Signals, Systems,
and Computers, Asilomar, CA, Nov. 4–7, 2007.

Baraniuk, R., “Compressive Sensing,” IEEE Signal Processing Magazine, Vol. 24, No. 4, pp. 118–121, July
2007.

Barnes, C. W., and Fam, A. T., “Minimum Norm Recursive Digital Filters that are Free of Over-flow Limit
Cycles,” IEEE Trans. Circuits and Systems, Vol. CAS-24, pp. 569–574, Oct. 1977.

Bartels R. H., Beatty, J. C., and Barsky, B. A., An Introduction to Splines for Use in Computer Graphics and
Geometric Modelling, Morgan Kauffman, San Francisco, CA, 1998.

Bartle, R. G., The Elements of Real Analysis, 3rd ed, John Wiley and Sons, New York, NY, 2000.
Bartlett, M. S., An Introduction to Stochastic Processes with Special Reference to Methods and Applications,

Cambridge University Press, Cambridge, UK, 1953.
Bauman, P., Lipshitz, S., and Vanderkooy, J., “Cepstral Analysis of Electroacoustic Transducers,” Proc. Int.

Conf. Acoustics, Speech, and Signal Processing (ICASSP ’85), Vol. 10, pp. 1832–1835, Apr. 1985.
Bellanger, M., Digital Processing of Signals, 3rd ed., Wiley, New York, NY, 2000.
Bennett, W. R., “Spectra of Quantized Signals,” Bell System Technical J., Vol. 27, pp. 446–472, 1948.
Bertsekas, D. and Tsitsiklis, J., Introduction to Probability, 2nd ed., Athena Scientific, Belmont, MA, 2008.
Blackman, R. B., and Tukey, J. W., The Measurement of Power Spectra, Dover Publications, New York, NY,

1958.
Blackman, R., Linear Data-Smoothing and Prediction in Theory and Practice, Addison-Wesley, Reading, MA,

1965.
Blahut, R. E., Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1985.
Bluestein, L. I., “A Linear Filtering Approach to the Computation of Discrete Fourier Transform,” IEEE

Trans. Audio Electroacoustics, Vol. AU-18, pp. 451–455, 1970.
Bogert, B. P., Healy, M. J. R., and Tukey, J. W., “The Quefrency Alanysis of Times Series for Echos: Cepstrum,

Pseudo-autocovariance, Cross-cepstrum, and Saphe Cracking,” Chapter 15, Proc. Symposium on Time
Series Analysis, M. Rosenblatt, ed., John Wiley and Sons, New York, NY, 1963.

Bosi, M., and Goldberg, R. E., Introduction to Digital Audio Coding and Standards, Springer Science+Business
Media, New York, NY, 2003.

Bovic, A., ed., Handbook of Image and Video Processing, 2nd ed., Academic Press, Burlington, MA, 2005.

1082

Bibliography 1083

Bracewell, R. N., “The Discrete Hartley Transform,” J. Optical Society of America, Vol. 73, pp. 1832–1835,
1983.

Bracewell, R. N., “The Fast Hartley Transform,” IEEE Proceedings, Vol. 72, No. 8, pp. 1010–1018, 1984.
Bracewell, R. N., Two-Dimensional Imaging, Prentice Hall, New York, NY, 1994.
Bracewell, R. N., The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill, New York, NY, 1999.
Brigham, E., Fast Fourier Transform and Its Applications, Prentice Hall, Upper Saddle River, NJ, 1988.
Brigham, E. O., and Morrow, R. E., “The Fast Fourier Transform,” IEEE Spectrum, Vol. 4, pp. 63–70, Dec. 1967.
Brown, J. W., and Churchill, R. V., Introduction to Complex Variables and Applications, 8th ed., McGraw-Hill,

New York, NY, 2008.
Brown, R. C., Introduction to Random Signal Analysis and Kalman Filtering, Wiley, New York, NY, 1983.
Burden, R. L., and Faires, J. D., Numerical Analysis, 8th ed., Brooks Cole, 2004.
Burg, J. P., “A New Analysis Technique for Time Series Data,” Proc. NATO Advanced Study Institute on

Signal Processing, Enschede, Netherlands, 1968.
Burrus, C. S., “Efficient Fourier Transform and Convolution Algorithms,” in Advanced Topics in Signal

Processing, J. S. Lim and A. V. Oppenheim, eds., Prentice Hall, Englewood Cliffs, NJ, 1988.
Burrus, C. S., and Parks, T. W., DFT/FFT and Convolution Algorithms Theory and Implementation, Wiley,

New York, NY, 1985.
Burrus, C. S., Gopinath, R. A., and Guo, H., Introduction to Wavelets and Wavelet Transforms: A Primer,

Prentice Hall, 1997.
Candy, J. C., and Temes, G. C., Oversampling Delta-Sigma Data Converters: Theory, Design, and Simulation,

IEEE Press, New York, NY, 1992.
Candes, E., “Compressive Sampling,” Int. Congress of Mathematics, 2006, pp. 1433–1452.
Candes, E., and Wakin, M., “An Introduction to Compressive Sampling,” IEEE Signal Processing Magazine,

Vol. 25, No. 2, pp. 21–30, Mar. 2008.
Capon, J., “Maximum-likelihood Spectral Estimation,” in Nonlinear Methods of Spectral Analysis, 2nd ed.,

S. Haykin, ed., Springer-Verlag, New York, NY, 1983.
Carslaw, H. S., Introduction to the Theory of Fourier’s Series and Integrals, 3rd ed., Dover Publications, New

York, NY, 1952.
Castleman, K. R., Digital Image Processing, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1996.
Chan, D. S. K., and Rabiner, L. R., “An Algorithm for Minimizing Roundoff Noise in Cascade Realizations of

Finite Impulse Response Digital Filters,” Bell System Technical J., Vol. 52, No. 3, pp. 347–385, Mar. 1973.
Chan, D. S. K., and Rabiner, L. R., “Analysis of Quantization Errors in the Direct Form for Finite Impulse

Response Digital Filters,” IEEE Trans. Audio Electroacoustics, Vol. 21, pp. 354–366, Aug. 1973.
Chellappa, R., Girod, B., Munson, D. C., Tekalp, A. M., and Vetterli, M., “The Past, Present, and Future

of Image and Multidimensional Signal Processing,” IEEE Signal Processing Magazine, Vol. 15, No. 2,
pp. 21–58, Mar. 1998.

Chen, W. H., Smith, C. H., and Fralick, S. C., “A Fast Computational Algorithm for the Discrete Cosine
Transform,” IEEE Trans. Commun., Vol. 25, pp. 1004–1009, September 1977.

Chen, X., and Parks, T. W., “Design of FIR Filters in the Complex Domain,” IEEE Trans. Acoustics, Speech,
and Signal Processing, Vol. 35, pp. 144–153, 1987.

Cheney, E. W., Introduction to Approximation Theory, 2nd ed., Amer. Math. Society, New York, NY, 2000.
Chow, Y., and Cassignol, E., Linear Signal Flow Graphs and Applications, Wiley, New York, NY, 1962.
Cioffi, J. M., and Kailath, T., “Fast Recursive Least-squares Transversal Filters for Adaptive Filtering,” IEEE

Trans. Acoustics, Speech, and Signal Processing, Vol. 32, pp. 607–624, June 1984.
Claasen, T. A., and Mecklenbräuker, W. F., “On the Transposition of Linear Time-varying Discrete-time

Networks and its Application to Multirate Digital Systems,” Philips J. Res., Vol. 23, pp. 78–102, 1978.
Claasen, T. A. C. M., Mecklenbrauker, W. F. G., and Peek, J. B. H., “Second-order Digital Filter with only

One Magnitude-truncation Quantizer and Having Practically no Limit Cycles,” Electronics Letters,
Vol. 9, No. 2, pp. 531–532, Nov. 1973.

Clements, M. A., and Pease, J., “On Causal Linear Phase IIR Digital Filters,” IEEE Trans. Acoustics, Speech,
and Signal Processing, Vol. 3, pp. 479–484, Apr. 1989.

Committee, DSP, ed., Programs for Digital Signal Processing, IEEE Press, New York, NY, 1979.
Constantinides, A. G., “Spectral Transformations for Digital Filters,” IEEE Proceedings, Vol. 117, No. 8,

pp. 1585–1590, Aug. 1970.

1084 Bibliography

Cooley, J. W., Lewis, P. A. W., and Welch, P. D., “Historical Notes on the Fast Fourier Transform,” IEEE
Trans. Audio Electroacoustics, Vol. 15, pp. 76–79, June 1967.

Cooley, J. W., and Tukey, J. W., “An Algorithm for the Machine Computation of Complex Fourier Series,”
Mathematics of Computation, Vol. 19, pp. 297–301, Apr. 1965.

Crochiere, R. E., and Oppenheim, A. V., “Analysis of Linear Digital Networks,” IEEE Proceedings, Vol. 63,
pp. 581–595, Apr. 1975.

Crochiere, R. E., and Rabiner, L. R., Multirate Digital Signal Processing, Prentice Hall, Englewood Cliffs,
NJ, 1983.

Daniels, R. W., Approximation Methods for Electronic Filter Design, McGraw-Hill, New York, NY, 1974.
Danielson, G. C., and Lanczos, C., “Some Improvements in Practical Fourier Analysis and their Application to

X-ray Scattering from Liquids,” J. Franklin Inst., Vol. 233, pp. 365–380 and 435–452, Apr. and May 1942.
Davenport, W. B., Probability and Random Processes: An Introduction for Applied Scientists and Engineers,

McGraw-Hill, New York, NY, 1970.
Davis, S. B., and Mermelstein, P., “Comparison of Parametric Representations for Monosyllabic Word

Recognition,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-28, No. 4, pp. 357–366,
Aug. 1980.

Deller, J. R., Hansen, J. H. L., and Proakis, J. G., Discrete-Time Processing of Speech Signals, Wiley-IEEE
Press, New York, NY, 2000.

Donoho, D. L., “Compressed Sensing,” IEEE Trans. on Information Theory, Vol. 52, No. 4, pp. 1289–1306,
Apr. 2006.

Dudgeon, D. E., and Mersereau, R. M., Two-Dimensional Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1984.

Duhamel, P., “Implementation of ‘Split-radix’ FFT Algorithms for Complex, Real, and Real-symmetric
Data,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 34, pp. 285–295, Apr. 1986.

Duhamel, P., and Hollmann, H., “Split Radix FFT Algorithm,” Electronic Letters, Vol. 20, pp. 14–16, Jan. 1984.
Ebert, P. M., Mazo, J. E., and Taylor, M. C., “Overflow Oscillations in Digital Filters,” Bell System Technical

J., Vol. 48, pp. 2999–3020, 1969.
Eldar, Y. C., and Oppenheim, A. V., “Filterbank Reconstruction of Bandlimited Signals from Nonuniform and

Generalized Samples,” IEEE Trans. on Signal Processing, Vol. 48, No. 10, pp. 2864–2875, October, 2000.
Elliott, D. F., and Rao, K. R., Fast Transforms: Algorithms, Analysis, Applications, Academic Press, New

York, NY, 1982.
Feller, W., An Introduction to Probability Theory and Its Applications, Wiley, New York, NY, 1950, Vols. 1

and 2.
Fettweis, A., “Wave Digital Filters: Theory and Practice,” IEEE Proceedings, Vol. 74, No. 2, pp. 270–327,

Feb. 1986.
Flanagan, J. L., Speech Analysis, Synthesis and Perception, 2nd ed., Springer-Verlag, New York, NY, 1972.
Frerking, M. E., Digital Signal Processing in Communication Systems, Kluwer Academic, Boston, MA, 1994.
Friedlander, B., “Lattice Filters for Adaptive Processing,” IEEE Proceedings, Vol. 70, pp. 829–867, Aug. 1982.
Friedlander, B., “Lattice Methods for Spectral Estimation,” IEEE Proceedings, Vol. 70, pp. 990–1017,

September 1982.
Frigo, M., and Johnson, S. G., “FFTW: An Adaptive Software Architecture for the FFT,” Proc. Int. Conf.

Acoustics, Speech, and Signal Processing (ICASSP ’98), Vol. 3, pp. 1381–1384, May 1998.
Frigo, M., and Johnson, S. G., “The Design and Implementation of FFTW3,” Proc. of the IEEE, Vol. 93,

No. 2, pp. 216–231, Feb. 2005.
Furui, S., “Cepstral Analysis Technique for Automatic Speaker Verification,” IEEE Trans. Acoustics, Speech,

and Signal Processing, Vol. ASSP-29, No. 2, pp. 254–272, Apr. 1981.
Gallager, R., Principles of Digital Communication, Cambridge University Press, Cambridge, UK, 2008.
Gardner, W., Statistical Spectral Analysis: A Non-Probabilistic Theory, Prentice Hall, Englewood Cliffs, NJ,

1988.
Gentleman, W. M., and Sande, G., “Fast Fourier Transforms for Fun and Profit,” 1966 Fall Joint Computer

Conf., AFIPS Conf. Proc, Vol. 29., Spartan Books, Washington, D.C., pp. 563–578, 1966.
Goertzel, G., “An Algorithm for the Evaluation of Finite Trigonometric Series,” American Math. Monthly,

Vol. 65, pp. 34–35, Jan. 1958.
Gold, B., Oppenheim, A. V., and Rader, C. M., “Theory and Implementation of the Discrete Hilbert

Transform,” in Proc. Symp. Computer Processing in Communications, Vol. 19, Polytechnic Press, New
York, NY, 1970.

Bibliography 1085

Gold, B., and Rader, C. M., Digital Processing of Signals, McGraw-Hill, New York, NY, 1969.
Gonzalez, R. C., and Woods, R. E., Digital Image Processing, Wiley, 2007.
Goyal, V., “Theoretical Foundations of Transform Coding,” IEEE Signal Processing Magazine, Vol. 18,

No. 5, pp. 9–21, Sept. 2001.
Gray, A. H., and Markel, J. D., “A Computer Program for Designing Digital Elliptic Filters,” IEEE Trans.

Acoustics, Speech, and Signal Processing, Vol. 24, pp. 529–538, Dec. 1976.
Gray, R. M., and Davidson, L. D., Introduction to Statistical Signal Processing, Cambridge University Press,

2004.
Griffiths, L. J., “An Adaptive Lattice Structure for Noise Canceling Applications,” Proc. Int. Conf. Acoustics,

Speech, and Signal Processing (ICASSP ’78), Tulsa, OK, Apr. 1978, pp. 87–90.
Grossman, S., Calculus Part 2, 5th ed., Saunders College Publications, Fort Worth, TX, 1992.
Guillemin, E. A., Synthesis of Passive Networks, Wiley, New York, NY, 1957.
Hannan, E. J., Time Series Analysis, Methuen, London, UK, 1960.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” IEEE

Proceedings, Vol. 66, pp. 51–83, Jan. 1978.
Hayes, M. H., Lim, J. S., and Oppenheim, A. V., “Signal Reconstruction from Phase and Magnitude,” IEEE

Trans. Acoustics, Speech, and Signal Processing, Vol. 28, No. 6, pp. 672–680, Dec. 1980.
Hayes, M., Statistical Digital Signal Processing and Modeling, Wiley, New York, NY, 1996.
Haykin, S., Adaptive Filter Theory, 4th ed., Prentice Hall, 2002.
Haykin, S., and Widrow, B., Least-Mean-Square Adaptive Filters, Wiley-Interscience, Hoboken, NJ, 2003.
Heideman, M. T., Johnson, D. H., and Burrus, C. S., “Gauss and the History of the Fast Fourier Transform,”

IEEE ASSP Magazine, Vol. 1, No. 4, pp. 14–21, Oct. 1984.
Helms, H. D., “Fast Fourier Transform Method of Computing Difference Equations and Simulating Filters,”

IEEE Trans. Audio Electroacoustics, Vol. 15, No. 2, pp. 85–90, 1967.
Herrmann, O., “On the Design of Nonrecursive Digital Filters with Linear Phase,” Elec. Lett., Vol. 6, No. 11,

pp. 328–329, 1970.
Herrmann, O., Rabiner, L. R., and Chan, D. S. K., “Practical Design Rules for Optimum Finite Impulse

Response Lowpass Digital Filters,” Bell System Technical J., Vol. 52, No. 6, pp. 769–799, July–Aug. 1973.
Herrmann, O., and Schüssler, W., “Design of Nonrecursive Digital Filters with Minimum Phase,” Elec. Lett.,

Vol. 6, No. 6, pp. 329–330, 1970.
Herrmann, O., and W. Schüssler, “On the Accuracy Problem in the Design of Nonrecursive Digital Filters,”

Arch. Electronic Ubertragungstechnik, Vol. 24, pp. 525–526, 1970.
Hewes, C. R., Broderson, R. W., and Buss, D. D., “Applications of CCD and Switched Capacitor Filter

Technology,” IEEE Proceedings, Vol. 67, No. 10, pp. 1403–1415, Oct. 1979.
Hnatek, E. R., A User’s Handbook of D/A and A/D Converters, R. E. Krieger Publishing Co., Malabar, 1988.
Hofstetter, E., Oppenheim, A. V., and Siegel, J., “On Optimum Nonrecursive Digital Filters,” Proc. 9th

Allerton Conf. Circuit System Theory, Oct. 1971.
Hughes, C. P., and Nikeghbali, A., “The Zeros of Random Polynomials Cluster Near the Unit Circle,”

arXiv:math/0406376v3 [math.CV], http://arxiv.org/ PS_cache/math/pdf/0406/0406376v3.pdf.
Hwang, S. Y., “On Optimization of Cascade Fixed Point Digital Filters,” IEEE Trans. Circuits and Systems,

Vol. 21, No. 1, pp. 163–166, Jan. 1974.
Itakura, F. I., and Saito, S., “Analysis-synthesis Telephony Based upon the Maximum Likelihood Method,”

Proc. 6th Int. Congress on Acoustics, pp. C17–20, Tokyo, 1968.
Itakura, F. I., and Saito, S., “A Statistical Method for Estimation of Speech Spectral Density and Formant

Frequencies,” Elec. and Comm. in Japan, Vol. 53-A, No. 1, pp. 36–43, 1970.
Jackson, L. B., “On the Interaction of Roundoff Noise and Dynamic Range in Digital Filters,” Bell System

Technical J., Vol. 49, pp. 159–184, Feb. 1970.
Jackson, L. B., “Roundoff-noise Analysis for Fixed-point Digital Filters Realized in Cascade or Parallel

Form,” IEEE Trans. Audio Electroacoustics, Vol. 18, pp. 107–122, June 1970.
Jackson, L. B., Digital Filters and Signal Processing: With MATLAB Exercises, 3rd ed., Kluwer Academic

Publishers, Hingham, MA, 1996.
Jacobsen, E., and Lyons, R., “The Sliding DFT,” IEEE Signal Processing Magazine, Vol. 20, pp. 74–80,

Mar. 2003.
Jain, A. K., Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1989.

1086 Bibliography

Jayant, N. S., and Noll, P., Digital Coding of Waveforms, Prentice Hall, Englewood Cliffs, NJ, 1984.
Jenkins, G. M., and Watts, D. G., Spectral Analysis and Its Applications, Holden-Day, San Francisco, CA, 1968.
Jolley, L. B. W., Summation of Series, Dover Publications, New York, NY, 1961.
Johnston, J., “A Filter Family Designed for Use in Quadrature Mirror Filter Banks,” Proc. Int. Conf.

Acoustics, Speech, and Signal Processing (ICASSP ’80), Vol. 5, pp. 291–294, Apr. 1980.
Juang, B.-H., Rabiner, L. R., and Wilpon, J. G., “On the Use of Bandpass Liftering in Speech Recognition,”

IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-35, No. 7, pp. 947–954, July 1987.
Kaiser, J. F., “Digital Filters,” in System Analysis by Digital Computer, Chapter 7, F. F. Kuo and J. F. Kaiser,

eds., Wiley, New York, NY, 1966.
Kaiser, J. F., “Nonrecursive Digital Filter Design Using the I0-sinh Window Function,” Proc. 1974 IEEE

International Symp. on Circuits and Systems, San Francisco, CA, 1974.
Kaiser, J. F., and Hamming, R. W., “Sharpening the Response of a Symmetric Nonrecursive Filter by

Multiple Use of the Same Filter,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 25, No. 5,
pp. 415–422, Oct. 1977.

Kaiser, J. F., and Schafer, R. W., “On the Use of the I0-sinh Window for Spectrum Analysis,” IEEE Trans.
Acoustics, Speech, and Signal Processing, Vol. 28, No. 1, pp. 105–107, Feb. 1980.

Kan, E. P. F., and Aggarwal, J. K., “Error Analysis of Digital Filters Employing Floating Point Arithmetic,”
IEEE Trans. Circuit Theory, Vol. 18, pp. 678–686, Nov. 1971.

Kaneko, T., and Liu, B., “Accumulation of Roundoff Error in Fast Fourier Transforms,” J. Assoc. Comput.
Mach., Vol. 17, pp. 637–654, Oct. 1970.

Kanwal, R., Linear Integral Equations, 2nd ed., Springer, 1997.
Karam, L. J., and McClellan, J. H., “Complex Chebychev Approximation for FIR Filter Design,” IEEE

Trans. Circuits and Systems, Vol. 42, pp. 207–216, Mar. 1995.
Karam, Z. N., and Oppenheim, A. V., “Computation of the One-dimensional Unwrapped Phase,” 15th

International Conference on Digital Signal Processing, pp. 304–307, July 2007.
Kay, S. M., Modern Spectral Estimation Theory and Application, Prentice Hall, Englewood Cliffs, NJ, 1988.
Kay, S. M., Intuitive Probability and Random Processes Using MATLAB, Springer, New York, NY, 2006.
Kay, S. M., and Marple, S. L., “Spectrum Analysis: A Modern Perspective,” IEEE Proceedings, Vol. 69,

pp. 1380–1419, Nov. 1981.
Keys, R., “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans. Acoustics, Speech

and Signal Processing, Vol. 29, No. 6, pp. 1153–1160, Dec. 1981.
Kleijn, W., “Principles of Speech Coding,” in Springer Handbook of Speech Processing, J. Benesty, M. Sondhi,

and Y. Huang, eds., Springer, 2008, pp. 283–306.
Knuth, D. E., The Art of Computer Programming; Seminumerical Algorithms, 3rd ed., Addison-Wesley,

Reading, MA, 1997, Vol. 2.
Koopmanns, L. H., Spectral Analysis of Time Series, 2nd ed., Academic Press, New York, NY, 1995.
Korner, T. W., Fourier Analysis, Cambridge University Press, Cambridge, UK, 1989.
Lam, H. Y. F., Analog and Digital Filters: Design and Realization, Prentice Hall, Englewood Cliffs, NJ, 1979.
Lang, S. W., and McClellan, J. H., “A Simple Proof of Stability for All-pole Linear Prediction Models,” IEEE

Proceedings, Vol. 67, No. 5, pp. 860–861, May 1979.
Leon-Garcia, A., Probability and Random Processes for Electrical Engineering, 2nd ed., Addison-Wesley,

Reading, MA, 1994.
Lighthill, M. J., Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press,

Cambridge, UK, 1958.
Lim, J. S., Two-Dimensional Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1989.
Liu, B., and Kaneko, T., “Error Analysis of Digital Filters Realized in Floating-point Arithmetic,” IEEE

Proceedings, Vol. 57, pp. 1735–1747, Oct. 1969.
Liu, B., and Peled, A., “Heuristic Optimization of the Cascade Realization of Fixed Point Digital Filters,”

IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 23, pp. 464–473, 1975.
Macovski, A., Medical Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1983.
Makhoul, J., “Spectral Analysis of Speech by Linear Prediction,” IEEE Trans. Audio and Electroacoustics,

Vol. AU-21, No. 3, pp. 140–148, June 1973.
Makhoul, J., “Linear Prediction: A Tutorial Review,” IEEE Proceedings, Vol. 62, pp. 561–580, Apr. 1975.
Makhoul, J., “A Fast Cosine Transform in One and Two Dimensions,” IEEE Trans. Acoustics, Speech, and

Signal Processing, Vol. 28, No. 1, pp. 27–34, Feb. 1980.

Bibliography 1087

Maloberti, F., Data Converters, Springer, New York, NY, 2007.
Markel, J. D., “FFT Pruning,” IEEE Trans. Audio and Electroacoustics, Vol. 19, pp. 305–311, Dec. 1971.
Markel, J. D., and Gray, A. H., Jr., Linear Prediction of Speech, Springer-Verlag, New York, NY, 1976.
Marple, S. L., Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, NJ, 1987.
Martucci, S. A., “Symmetrical Convolution and the Discrete Sine and Cosine Transforms,” IEEE Trans.

Signal Processing, Vol. 42, No. 5, pp. 1038–1051, May 1994.
Mason, S., and Zimmermann, H. J., Electronic Circuits, Signals and Systems, Wiley, New York, NY, 1960.
Mathworks, Signal Processing Toolbox Users Guide, The Mathworks, Inc., Natick, MA, 1998.
McClellan, J. H., and Parks, T. W., “A Unified Approach to the Design of Optimum FIR Linear Phase Digital

Filters,” IEEE Trans. Circuit Theory, Vol. 20, pp. 697–701, Nov. 1973.
McClellan, J. H., and Rader, C. M., Number Theory in Digital Signal Processing, Prentice Hall, Englewood

Cliffs, NJ, 1979.
McClellan, J. H., “Parametric Signal Modeling,” Chapter 1, Advanced Topics in Signal Processing, J. S. Lim

and A. V. Oppenheim, eds., Prentice Hall, Englewood Cliffs, 1988.
Mersereau, R. M., Schafer, R. W., Barnwell, T. P., and Smith, D. L., “A Digital Filter Design Package for PCs

and TMS320s,” Proc. MIDCON, Dallas, TX, 1984.
Mills, W. L., Mullis, C. T., and Roberts, R. A., “Digital Filter Realizations Without Overflow Oscillations,”

IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 26, pp. 334–338, Aug. 1978.
Mintzer, F., “Filters for Distortion-free Two-band Multirate Filter Banks,” IEEE Trans. Acoustics, Speech

and Signal Processing, Vol. 33, No. 3, pp. 626–630, June 1985.
Mitra, S. K., Digital Signal Processing, 3rd ed., McGraw-Hill, New York, NY, 2005.
Moon, T., and Stirling, W., Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 1999.
Nawab, S. H., and Quatieri, T. F., “Short-time Fourier transforms,” in Advanced Topics in Signal Processing,

J. S. Lim and A. V. Oppenheim, eds., Prentice Hall, Englewood Cliffs, NJ, 1988.
Neuvo, Y., Dong, C.-Y., and Mitra, S., “Interpolated Finite Impulse Response Filters,” IEEE Trans. Acoustics,

Speech and Signal Processing, Vol. 32, No. 3, pp. 563–570, June 1984.
Noll, A. M., “Cepstrum Pitch Determination,” J. Acoustical Society of America, Vol. 41, pp. 293–309, Feb. 1967.
Nyquist, H., “Certain Topics in Telegraph Transmission Theory,” AIEE Trans., Vol. 90, No. 2, pp. 280–305, 1928.
Oetken, G., Parks, T. W., and Schüssler, H. W., “New Results in the Design of Digital Interpolators,” IEEE

Trans. Acoustics, Speech, and Signal Processing, Vol. 23, pp. 301–309, June 1975.
Oppenheim, A. V., “Superposition in a Class of Nonlinear Systems,” RLE Technical Report No. 432, MIT, 1964.
Oppenheim, A. V., “Generalized Superposition,” Information and Control, Vol. 11, Nos. 5–6, pp. 528–536,

Nov.–Dec., 1967.
Oppenheim, A. V., “Generalized Linear Filtering,” Chapter 8, Digital Processing of Signals, B. Gold and

C. M. Rader, eds., McGraw-Hill, New York, 1969a.
Oppenheim, A. V., “A Speech Analysis-synthesis System Based on Homomorphic Filtering,” J. Acoustical

Society of America, Vol. 45, pp. 458–465, Feb. 1969b.
Oppenheim, A. V., and Johnson, D. H., “Discrete Representation of Signals,” IEEE Proceedings, Vol. 60,

No. 6, pp. 681–691, June 1972.
Oppenheim, A. V., and Schafer, R. W., “Homomorphic Analysis of Speech,” IEEE Trans. Audio

Electroacoustics, Vol. AU-16, No. 2, pp. 221–226, June 1968.
Oppenheim, A. V., and Schafer, R. W., Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1975.
Oppenheim, A. V., Schafer, R. W., and Stockam, T. G., Jr., “Nonlinear Filtering of Multiplied and Convolved

Signals,” IEEE Proceedings, Vol. 56, No. 8, pp. 1264–1291, Aug. 1968.
Oppenheim, A. V., and Willsky, A. S., Signals and Systems, 2nd ed., Prentice Hall, Upper Saddle River, NJ,

1997.
Oraintara, S., Chen, Y. J., and Nguyen, T., “Integer Fast Fourier Transform,” IEEE Trans. on Signal

Processing, Vol. 50, No. 3, pp. 607–618, Mar. 2001.
O’Shaughnessy, D., Speech Communication, Human and Machine, 2nd ed., Addison-Wesley, Reading, MA,

1999.
Pan, D., “A Tutorial on MPEG/audio Compression,” IEEE Multimedia, pp. 60–74, Summer 1995.
Papoulis, A., “On the Approximation Problem in Filter Design,” in IRE Nat. Convention Record, Part 2,

1957, pp. 175–185.
Papoulis, A., The Fourier Integral and Its Applications, McGraw-Hill, New York, NY, 1962.

1088 Bibliography

Papoulis, A., Signal Analysis, McGraw-Hill Book Company, New York, NY, 1977.
Papoulis, A., Probability, Random Variables and Stochastic Processes, 4th ed., McGraw-Hill, New York, NY,

2002.
Parks, T. W., and Burrus, C. S., Digital Filter Design, Wiley, New York, NY, 1987.
Parks, T. W., and McClellan, J. H., “Chebyshev Approximation for Nonrecursive Digital Filters with Linear

Phase,” IEEE Trans. Circuit Theory, Vol. 19, pp. 189–194, Mar. 1972.
Parks, T. W., and McClellan, J. H., “A Program for the Design of Linear Phase Finite Impulse Response

Filters,” IEEE Trans. Audio Electroacoustics, Vol. 20, No. 3, pp. 195–199, Aug. 1972.
Parsons, T. J., Voice and Speech Processing, Prentice Hall, New York, NY, 1986.
Parzen, E., Modern Probability Theory and Its Applications, Wiley, New York, NY, 1960.
Pennebaker, W. B., and Mitchell, J. L., JPEG: Still Image Data Compression Standard, Springer, New York,

NY, 1992.
Phillips, C. L., and Nagle, H. T., Jr., Digital Control System Analysis and Design, 3rd ed., Prentice Hall,

Upper Saddle River, NJ, 1995.
Pratt, W., Digital Image Processing, 4th ed., Wiley, New York, NY, 2007.
Press, W. H. F., Teukolsky, S. A. B. P., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of

Scientific Computing, 3rd ed., Cambridge University Press, Cambridge, UK, 2007.
Proakis, J. G., and Manolakis, D. G., Digital Signal Processing, Prentice Hall, Upper Saddle River, NJ, 2006.
Quatieri, T. F., Discrete-Time Speech Signal Processing: Principles and Practice, Prentice Hall, Englewood

Cliffs, NJ, 2002.
Rabiner, L. R., “The Design of Finite Impulse Response Digital Filters Using Linear Programming

Techniques,” Bell System Technical J., Vol. 51, pp. 1117–1198, Aug. 1972.
Rabiner, L. R., “Linear Program Design of Finite Impulse Response (FIR) Digital Filters,” IEEE Trans.

Audio and Electroacoustics, Vol. 20, No. 4, pp. 280–288, Oct. 1972.
Rabiner, L. R., and Gold, B., Theory and Application of Digital Signal Processing, Prentice Hall, Englewood

Cliffs, NJ, 1975.
Rabiner, L. R., Kaiser, J. F., Herrmann, O., and Dolan, M. T., “Some Comparisons Between FIR and IIR

Digital Filters,” Bell System Technical J., Vol. 53, No. 2, pp. 305–331, Feb. 1974.
Rabiner, L. R., and Schafer, R. W., “On the Behavior of Minimax FIR Digital Hilbert Transformers,” Bell

System Technical J., Vol. 53, No. 2, pp. 361–388, Feb. 1974.
Rabiner, L. R., and Schafer, R. W., Digital Processing of Speech Signals, Prentice Hall, Englewood Cliffs,

NJ, 1978.
Rabiner, L. R., Schafer, R. W., and Rader, C. M., “The Chirp z-transform Algorithm,” IEEE Trans. Audio

Electroacoustics, Vol. 17, pp. 86–92, June 1969.
Rader, C. M., “Discrete Fourier Transforms when the Number of Data Samples is Prime,” IEEE Proceedings,

Vol. 56, pp. 1107–1108, June 1968.
Rader, C. M., “An Improved Algorithm for High-speed Autocorrelation with Applications to Spectral

Estimation,” IEEE Trans. Audio Electroacoustics, Vol. 18, pp. 439–441, Dec. 1970.
Rader, C. M., and Brenner, N. M., “A New Principle for Fast Fourier Transformation,” IEEE Trans. Acoustics,

Speech, and Signal Processing, Vol. 25, pp. 264–265, June 1976.
Rader, C. M., and Gold, B., “Digital Filter Design Techniques in the Frequency Domain,” IEEE Proceedings,

Vol. 55, pp. 149–171, Feb. 1967.
Ragazzini, J. R., and Franklin, G. F., Sampled Data Control Systems, McGraw-Hill, New York, NY, 1958.
Rao, K. R., and Hwang, J. J., Techniques and Standards for Image, Video, and Audio Coding, Prentice Hall,

Upper Saddle River, NJ, 1996.
Rao, K. R., and Yip, P., Discrete Cosine Transform: Algorithms, Advantages, Applications, Academic Press,

Boston, MA, 1990.
Rao, S. K., and Kailath, T., “Orthogonal Digital Filters for VLSI Implementation,” IEEE Trans. Circuits and

System, Vol. 31, No. 11, pp. 933–945, Nov. 1984.
Reut, Z., Pace, N. G., and Heaton, M. J. P., “Computer Classification of Sea Beds by Sonar,” Nature, Vol. 314,

pp. 426–428, Apr. 4, 1985.
Robinson, E. A., and Durrani, T. S., Geophysical Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.
Robinson, E. A., and Treitel, S., Geophysical Signal Analysis, Prentice Hall, Englewood Cliffs, NJ, 1980.
Romberg, J., “Imaging Via Compressive Sampling,” IEEE Signal Processing Magazine, Vol. 25, No. 2,

pp. 14–20, Mar. 2008.

Bibliography 1089

Ross, S., A First Course in Probability, 8th ed., Prentice Hall, Upper Saddle River, NJ, 2009.
Runge, C., “Uber die Zerlegung Empirisch Gegebener Periodischer Functionen in Sinuswellen,” Z. Math.

Physik, Vol. 53, pp. 117–123, 1905.
Sandberg, I. W., “Floating-point-roundoff Accumulation in Digital Filter Realizations,” Bell System Technical

J., Vol. 46, pp. 1775–1791, Oct. 1967.
Sayed, A., Adaptive Filters, Wiley, Hoboken, NJ, 2008.
Sayed, A. H., Fundamentals of Adaptive Filtering, Wiley-IEEE Press, 2003.
Sayood, K., Introduction to Data Compression, 3rd ed., Morgan Kaufmann, 2005.
Schaefer, R. T., Schafer, R. W., and Mersereau, R. M., “Digital Signal Processing for Doppler Radar Signals,”

Proc. 1979 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 170–173, 1979.
Schafer, R. W., “Echo Removal by Generalized Linear Filtering,” RLE Tech. Report No. 466, MIT,

Cambridge, MA, 1969.
Schafer, R. W., “Homomorphic Systems and Cepstrum Analysis of Speech,” Chapter 9, Springer Handbook of

Speech Processing and Communication, J. Benesty, M. M. Sondhi, and Y. Huang, eds., Springer-Verlag,
Heidelberg, 2007.

Schafer, R. W., and Rabiner, L. R., “System for Automatic Formant Analysis of Voiced Speech,” J. Acoustical
Society of America, Vol. 47, No. 2, pt. 2, pp. 634–648, Feb. 1970.

Schafer, R. W., and Rabiner, L. R., “A Digital Signal Processing Approach to Interpolation,” IEEE
Proceedings, Vol. 61, pp. 692–702, June 1973.

Schmid, H., Electronic Analog/Digital Conversions, Wiley, New York, NY, 1976.
Schreier, R., and Temes, G. C., Understanding Delta-Sigma Data Converters, IEEE Press and John Wiley

and Sons, Hoboken, NJ, 2005.
Schroeder, M. R., “Direct (Nonrecursive) Relations Between Cepstrum and Predictor Coefficients,” IEEE

Trans. Acoustics, Speech and Signal Processing, Vol. 29, No. 2, pp. 297–301, Apr. 1981.
Schüssler, H. W., and Steffen, P., “Some Advanced Topics in Filter Design,” in Advanced Topics in Signal

Processing, S. Lim and A. V. Oppenheim, eds., Prentice Hall, Englewood Cliffs, NJ, 1988.
Senmoto, S., and Childers, D. G., “Adaptive Decomposition of a Composite Signal of Identical Unknown

Wavelets in Noise,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-2, No. 1, pp. 59, Jan. 1972.
Shannon, C. E., “Communication in the Presence of Noise,” Proceedings of the Institute of Radio Engineers

(IRE), Vol. 37, No. 1, pp. 10–21, Jan. 1949.
Singleton, R. C., “An Algorithm for Computing the Mixed Radix Fast Fourier Transforms,” IEEE Trans.

Audio Electroacoustics, Vol. 17, pp. 93–103, June 1969.
Sitton, G. A., Burrus, C. S., Fox, J. W., and Treitel, S., “Factoring Very-high-degree Polynomials,” IEEE

Signal Processing Magazine, Vol. 20, No. 6, pp. 27–42, Nov. 2003.
Skolnik, M. I., Introduction to Radar Systems, 3rd ed., McGraw-Hill, New York, NY, 2002.
Slepian, D., Landau, H. T., and Pollack, H. O., “Prolate Spheroidal Wave Functions, Fourier Analysis, and

Uncertainty Principle (I and II),” Bell System Technical J., Vol. 40, No. 1, pp. 43–80, 1961.
Smith, M., and Barnwell, T., “ A Procedure for Designing Exact Reconstruction Filter Banks for Tree-

structured Subband Coders,” Proc. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP ’84),
Vol. 9, Pt. 1, pp. 421–424, Mar. 1984.

Spanias, A., Painter, T., and Atti, V., Audio Signal Processing and Coding, Wiley, Hoboken, NJ, 2007.
Sripad, A., and Snyder, D., “A Necessary and Sufficient Condition for Quantization Errors to be Uniform and

White,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 25, No. 5, pp. 442–448, Oct. 1977.
Stark, H., and Woods, J., Probability and Random Processes with Applications to Signal Processing, 3rd ed.,

Prentice Hall, Englewood Cliffs, NJ, 2001.
Starr, T., Cioffi, J. M., and Silverman, P. J., Understanding Digital Subscriber Line Technology, Prentice Hall,

Upper Saddle River, NJ, 1999.
Steiglitz, K., “The Equivalence of Analog and Digital Signal Processing,” Information and Control, Vol. 8,

No. 5, pp. 455–467, Oct. 1965.
Steiglitz, K., and Dickinson, B., “Phase Unwrapping by Factorization,” IEEE Trans. Acoustics, Speech and

Signal Processing, Vol. 30, No. 6, pp. 984–991, Dec. 1982.
Stockham, T. G., “High Speed Convolution and Correlation,” in 1966 Spring Joint Computer Conference,

AFIPS Proceedings, Vol. 28, pp. 229–233, 1966.
Stockham, T. G., Cannon, T. M., and Ingebretsen, R. B., “Blind Deconvolution Through Digital Signal

Processing,” IEEE Proceedings, Vol. 63, pp. 678–692, Apr. 1975.

1090 Bibliography

Stoica, P., and Moses, R., Spectral Analysis of Signals, Pearson Prentice Hall, Upper Saddle River, NJ, 2005.
Storer, J. E., Passive Network Synthesis, McGraw-Hill, New York, NY, 1957.
Strang, G., “The Discrete Cosine Transforms,” SIAM Review, Vol. 41, No. 1, pp. 135–137, 1999.
Strang, G., and Nguyen, T., Wavelets and Filter Banks, Wellesley–Cambridge Press, Cambridge, MA, 1996.
Taubman D. S., and Marcellin, M. W., JPEG 2000: Image Compression Fundamentals, Standards, and

Practice, Kluwer Academic Publishers, Norwell, MA, 2002.
Therrien, C. W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall, Englewood Cliffs,

NJ, 1992.
Tribolet, J. M., “A New Phase Unwrapping Algorithms,” IEEE Trans. Acoustics, Speech, and Signal

Processing, Vol. 25, No. 2, pp. 170–177, Apr. 1977.
Tribolet, J. M., Seismic Applications of Homomorphic Signal Processing, Prentice Hall, Englewood Cliffs,

NJ, 1979.
Tukey, J. W., Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977.
Ulrych, T. J., “Application of Homomorphic Deconvolution to Seismology,” Geophysics, Vol. 36, No. 4,

pp. 650–660, Aug. 1971.
Unser, M., “Sampling—50 Years after Shannon,” IEEE Proceedings, Vol. 88, No. 4, pp. 569–587, Apr. 2000.
Vaidyanathan, P. P., Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs, NJ, 1993.
Van Etten, W. C., Introduction to Random Signals and Noise, John Wiley and Sons, Hoboken, NJ, 2005.
Verhelst, W., and Steenhaut, O., “A New Model for the Short-time Complex Cepstrum of Voiced Speech,”

IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 1, pp. 43–51, February 1986.
Vernet, J. L., “Real Signals Fast Fourier Transform: Storage Capacity and Step Number Reduction by Means

of an Odd Discrete Fourier Transform,” IEEE Proceedings, Vol. 59, No. 10, pp. 1531–1532, Oct. 1971.
Vetterli, M., “A Theory of Multirate Filter Banks,” IEEE Trans. Acoustics, Speech, and Signal Processing,

Vol. 35, pp. 356–372, Mar. 1987.
Vetterli, M., and Kovačević, J., Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, NJ, 1995.
Volder, J. E., “The Cordic Trigonometric Computing Techniques,” IRE Trans. Electronic Computers, Vol. 8,

pp. 330–334, Sept. 1959.
Walden, R., “Analog-to-digital Converter Survey and Analysis,” IEEE Journal on Selected Areas in

Communications, Vol. 17, No. 4, pp. 539–550, Apr. 1999.
Watkinson, J., MPEG Handbook, Focal Press, Boston, MA, 2001.
Weinberg, L., Network Analysis and Synthesis, R. E. Kreiger, Huntington, NY, 1975.
Weinstein, C. J., “Roundoff Noise in Floating Point Fast Fourier Transform Computation,” IEEE Trans.

Audio Electroacoustics, Vol. 17, pp. 209–215, Sept. 1969.
Weinstein, C. J., and Oppenheim, A. V., “A Comparison of Roundoff Noise in Floating Point and Fixed

Point Digital Filter Realizations,” IEEE Proceedings, Vol. 57, pp. 1181–1183, June 1969.
Welch, P. D., “A Fixed-point Fast Fourier Transform Error Analysis,” IEEE Trans. Audio Electroacoustics,

Vol. 17, pp. 153–157, June 1969.
Welch, P. D., “The Use of the Fast Fourier Transform for the Estimation of Power Spectra,” IEEE Trans.

Audio Electroacoustics, Vol. 15, pp. 70–73, June 1970.
Widrow, B., “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory,” IRE Trans.

Circuit Theory, Vol. 3, pp. 266–276, Dec. 1956.
Widrow, B., “Statistical Analysis of Amplitude-quantized Sampled-data Systems,” AIEE Trans. (Applications

and Industry), Vol. 81, pp. 555–568, Jan. 1961.
Widrow, B., and Kollár, I., Quantization Noise: Roundoff Error in Digital Computation, Signal Processing,

Control, and Communications, Cambridge University Press, Cambridge, UK, 2008.
Widrow, B., and Stearns, S. D., Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1985.
Winograd, S., “On Computing the Discrete Fourier Transform,” Mathematics of Computation, Vol. 32,

No. 141, pp. 175–199, Jan. 1978.
Woods, J. W., Multidimensional Signal, Image, and Video Processing and Coding, Academic Press, 2006.
Yao, K., and Thomas, J. B., “On Some Stability and Interpolatory Properties of Nonuniform Sampling

Expansions,” IEEE Trans. Circuit Theory, Vol. CT-14, pp. 404–408, Dec. 1967.
Yen, J. L., On Nonuniform Sampling of Bandwidth-limited Signals,” IEEE Trans. Circuit Theory, Vol. CT-3,

pp. 251–257, Dec. 1956.
Zverev, A. I., Handbook of Filter Synthesis, Wiley, New York, NY, 1967.

Index

A/D conversion, See Analog-to-digital (A/D)
conversion

Absolute summability, 50–52, 65
defined, 50
for suddenly-applied exponential, 50–51

Accumulator, 19–20, 23, 33, 35
and the backward difference system, 35
difference equation representation of, 36
impulse response of, 33
in cascade with backward difference, 35
inverse system, 35
system, 19–20
as time-invariant system, 21

Additivity property, 19
Alias cancellation condition, 203
Aliasing, 159

antialiasing filter, 206–207
and bilinear transformation, 506
distortion, 159
downsampling with, 181–184
prefiltering to avoid, 206–209
in sampling a sinusoidal signal, 162

All-pass systems, 305–310
first- and second-order, 307–309

All-pole lattice structure, 412–414
All-pole model lattice network, 923–924
All-pole modeling, 891–895

autocorrelation matching property, 898
determination of the gain parameter G, 899–900
of finite-energy deterministic signals, 896–897
least-squares approximation, 892
least-squares inverse model, 892–894
linear prediction, 892
linear prediction formulation of, 895
linear predictive analysis, 892
minimum mean-squared error, 898
random signal modeling, 897

All-pole spectrum analysis, 907–915
pole locations, 911–913
sinusoidal signals, 913–915
speech signals, 908–911

Alternation theorem, 558–565
defined, 558
and polynomials, 558

Analog signals, 9
digital filtering of, 205–224

A/D conversion, 209–214
D/A conversion, 220–224
ideal continuous-to-discrete (C/D) converter,

205
ideal discrete-to-continuous (D/C) converter,

205
Analog-to-digital (A/D) conversion, 2, 209–214

measurements of quantization noise, 217–218
offset binary coding scheme, 212
oversampling and noise shaping in, 224–236
physical configuration for, 209
quantization errors:

analysis of, 214–215, 214–220
for a sinusoidal signal, 215–217

quantizer, 210–213
Analog-to-digital (A/D) converters, 205
Analytic signals, 956, 969

and bandpass sampling, 966–969
as a complex time function, 943
defined, 943
and narrowband communication, 963

Analyzer–synthesizer filter banks, 266
Antialiasing filter, 206–207, 793–795

frequency response of, 793
Aperiodic discrete-time sinusoids, 15
Asymptotically unbiased estimators, 837

1091

1092 Index

Autocorrelation:
circular, 853
deterministic autocorrelation sequence, 67
invariance, 607
method, 900–903
and parametric signal modeling, 900–903

Autocorrelation matching property, 898
all-pole modeling, 898

Autocorrelation normal equations, 896
Levinson–Durbin algorithm, derivation of,

917–920
Levinson–Durbin recursion, 916–917
solutions of, 915–919

Autocorrelation sequence of h[n], 67–68
Autoregressive (AR) linear random process, 887
Autoregressive moving-average (ARMA) linear

random process, 887

Backward difference, 13, 22, 33
Backward difference system, 22, 33, 93, 96

and the accumulator, 35
impulse response of, 34

Backward prediction error, 922–923, 925–926, 941
Bandlimited interpolation, 264
Bandlimited signal, reconstruction from its samples,

163–166
Bandpass filter, and FIR equiripple approximation,

576–577
Bartlett (triangular) windows, 536–539, 823–824,

862–863
Bartlett’s procedure, 844
Basic sequences/sequence operations:

complex exponential sequences, 14–15
exponential sequences, 13–14
sinusoidal sequences, 14
unit sample sequence, 12
unit step sequence, 12–13

Basis sequences, 673
Bilateral z-transform, 100, 135
Bilinear transformation, 504–508

and aliasing, 506
of a Butterworth filter, 509–513
frequency warping, 506–507

Bit-reversed order, 732
Blackman–Tukey estimates, 862
Blackman windows, 536–539, 824
Blackman–Tukey method, 850, 862
Block convolution, 668
Block floating point, 762

Block processing, 792
Bounded-input, bounded-output (BIBO), 22
Butterfly computation, 730
Butterworth filter, 581

bilinear transformation of, 509–513
impulse invariance, 500–504

Canonic direct form implementation, 381
Canonic form implementation, 380–381
Cascade-form structures, 390–393

illustration of, 392
Cascade IIR structure, analysis of, 448–453
Cascaded systems, 34–35
Cauchy integral theorem, 943
Cauchy principal value, 949
Cauchy–Riemann conditions, 943
Causal generalized linear-phase systems, 328–338
FIR linear-phase systems:

examples of, 330–331
locations of zeros for, 335–338
relation to minimum-phase systems, 338–340
type I FIR linear-phase systems, 330

example, 331–332
type II FIR linear-phase systems, 330

example, 332–333
type III FIR linear-phase systems, 330

example, 333–334
type IV FIR linear-phase systems, 330

example, 335
Causal sequences, 32

even and odd parts of, 945
exponential sequence, 947
finite-length sequence, 946
real- and imaginary-part sufficiency of the Fourier

transform for, 944–949
Causal systems, 32
Causality, 22
Cepstrum:

complex, defined, 982–984
defined, 981–982
real, 984fn

Cepstrum analysis, 980
Characteristic system for convolution, 984
Characteristic, use of term, 419, 458
Chebyshev criterion, 557
Chebyshev I design, 581
Chebyshev II design, 581
Chirp signals, 751
Chirp transform algorithm (CTA), 749–754

parameters, 754
Chirp transform, defined, 751

Index 1093

Chirp z-transform (CZT) algorithm, 754
Chirps, defined, 812
Cholesky decomposition, 916
Circular autocorrelation, 853
Circular convolution, discrete Fourier transform

(DFT), 654–659
Circular shift of a sequence, discrete Fourier

transform (DFT), 648–650
Clipped samples, 214
Clipping, 416
“Closed-form” formulas, 29
Clutter, 835
Coefficient quantization, effects of, 421–436

in an elliptical filter, 423–427
in FIR systems, 429–431
in IIR systems, 422–423
maintaining linear phase, 434–436
in an optimum FIR filter, 431–434
poles of quantized second-order sections, 427–429

Commonly used windows, 535–536
Complex cepstrum, 955–956, 979

alternative expressions for, 985–986
computation of, 992–1000

exponential weighting, 1000
minimum-phase realizations for minimum-phase

sequences, 998
phase unwrapping, 993–997
recursive computation for minimum- and

maximum-phase sequences, 999–1000
using polynomial roots, 1001–1002
using the DFT, 1013–1016
using the logarithmic derivative, 997–998

by z-transform analysis, 1009–1012
deconvolution using, 1002–1006

minimum-phase/allpass homomorphic
deconvolution, 1003–1004

minimum-phase/maximum-phase homomorphic
deconvolution, 1004–1005

defined, 982–984
for exponential sequences, 986–989
minimum phase and causality of, 956
for minimum-phase and maximum-phase

sequences, 989–990
relationship between the real cepstrum and,

990–992
for a simple multipath model, 1006–1024

generalizations, 1024
homomorphic deconvolution, 1016–1017
minimum-phase decomposition, 1017–1023

speech processing applications, 1024–1032
applications, 1032
formants, 1024
fricative sounds, 1024
homomorphic deconvolution of speech,

example of, 1028–1030
plosive sounds, 1024

speech model, 1024–1027
speech model, estimating the parameters of,

1030–1032
vocal tract, 1025
voiced sounds, 1024

Complex exponential sequences, 14–15, 53–54
Complex logarithm, 982

properties of, 984–985
Complex sequences, Hilbert transform relations for,

956–969
Complex time functions, analytic signals as, 959
Compressor, 180
Compressor, defined, 21
Conjugate-antisymmetric sequence, 54–55
Conjugate quadrature filters (CQF), 203
Conjugate-symmetric sequence, 54–55
Conjugation property, z-transform, 129
Consistent estimators, 837
Consistent resampling, 250
Constant, Fourier transform of, 52–53
Continuous-time filters, design of discrete-time IIR

filters from, 496–508
bilinear transformation, 504–508
filter design by impulse invariance, 497–504

Continuous-time processing of discrete-time signals,
175–178

noninteger delay, 176–177
moving-average system with noninteger with,

177–179
Continuous-time signals, 9

aliasing in sampling a sinusoidal signal, 162
bandlimited signal, reconstruction from its

samples, 163–166
digital filtering of analog signals, 205–224
discrete-time lowpass filter, ideal continuous-time

lowpass filtering using, 169–171
discrete-time processing of, 167–176

LTI, 168–169
discrete-time signals, continuous-time processing

of, 175–179
frequency-domain representation of sampling,

154, 156–163

1094 Index

Continuous-time signals (continued)
ideal continuous-time bandlimited differentiator,

discrete-time implementation of, 171–172
impulse invariance, 173–175

applied to continuous-time systems with rational
system functions, 174–175

discrete-time lowpass filter obtained by, 174
multirate signal processing, 194–205
reconstruction of a bandlimited signal from

samples, 163–166
sampling and reconstruction of a sinusoidal

signal, 161–162
sampling of, 153–273
sampling rate, changing using discrete-time

processing, 179–193
Convolution:

characteristic system for, 984
circular, 654–659
commutative property of, 34
linear, 660–672

with aliasing, circular convolution as, 661
of two finite-length sequences, 660–672

operation, 30
Convolution property, z-transform, 130–131

convolution of finite-length sequences, 131
Convolution sum, 24–26

analytical evaluation of, 27–29
computation of, 23–27
defined, 24

Convolution theorem:
Fourier transform, 60–61
z-transform, 130–131

Cooley-Tukey algorithms, 735, 746–747, 749
Coupled form, for second-order systems, 429
Coupled form oscillator, 471
Critically damped system, 351
Cross-correlation, 69–70, 881, 883, 925
CTA, See Chirp transform algorithm (CTA)

D/A conversion, See Digital-to-analog (D/A)
conversion

DCT, See Discrete cosine transform (DCT)
DCT-1/DCT-2, See also Discrete cosine transform

(DCT)
defined, 675
relationship between, 676–678

Dead bands, defined, 461

Decimation:
defined, 184
multistage, 195–197

Decimation filters, polyphase implementation of,
199–200

Decimation-in-frequency FFT algorithms, 737–743
alternative forms, 741–743
in-place computations, 741

Decimation-in-time FFT algorithms, 723–737
alternative forms, 734–737
defined, 723
generalization and programming the FFT, 731
in-place computations, 731–734

Decimator, defined, 184
Decomposition:

Cholesky, 916
linear time-invariant (LTI) systems, 311–313
minimum-phase, 1017–1023
of one-sided Fourier transform, 958
polyphase, 197–9

Deconvolution:
using the complex cepstrum, 1002–1006

minimum-phase/allpass homomorphic
deconvolution, 1003–1004

minimum-phase/maximum-phase homomorphic
deconvolution, 1004–1005

Delay register, 375
Deterministic autocorrelation sequence, 67–68
DFS, See Discrete Fourier series (DFS)
DFT, See Discrete Fourier transform (DFT)
Difference equation representation, of accumulator,

36
Difference equations:

block diagram representation of, 376–377
determining the impulse response from, 64

Differentiation property, z-transform, 127–129
inverse of non-rational z-transform, 128

second-order pole, 128–129
Digital filters, 494
Digital signal processing, 10–17
Digital signal processors, 1fn
Digital filtering of analog signals, 205–224

A/D conversion, 209–214
D/A conversion, 220–224
ideal continuous-to-discrete (C/D) converter, 205
ideal discrete-to-continuous (D/C) converter, 205

Digital signals, 9

Index 1095

Digital-to-analog (D/A) conversion, 2, 220–224
block diagram, 221
ideal D/C converter, 221
oversampling and noise shaping in, 224–236
zero-order hold, 222–223

Digital-to-analog (D/A) converters, 205
Dirac delta function, 12, 154
Direct-form FIR systems, analysis of, 453–458
Direct form I implementation, 381
Direct form II implementation, 381
Direct-form IIR structures, analysis of, 436–445
Direct-form structures, 388–390

illustrations of, 390
Discrete cosine transform (DCT), 673–683

applications of, 682–683
DCT-1/DCT-2:

defined, 675
relationship between, 676–678

definitions of, 673–674
energy compaction property of the DCT-2,

679–682
relationship between the DFT and the DCT-2,

678–679
Discrete Fourier series (DFS), 624–628

duality in, 627
Fourier representation of finite-duration

sequences, 642–646
Fourier transform:

of one period, relationship between Fourier
series coefficients and, 637–638

of a periodic discrete-time impulse train, 635
of periodic signals, 633–638
sampling, 638–641

of a periodic rectangular pulse train, 627–628
properties of, 628–633, 647–660

circular convolution, 654–659
circular shift of a sequence, 648–650
duality, 629–630, 650–652
linearity, 629, 647–648
periodic convolution, 630–633
shift of a sequence, 629
summary, 634, 660–661
symmetry, 630
symmetry properties, 653–654

of a rectangular pulse, 644–646
representation of periodic sequences, 624–628

Discrete Fourier transform (DFT), 3, 623–715
computation of, 716–791

coefficients, 745
direct computation of, 718–723
direct evaluation of the definition of, 718–719
exploiting both symmetry and periodicity,

722–723
Goertzel algorithm, 717, 719–722, 749
indexing, 743–745
practical considerations, 743–745

computation of average periodograms using, 845
computation of the complex cepstrum using,

1013–1016
computing linear convolution using, 660–672
decimation-in-frequency FFT algorithms, 737–743

alternative forms, 741–743
in-place computations, 741

decimation-in-time FFT algorithms, 723–737
alternative forms, 734–737
defined, 723
generalization and programming the FFT, 731
in-place computations, 731–734

defined, 623, 641
DFT analysis of sinusoidal signals, 797–810

effect of spectral sampling, 801–810
effect of windowing, 797–800
window properties, 800–801

DFT analysis of sinusoidal signals using a Kaiser
window, 806–808

discrete cosine transform (DCT), 673–683
discrete Fourier series, 624–628

properties of, 628–633
finite-length sequences, sufficiency theorems for,

950
finite register length, effects of, 754–762
Fourier analysis of nonstationary signals:

examples of, 829–836
radar signals, 834–836
speech signals, 830–834

Fourier analysis of signals using, 792–796
Fourier analysis of stationary random signals,

836–849
computation of average periodograms using the

DFT, 845
periodogram, 837–843
periodogram analysis, 837, 845–849
periodogram averaging, 843–845

general FFT algorithms, 745–748
chirp transform algorithm (CTA), 749–754
Winograd Fourier transform algorithm

(WFTA), 749

1096 Index

Discrete Fourier transform (DFT) (continued)
implementing linear time-invariant systems using,

667–672
linear convolution, 660–672

with aliasing, circular convolution as, 661–667
of two finite-length sequences, 661

properties of, 647–660
circular convolution, 655–659
circular shift of a sequence, 648–650
duality, 650–652
linearity, 647–648
summary, 659–660
symmetry properties, 653–654

of a rectangular pulse, 644–646
signal frequencies matching DFT frequencies

exactly, 805–806
spectrum analysis of random signals using

autocorrelation sequence estimates, 849–862
correlation and power spectrum estimates,

853–855
power spectrum of quantization noise, 855–860
power spectrum of speech, 860–862

time-dependent Fourier transform, 811–829
defined, 811
effect of the window, 817–818
filter bank interpretation of, 826–829

filter bank interpretation of X[n, λ), 816–817
invertibility of X[n, λ), 815–816

of a linear chirp signal, 811–814
overlap-add method of reconstruction, 822–825
sampling in time and frequency, 819–822
signal processing based on, 825–826
spectrogram, 814–815

Discrete Hilbert transform relationships, 949
Discrete Hilbert transforms, 942–979
Discrete sine transform (DST), 674
Discrete-time Butterworth filter, design of, 508–526
Discrete-time convolution, implementing, 26–27
Discrete-time differentiators, 507, 550

and Kaiser window filter design method, 550–553
Discrete-time filters:

design of, 493–494
determining specifications for, 495–496
IIR filter design, from continuous-time filters,

496–508
bilinear transformation, 504–508
filter design by impulse invariance, 497–504

Discrete-time Fourier transform (DTFT), 49fn, 623,
792

Discrete-time linear time-invariant (LTI) filter, 4
Discrete-time model of speech production, 1025,

1025–1026
Discrete-time processing, of continuous-time

signals, 167–176
Discrete-time random signals, 64–70
Discrete-time signal processing, 2, 17–23

backward difference system, 22
causality, 22
defined, 17
discrete-time random signals, 64–70
forward difference system, 22
Fourier transforms, representation of sequences

by, 48–54
ideal delay system, 17
instability, testing for, 23
linear systems, 19–20

accumulator system, 19–20
nonlinear system, 20

memoryless systems, 18–19
moving average, 18
stability, 22–23

testing for, 23
techniques, future promise of, 8
time-invariant systems, 20–21

accumulator as, 21
Discrete-time signals, 10

basic sequences/sequence operations:
complex exponential sequences, 14–15
exponential sequences, 13–14
sinusoidal sequences, 14
unit sample sequence, 12
unit step sequence, 12–13
continuous-time processing of, 175–178
defined, 9
discrete-time systems, 17–23
graphic depiction of, 11
graphic representation of, 11
sampling frequency, 10
sampling period, 10
as sequences of numbers, 10–17
signal-processing systems, classification of, 10

Discrete-time sinusoids, periodic/aperiodic, 15
Discrete-time systems, 17–23

coefficient quantization effects, 421–436
in an elliptical filter, 423–427
in FIR systems, 429–431
in IIR systems, 422–423
maintaining linear phase, 434–436
in an optimum FIR filter, 431–434

Index 1097

poles of quantized second-order sections,
427–429

discrete-time random signals:
autocorrelation/autocovariance sequence, 65–66
deterministic autocorrelation sequence, 67–68
power density spectrum, 68
random process, 65
white noise, 69–70

finite-precision numerical effects, 415–421
number representations, 415–419
quantization in implementing systems, 419–421

FIR systems:
basic network structures for, 401–405
cascade form structures, 402
direct-form structures, 401–402

floating-point realizations of, 458–459
Fourier transform theorems, 59–64

convolution theorem, 60–61
differentiation in frequency, 59
frequency shifting, 59
linearity of Fourier transform, 59
modulation or windowing theorem, 61–62
Parseval’s theorem, 60
time reversal, 59
time shifting, 59

frequency-domain representation of, 40–48
eigenfunctions for linear time-invariant systems,

40–45
frequency response of the ideal delay system, 41
frequency response of the moving-average

system, 45–46
ideal frequency-selective filters, 43–44
sinusoidal response of linear time-invariant

systems, 42–43
suddenly-applied complex exponential inputs,

46–48
ideal delay system, 17
IIR systems:
basic structures for, 388–397
cascade form structures, 390–393
direct form structures, 388–390

feedback in, 395–397
parallel form structures, 393–395

lattice filters, 405–415
all-pole lattice structure, 412–414
FIR, 406–412
generalization of lattice systems, 415
lattice implementation of an IIR system, 414

linear constant-coefficient difference equations,
35–41

block diagram representation of, 375–382
signal flow graph representation of, 382–388

linear-phase FIR systems, structures for, 403–405
linear systems, 19

accumulator system, 19–20
nonlinear system, 20

linear time-invariant systems, 23–35
convolution sum, 23–29
eigenfunctions for, 40–46
properties of, 30–35

memoryless systems, 18–19
moving average, 18
representation of sequences by Fourier

transforms, 48–54
absolute summability for suddenly-applied

exponential, 50
Fourier transform of a constant, 52–53
Fourier transform of complex exponential

sequences, 53
inverse Fourier transform, 48
square-summability for the ideal lowpass filter,

51–52
round-off noise in digital filters, effects of, 436–459
stability, 22–23

testing for, 23
structures for, 374–492
symmetric properties of Fourier transform, 55–57

conjugate-antisymmetric sequence, 55–56
conjugate-symmetric sequence, 55–56
even function, 55
even sequence, 54
illustration of, 56–57
odd function, 55
odd sequence, 54

time-invariant systems, 20–21
accumulator as, 21
compressor system, 21

transposed forms, 397–401
Doppler frequency, 834–835
Doppler radar:

defined, 793
signals, 835–836

Downsampling, 180–182
with aliasing, 181–184
defined, 180
frequency-domain illustration of, 181–182
with prefiltering to avoid aliasing, 183

1098 Index

Duality:
discrete Fourier series, 627, 629–630, 650–652
discrete Fourier transform (DFT), 650–652

Echo detection, and cepstrum, 982
Eigenfunctions, 40–45

for linear time-invariant (LTI) systems, 40–46, 61
Eigenvalues, 40–41, See also Frequency response of
Elliptic filter design, 508–526, 581
Energy compaction property of the DCT-2, 679–682
Energy density spectrum, 60
Equiripple approximations, 560
Even function, 55–56
Even sequence, 54–55
Even symmetry, 673
Expander (sampling rate), 184
Exponential multiplication property, z-transform,

126–127
Exponential sequences, 13–14, 947
External points, 558
Extraripple case, 561
Extremals, 558

Fast Fourier transform (FFT) algorithms, 3–4, 6–7,
660, 671, 716

decimation-in-frequency FFT algorithms, 737–743
decimation-in-time FFT algorithms, 723–737
finite register length, effects of, 754–762
general FFT algorithms, 745–748

FFT, See Fast Fourier transform (FFT) algorithms
FFTW (“Fastest Fourier Transform in the West”)

algorithm, 748
Filter bank interpretation, of time-dependent

Fourier transform, 826–829
Filter banks:

analyzer-synthesizer, 266
multirate, 201–205

alias cancellation condition, 203
quadrature mirror filters, 203

Filter design:
bilinear transformation, 504–508
Butterworth filter, 508–526

bilinear transformation of, 509–513
Chebyshev filter, 508–526
elliptic filters, 508–526
FIR filters, 578

design by windowing, 533–545
FIR equiripple approximation examples,

570–577
optimal type I lowpass filters, 559–564

optimal type II lowpass filters, 565–566
optimum approximations of, 554–559
optimum lowpass FIR filter characteristics,

568–570
Parks–McClellan algorithm, 566–568

IIR filters, 578
design comparisons, 513–519
design example for comparison with FIR

designs, 519–526
design examples, 509–526

by impulse invariance, 497–504
lowpass IIR filters, frequency transformations of,

526–532
specifications, 494–496
stages of, 494
techniques, 493–622
upsampling filter, 579–582

Filters, 493
Financial engineering, defined, 3
Finite-energy deterministic signals, all-pole

modeling of, 896–897
Finite impulse response (FIR) systems, 493
Finite-length sequences, 946

convolution of, 131
sufficiency theorems for, 949–954

Finite-length truncated exponential sequence, 109
Finite-precision numerical effects, 415–421

number representations, 415–419
quantization in implementing systems, 419–421

Finite register length, effects of, 754–762
FIR equiripple approximation, examples of, 570–577

bandpass filter, 576–577
compensation for zero-order hold, 571–575
lowpass filter, 570–571

FIR filters:
design by windowing, 533–545

incorporation of generalized linear phase,
538–541

Kaiser window filter design method, 541–553
properties of commonly used windows, 535–538

optimum approximations of, 554–559
FIR lattice filters, 406–412
FIR linear-phase systems:

examples of, 330–331
locations of zeros for, 335–338
relation to minimum-phase systems, 338–340
type I FIR linear-phase systems, 329

example, 331–332
type II FIR linear-phase systems, 330

example, 332–333

Index 1099

type III FIR linear-phase systems, 330
example, 333–334

type IV FIR linear-phase systems, 330
example, 335

FIR systems:
basic network structures for, 401–405

cascade form structures, 403
direct-form structures, 401–402

coefficient quantization, effects of, 429–431
First backward difference, 93
Fixed-point realizations of IIR digital filters,

zero-input limit cycles in, 459–463
Floating-point arithmetic, 458
Floating-point operations (FLOPS), 747–748
Floating-point realizations of discrete-time systems,

458–459
Floating-point representations, 419
Flow graph:

reversal, 397
transposition of, 397–401

Formants, 830, 1024
Forward difference, 33
Forward difference systems, 22

noncausal, 34–35
Forward prediction error, 922
Fourier analysis of nonstationary signals:

examples of, 829–836
radar signals, 834–836
speech signals, 830–834

Fourier analysis of signals using DFT, 792–796
basic steps, 793
DFT analysis of sinusoidal signals, 797–810

effect of spectral sampling, 801–810
effect of windowing, 797–800
window properties, 800–801

relationship between DFT values, 796
Fourier analysis of sinusoidal signals:

effect of windowing on, 798–800
Fourier analysis of stationary random signals,

836–849
computation of average periodograms using the

DFT, 845
periodogram, 837–843
periodogram analysis, example of, 845–849
periodogram averaging, 843–845

Fourier transform:
of complex exponential sequences, 53–54
of a constant, 52–53

convolution theorem, 60–61
differentiation in frequency theorem, 59
linearity of, 59
magnitude of, 49
modulation or windowing theorem, 61–62
of one period, relationship between Fourier series

coefficients and, 637–638
pairs, 62
Parseval’s theorem for, 60
of a periodic discrete-time impulse train, 635
of periodic signals, 633–638
phase of, 49
sampling, 638–641
symmetry properties of, 54–58
theorems, 58–64
time reversal theorem, 59
time shifting and frequency shifting theorem, 59
of a typical window sequence, 795

Fourier transforms:
defined, 49
discrete-time (DTFT), 49fn
inverse, 48–49
representation of sequences by, 48–54

Frequency, 14
Frequency-division multiplexing (FDM), 266
Frequency-domain representation:

of discrete-time signals/systems, 40–48
of sampling, 154–157

Frequency estimation:
oversampling and linear interpolation for,

809–810
Frequency response, 40–43

of antialiasing filter, 793
defined, 40–41
determining the impulse response from, 63
of the ideal delay system, 41
of linear time-invariant (LTI) systems, 275–283

effects of group delay and attenuation, 278–283
frequency response phase and group delay,

275–278
of the moving-average system, 45–46
for rational system functions, 290–301

examples with multiple poles and zeros, 296–301
first-order systems, 292–296
second-order FIR system, 298
second-order IIR system, 296–298
third-order IIR system, 299–301

Frequency-response compensation of
non-minimum-phase systems, 313–318

1100 Index

Frequency-sampling filters, 480, 487
Frequency-sampling systems, 396
Frequency-selective filters, 493, See also Filter design

obtaining from a lowpass discrete-time filter, 527
Frequency shifting, 59
Frequency warping, and bilinear transformation of,

506–507
Fricative sounds, 830, 1024

Gain, 275
Generalized linear phase, linear systems with,

326–328
examples of, 327–328

Gibbs phenomenon, 52, 534
Goertzel algorithm, 717, 719–722

Hamming windows, 280fn, 536–539, 823–824,
,862–863

Hann windows, 536–539, 823–824
Highpass filter, transformation of a lowpass filter to,

530–532
Hilbert transform relations, 942–979

for complex sequences, 956–969
defined, 943
finite-length sequences, 946

sufficiency theorems for, 949–954
between magnitude and phase, 955
Poisson’s formulas, 943
real- and imaginary-part sufficiency of the Fourier

transform for causal sequences, 944–949
relationships between magnitude and phase,

955–956
Hilbert transform relationships, 942, 969

discrete, 948–949
Hilbert transformer, 958

bandpass sampling, 966–969
bandpass signals, representation of, 963–966
design of, 960–963
impulse response of, 960
Kaiser window design of, 960–963

Homogeneity property, 19
Homogeneous difference equation, 38
Homogeneous solution, 38
Homomorphic deconvolution, 980, 1026

of speech, example of, 1028–1030
Homomorphic systems, 980

Ideal 90-degree phase shifter, 602, 958–959
Ideal continuous-to-discrete-time (C/D) converter,

154, 205

Ideal D/C converter, 221
Ideal delay impulse response, 32
Ideal delay system, 17

frequency response of, 41–43
Ideal discrete-to-continuous (D/C) converter, 205
Ideal lowpass filter, square-summability for, 51–52
IIR digital filters, zero-input limit cycles in

fixed-point realizations of, 459–463
IIR systems:

basic structures for, 388–397
cascade form structures, 390–393
coefficient quantization, effects of, 422–423
direct forms structures, 388–390
feedback in, 395–397
lattice implementation of, 414
parallel form structures, 393–395
scaling in fixed-point implementations of, 445–448

Impulse invariance:
basis for, 504
with a Butterworth filter, 500–504
design procedure, 504
filter design by, 497–504

Impulse response:
of accumulator, 33
determining for a difference equation, 64
determining from the frequency response, 63
for rational system functions, 288–290

Impulse sequence, 13
In-place computations:

decimation-in-frequency FFT algorithms, 741
decimation-in-time FFT algorithms, 731–734
defined, 732

Indexing, discrete Fourier transform (DFT), 743–745
Infinite-duration impulse response (IIR) systems, 33
Infinite impulse response (IIR) systems, 493
Initial-rest conditions, 39
Initial value theorem, 151

for right-sided sequences, 1037
Inspection method, inverse z-transform, 116
Instability, testing for, 23
Instantaneous frequency, 812
Integer factor:

increasing sampling rate by, 184–187
reducing sampling rate by, 180–184

Integrator, 589
Interpolated FIR filter, defined, 196
Interpolation, 187–190

defined, 185

Index 1101

Interpolation filters, 187–190
polyphase implementation of, 200–201

Interpolator, 187–190
defined, 185
multistage, 195–197

Inverse Fourier transforms, 48–49, 63
Inverse systems, 35, 286–288

accumulator, 35
defined, 33
for first-order system, 287
inverse for system with a zero in the ROC, 288

Inverse z-transform, 115–124
inspection method, 116
inverse by partial fractions, 120–121
partial fraction expansion, 116–117
power series expansion, 122–124
second-order z-transform, 118–120

JPEG (Joint Photographic Expert Group), 1fn

k-parameters, 406, 920
direct computation of, 925–926

Kaiser window, 800–801, 823
design, 581
DFT analysis of sinusoidal signals using, 806–808
and zero-padding, DFT analysis with, 808–809

Kaiser window design, of Hilbert transformers,
960–962

Kaiser window filter design method, 541–553
examples of FIR filter design by, 545–553

discrete-time differentiators, 550–553
highpass filter, 547–550
lowpass filter, 545–547

relationship of the Kaiser window to other
windows, 544–545

LabView, 3, 509
Lattice filters, 405–415, 920–926

all-pole lattice structure, 412–414
all-pole model lattice network, 923–924
direct computation of k-parameters, 925–926
FIR, 406–412
generalization of lattice systems, 415
lattice implementation of an IIR system, 414
prediction error lattice network, 921–923

Lattice k-to-α algorithm, 921
Lattice systems:

generalization of, 415
Laurent series, 102
Leakage, 800

Least-squares approximation, 892
all-pole modeling, 892

Least-squares inverse model, 892–894
all-pole modeling, 892–894

Left-sided exponential sequence, 104–105
Levinson–Durbin algorithm, derivation of, 917–921,

926
Levinson–Durbin recursion, 916–917, 923
Limit cycles:

avoiding, 463
defined, 667
owing to overflow, 462–463
owing to round-off and truncation, 460–462

Limit cycles, defined, 461
Linear chirp signal, of a time-dependent Fourier

transform, 811–814
Linear constant-coefficient difference equations,

35–41
difference equation representation of, 36

of the moving-average system, 37
homogeneous difference equation, 38
systems characterized by, 283–290

impulse response for rational system functions,
288–290

inverse systems, 286–288
second-order system, 284–285
stability and causality, 285–286

Linear convolution, 660–672
with aliasing, circular convolution as, 661–667
of two finite-length sequences, 661

Linear interpolation, 187–190
Linear phase:

causal generalized linear-phase systems, 328–338
generalized, 326–338
ideal lowpass with, 324–326
systems with, 322–326

Linear-phase filters, 345
Linear-phase FIR systems, structures for, 403–405
Linear-phase lowpass filters, and windowing,

540–541
Linear prediction formulation, of all-pole modeling,

895
Linear predictive analysis, 892
Linear predictive coding (LPC), 4, 892fn
Linear predictor, 895
Linear quantizers, 211fn
Linear systems, 19–20, 326

accumulator system, 19–20
nonlinear system, 20

1102 Index

Linear time-invariant (LTI) systems, 4, 23–35
all-pass systems, 305–310

first- and second-order, 307–309
cascade combination of, 31
convolution operation, 30
convolution sum, 24–26

analytical evaluation of, 27–29
eigenfunctions for, 40–46
FIR linear-phase systems, relation to, 338–340
frequency response for rational system functions,

290–301
frequency response of, 275–283
linear constant-coefficient difference equations,

35–40
systems characterized by, 283–290

linear systems with generalized linear phase,
322–340

causal generalized linear-phase systems, 328–338
generalized linear phase, 326–328
systems with linear phase, 322–326

minimum-phase systems, 311–322
decomposition, 311–313
relation of FIR linear-phase systems to, 338–340

non-minimum-phase systems, frequency response
compensation of, 313–318

parallel combination of, 31
properties of, 30–35
relationship between magnitude and phase,

301–305
sinusoidal response of, 42
suddenly applied complex exponential inputs,

46–48
system function, 115, 132
transform analysis of, 274–373
z-transform and, 131–134

Linearity:
discrete Fourier series (DFS), 647–648
discrete Fourier transform (DFT), 647–648
of Fourier transform, 59
z-transform, 124–125

Linearity property, z-transform, 124–125
Long division, power series expansion by, 119
Lowpass filter:

and FIR equiripple approximation, 570–571
tolerance scheme, 495
transformation to a highpass filter, 530–532

Lowpass IIR filters, frequency transformations,
526–532

Magnitude:
of Fourier transform, 49
of frequency response, 275, 281
relationship between phase and, 301–305

Magnitude response, 275
Magnitude spectrum, 915
Magnitude-squared function, 291, 305, 311, 501,

510–511, 513, 1020
Mantissa, 419, 458
Mason’s gain formula of signal flow graph theory,

397fn
Matched filter, 79
Mathematica, 3
MATLAB, 3, 283, 509, 579
Maximally decimated filter banks, 202fn
Maximum energy-delay systems, 320
Maximum-phase systems, 320
Memoryless systems, 18–19
Microelectronic mechanical systems (MEMS), 8
Microelectronics engineers, and digital signal

processing, 8
Minimax criterion, 557
Minimum energy-delay systems, 320
Minimum group-delay property, 319
Minimum mean-squared error, 898
Minimum-phase/allpass homomorphic

deconvolution, 1003–1004
Minimum-phase echo system, complex cepstrum of,

989–990
Minimum phase-lag system, 318
Minimum-phase LTI filter, 349
Minimum-phase/maximum-phase homomorphic

deconvolution, 1004–1005
Minimum-phase systems, 311–322

decomposition, 311–313
defined, 311
frequency-response compensation of

non-minimum-phase systems, 313–318
properties of, 318–322

minimum energy-delay property, 319–322
minimum group-delay property, 319
minimum phase-lag property, 318–319

Model order, 905–907
selection, 906–907

Modified periodogram, 838
Modulation theorem, 61–62
Moore’s Law, 2
Moving average, 18, 31–32
Moving-average (MA) linear random process, 887

Index 1103

Moving-average system, 40
difference equation representation of, 37
frequency response of, 45–46
with noninteger delay, 177–179

MP3 audio coding, 825
MPEG-II audio coding standard, 828
MPEG (Moving Picture Expert Group), 1fn
Multidimensional signal processing, 4
Multirate filter banks, 201–205

alias cancellation condition, 203
quadrature mirror filters, 203

Multirate signal processing, 194–205
compressor/expander, interchange of filtering

with, 194–195
defined, 194
interpolation filters, polyphase implementation

of, 200–201
multirate filter banks, 201–205
multistage decimation and interpolation, 195–197
polyphase decompositions, 197–199
polyphase implementation of decimation filters,

199–200
Multistage noise shaping (MASH), 233, 272

N -point DFT, 723fn
Narrowband communication, and analytic signals,

963
Narrowband time-dependent Fourier analysis, 832
Networking, 480
Networks, use of term, 375fn
90-degree phase shifter, ideal, 958–959
90-degree phase splitters, 589
Noise shaping:

in A/D conversion, 224–234
in analog-to-digital (A/D) conversion, 224–236
in D/A conversion, 234–236
multistage noise shaping (MASH), 233, 272

Noise-shaping quantizer, 220–221
Non-minimum-phase systems, frequency-response

compensation of, 313–318
Non-overlapping regions of convergence (ROC),

113
Nonanticipative system, 22
Noncausal window, 816
Noncomputable network, 396–397
Noninteger factor, changing sampling rate by,

190–193
Nonlinear systems, 20
nth-order Chebyshev polynomial, 556fn

Number-theoretic transforms (NTTs), 789
Nyquist frequency, 160
Nyquist rate, 160
Nyquist-Shannon sampling theorem, 160, 236

Odd function, 55–56
Odd sequence, 54–55
Offset binary coding scheme, 212
One-sided Fourier transform, decomposition of, 958
One-sided z-transform, 100, 135
One’s complement, 415
Optimum lowpass FIR filter, characteristics of,

568–570
Overflow, 416
Overflow oscillations:

defined, 462
in second-order system, 462–463

Overlap-add method, 670, 777, 825, 826, 828
Overlap-save method, 671, 777
Overloaded quantizers, 214
Oversampling:

in A/D conversion, 224–234
in analog-to-digital (A/D) conversion, 224–236
in D/A conversion, 234–236
and linear interpolation for frequency estimation,

809–810
oversampled A/D conversion with direct

quantization, 225–229
Oversampling ratio, 225

Parallel-form structures, 393–395
illustration of, 394–395

Parametric signal modeling, 890–941
all-pole modeling of signals, 891–895

autocorrelation matching property, 898
determination of the gain parameter G, 899–900
of finite-energy deterministic signals, 896–897
least-squares approximation, 892
least-squares inverse model, 892–894
linear prediction, 892
linear prediction formulation of, 895
linear predictive analysis, 892
minimum mean-squared error, 898
random signal modeling, 897

all-pole spectrum analysis, 907–915
pole locations, 911–913
sinusoidal signals, 913–915
speech signals, 908–911

applications, 891

1104 Index

Parametric signal modeling, (continued)
autocorrelation normal equations:

Levinson–Durbin algorithm, derivation of,
917–920

Levinson–Durbin recursion, 916–917
solutions of, 915–919

defined, 890
deterministic and random signal models, 896–900
estimation of correlation functions, 900–905

autocorrelation method, 900–903
comparison of methods, 904–905
covariance method, 903–904
equations for predictor coefficients, 905
prediction error, 904
stability of the model system, 905

lattice filters, 920–926
all-pole model lattice network, 923–924
direct computation of k-parameters, 925–926
prediction error lattice network, 921–923

model order, 905–907
selection, 906–907

PARCOR coefficient, 916fn, 925
Parks–McClellan algorithm, 494, 566–568, 568, 571,

579, 963
Parseval’s theorem, 58, 60, 96, 441, 446, 679, 707, 908
Partial energy of an impulse response, 319
Partial fraction expansion, inverse z-transform,

116–117, 120–121
Periodic conjugate-antisymmetric components, 654
Periodic conjugate-symmetric components, 654
Periodic convolution, 61

discrete Fourier series, 630–633
Periodic discrete-time sinusoids, 15
Periodic even components, 654
Periodic impulse train, 1026
Periodic odd components, 654
Periodic sampling, 153–156, 236
Periodic sequence, 14–15, 950, 954
Periodogram, 837–843, 864

computation of average periodograms using the
DFT, 845

defined, 838
modified, 838
periodogram analysis, example of, 837, 845–849
periodogram averaging, 843–845
properties of, 839–843
smoothed, 851

Periodogram analysis, 837

Phase:
defined, 14
relationship between phase magnitude and,

301–305
Phase distortions, 275
Phase-lag function, 318
Phase response, 275
Plosive sounds, 830, 1024
Poisson’s formulas, 943
Pole locations, all-pole spectrum analysis, 911–913
Poles of quantized second-order sections, 427–429
Polynomials, and alternation theorem, 558
Polyphase components of h[n], 197
Polyphase implementation of decimation filters,

199–200
Power density spectrum, 68
Power series expansion, 122–124

finite-length sequence, 122
inverse transform by, 123
by long division, 123

Power spectral density, 225–228, 231–232, 236
Power spectrum of quantization noise estimates,

855–860
Power spectrum of speech estimates, 860–862
Predictable random sinusoidal signals, 936fn
Prediction coefficients, 895
Prediction error residual, 895
Prime factor algorithms, 747, 749

Quadrature mirror filters, 203
Quantization errors, 416

analog-to-digital (A/D) conversion:
analysis of, 214–220
for a sinusoidal signal, 215–217

analysis of, 214–215
defined, 214
for a sinusoidal signal, 215–217

Quantization errors, analysis, 214–220
Quantization noise, measurements of, 217–218
Quantizers, 210–213

linear, 211fn
overloaded, 214

Quasiperiodic voiced segments, 832

Radar signals, time-dependent Fourier analysis of,
834–836

Radix-m FFT algorithm, 783
Random noise, 1026

Index 1105

Random process, 65
autoregressive (AR) linear random process, 887
autoregressive moving-average (ARMA) linear

random process, 887
moving-average (MA) linear random process, 887

Random signal modeling, 897
Random signals, 65–70
Random sinusoidal signals, 936
Range, 834
Real cepstrum, 984fn
Rectangular pulse, discrete Fourier series of,

644–646
Rectangular windows, 535–537, 539
Recursive computation, 38
Reflection coefficients, 916fn
Region of convergence (ROC), 101–102, 285–286

determining, 285–286
non-overlapping, 113
properties of for z-transform, 110–115
stability, causality and, 115

Resampling, 179–180
consistent, 250
defined, 179

Residual, 895, 905
Right-sided exponential sequence, 103–104
Rotation of a sequence, 650
Rotations, 782
Round-off noise in digital filters:

analysis of the direct-form IIR structures, 436–445
cascade IIR structure, analysis of, 448–453
direct-form FIR systems, analysis of, 453–458
effects of, 436–459
first-order system, 441–442
interaction between scaling and round-off noise,

448
scaling in fixed-point implementations of IIR

systems, 445–448
second-order system, 442

Sample mean, 837
Sample variance, 837
Sampled-data Delta-Sigma modulator, 220–221
Sampling:

frequency-domain representation of, 156–163
in time and frequency, 819–822

Sampling frequency/Nyquist frequency, 154
Sampling period, 154
Sampling rate:

changing by a noninteger factor, 190–193

changing using discrete-time signals, 179–193
increasing by an integer factor, 184–187
reduction by an integer factor, 180–184

Sampling rate compressor, 180
Sampling rate expander, 184
Saturation overflow, 416
Scaling, interaction between round-off noise and,

448
Scaling property, 19
Second-order z-transform, 118–120
Seismic data analysis, 4

and multidimensional signal processing
techniques, 4

Sequence value, 723fn
Sequences:

autocorrelation, 67–68
basic, 12–15
causal, 32
complex exponential, 14–15, 53–54
conjugate-antisymmetric, 54–55
conjugate-symmetric, 54–55
deterministic autocorrelation, 67
even, 54–55
exponential, 13–14, 947
finite-length, 946, 949–954

convolution of, 131
impulse, 13
left-sided exponential, 104–105
odd, 54–55
periodic, 14–15
right-sided exponential, 103–104
shifted exponential, 126
sinusoidal, 14
time-reversed exponential, 129
unit sample, 12–13
unit step, 12–13

Sharpening, 609
Shift-invariant system, See Time-invariant systems
Shifted exponential sequence, 126
Short-time Fourier transform, See Time-dependent

Fourier transform
Sifting property of the impulse function, 154
Sign and magnitude, 415
Sign bit, 415
Signal flow graph representation of linear

constant-coefficient difference equations,
382–388

Signal interpretation, 3
Signal modeling, 4–5

1106 Index

Signal predictability, 3
Signal processing, 2

based on time-dependent Fourier transform,
825–826

historical perspective, 5–8
multidimensional, 4
problems/solutions, 4

Signal-processing systems, classification of, 10
Signal-to-noise ratio (SNR), 3
Signal-to-quantization-noise ratio, 219–220
Signals:

defined, 9
mathematical representation of, 9

Simulink, 3
Sink nodes, 383
Sinusoidal signals:

all-pole spectrum analysis, 913–915
defined, 218
quantization error for, 215–217
signal-to-quantization-noise ratio, 219–220
for uniform quantizers, 220

Smoothed periodogram, 851
Source nodes, 383
Specifications, filter design, 494–496
Spectral analysis, 4
Spectral sampling, effect of, 801–810

illustration, 803–805
Spectrograms, 814–815

plotting, 832
wideband, 832

Spectrum analysis of random signals using
autocorrelation sequence estimates, 849–862

correlation and power spectrum estimates,
853–855

power spectrum of quantization noise estimates,
855–860

power spectrum of speech estimates, 860–862
Speech model, 1024–1027

speech model, estimating the parameters of,
1030–1032

vocal tract, 1025
voiced sounds, 1024

Speech signals:
all-pole spectrum analysis, 908–911
time-dependent Fourier analysis of, 830–834

Split-radix FFT (SRFFT), 781
Square summability, 51, 65

for the ideal lowpass filter, 51–52
Stability, 22–23

testing for, 23
Stationary, use of term, 66fn
Steady-state response, 46
Suddenly-applied exponential:

absolute summability for, 51–52
inputs, 46–48

Summability:
absolute, 50–52, 65
square-, 51, 65

for the ideal lowpass filter, 51–52
Superposition, principle of, 19, 20, 23, 980,

1002–1003
Surface acoustic wave (SAW), 753
Switched-capacitor technologies, 2
Symmetry properties:

discrete Fourier series, 630, 653–654
discrete Fourier transform (DFT), 653–654
Fourier transform, 54–57

illustration of, 56–57
System function, 274–275

determination of, from a flow graph, 386–387
linear time-invariant (LTI) systems, 115, 132

Tapped delay line structure, 401
Telecommunications, and discrete-time signal

processing, 8
Time and frequency, sampling in, 819–822
Time-dependent Fourier analysis of radar signals,

834–836
clutter, 835
Doppler radar signals, 835–836

Time-dependent Fourier synthesis, 822, 825
Time-dependent Fourier transform, 792, 811–829

defined, 811
effect of the window, 817–818
filter bank interpretation, 826–829

of X[n, λ], 816–817
invertibility of X[n, λ], 815–816

of a linear chirp signal, 811–814
overlap-add method of reconstruction, 822–825
sampling in time and frequency, 819–822
signal processing based on, 825–826
spectrogram, 814–815

Time-dependent Fourier transform of speech,
spectral display of, 832–834

Time-division multiplexing (TDM), 266
Time invariance, 24
Time-invariant systems, 20–21

accumulator as, 21
accumulators as, 21
compressor system, 21

Index 1107

Time-reversal property, z-transform, 129
time-reversed exponential sequence, 129

Time-shifting property, z-transform, 125–126
shifted exponential sequence, 126

Tolerance schemes, 494
Transform analysis of linear time-invariant (LTI)

systems, 274–373
Transposed form, 397–401

for a basic second-order section, 398–399
for a first-order system with no zeros, 397–398
flow graph reversal, 397
transposition, 397–401

Transposition, 397–401
Transversal filter structure, 401
Trapezoidal approximation, 606
Twicing, 609
“Twiddle factors,” 731
Two-port flow graph, 405
Two-sided exponential sequence, 107–108, 135
Two-sided z-transform, 100
Two’s complement, 415
Type-1 periodic symmetry, 675
Type-2 periodic symmetry, 675
Type I FIR linear-phase systems, 329

example, 331–332
Type II FIR linear-phase systems, 330

example, 332–333
Type III FIR linear-phase systems, 330

example, 333–334
Type IV FIR linear-phase systems, 330

example, 335

Unbiased estimators, 837
Unilateral z-transform, 100, 135–137

of an impulse, 135
nonzero initial conditions, effect of, 136–137

Unit circle, 100–101
Unit impulse function, 154
Unit sample sequence, 12–13
Unit step sequence, 12–13
Unitary transforms, 676
Unquantized filter, 423
Unvoiced segments, 832
Unwrapped phase, 349
Upsampling filter design, 579–582
Vocal tract, 830, 1025–1026
Voiced segments, 832
Voiced sounds, 830, 1024

Welch estimate, 862
White noise, 69, 443
Whitening filter, 897
Whitening procedure, 366
Wideband spectrogram, 832
Window:

method, 530
noncausal, 816

Windowing, 792
Bartlett (triangular) windows, 536–539
Blackman windows, 536–539
commonly used windows, 535–536
design of FIR filters by, 533–545
and FIR filters, 533–545

incorporation of generalized linear phase,
538–541

Kaiser window filter design method, 541–553
properties of commonly used windows, 535–538

Hamming windows, 536–539
Hann windows, 536–539
rectangular windows, 535–537, 539
theorem, 61–62

Winograd Fourier transform algorithm (WFTA), 749

Yule–Walker equations, 896, 898, 916

z-transform, 99–152, See also Inverse z-transform
bilateral, 100, 135
common pairs, 110
defined, 99–100
finite-length truncated exponential sequence, 109
infinite sum, 103
inverse, 115–124

inspection method, 116
inverse by partial fractions, 120–121
partial fraction expansion, 116–117
power series expansion, 122–124

second-order z-transform, 118–120
left-sided exponential sequence, 104–105
LTI systems and, 131–134
one-sided, 100, 135
properties, 124–131

conjugation property, 129
convolution property, 130–131
differentiation property, 127–129
exponential multiplication property, 126–127
linearity property, 124–125
summary of, 131
time-reversal property, 129
time-shifting property, 125–126

1108 Index

z-transform (continued)
region of convergence (ROC), 101–102

properties of, 110–115
right-sided exponential sequence, 103–104
sum of two exponential sequences, 105–107
two-sided, 100
two-sided exponential sequence, 107–108
uniform convergence of, 102
unilateral, 100, 135–137

of an impulse, 135
nonzero initial conditions, effect of, 136–137

unit circle, 100–101

z-transform operator Z{·}, 100
Zero-input limit cycles:

avoiding limit cycles, 463
in fixed-point realizations of IIR digital filters,

459–463
limit cycles owing to overflow, 462–463
limit cycles owing to round-off and truncation,

460–462
Zero-order hold, 222–223

compensation for, 571–575
Zero-padding, 667

	Cover
	Contents
	Preface
	The Companion Website
	The Cover
	Acknowledgments
	1 Introduction
	2 Discrete-Time Signals and Systems
	2.0 Introduction
	2.1 Discrete-Time Signals
	2.2 Discrete-Time Systems
	2.2.1 Memoryless Systems
	2.2.2 Linear Systems
	2.2.3 Time-Invariant Systems
	2.2.4 Causality
	2.2.5 Stability

	2.3 LTI Systems
	2.4 Properties of Linear Time-Invariant Systems
	2.5 Linear Constant-Coefficient Difference Equations
	2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems
	2.6.1 Eigenfunctions for Linear Time-Invariant Systems
	2.6.2 Suddenly Applied Complex Exponential Inputs

	2.7 Representation of Sequences by Fourier Transforms
	2.8 Symmetry Properties of the Fourier Transform
	2.9 Fourier Transform Theorems
	2.9.1 Linearity of the Fourier Transform
	2.9.2 Time Shifting and Frequency Shifting Theorem
	2.9.3 Time Reversal Theorem
	2.9.4 Differentiation in Frequency Theorem
	2.9.5 Parseval’s Theorem
	2.9.6 The Convolution Theorem
	2.9.7 The Modulation or Windowing Theorem

	2.10 Discrete-Time Random Signals
	2.11 Summary
	Problems

	3 The z-Transform
	3.0 Introduction
	3.1 z-Transform
	3.2 Properties of the ROC for the z-Transform
	3.3 The Inverse z-Transform
	3.3.1 Inspection Method
	3.3.2 Partial Fraction Expansion
	3.3.3 Power Series Expansion

	3.4 z-Transform Properties
	3.4.1 Linearity
	3.4.2 Time Shifting
	3.4.3 Multiplication by an Exponential Sequence
	3.4.4 Differentiation of X(z)
	3.4.5 Conjugation of a Complex Sequence
	3.4.6 Time Reversal
	3.4.7 Convolution of Sequences
	3.4.8 Summary of Some z-Transform Properties

	3.5 z-Transforms and LTI Systems
	3.6 The Unilateral z-Transform
	3.7 Summary
	Problems

	4 Sampling of Continuous-Time Signals
	4.0 Introduction
	4.1 Periodic Sampling
	4.2 Frequency-Domain Representation of Sampling
	4.3 Reconstruction of a Bandlimited Signal from Its Samples
	4.4 Discrete-Time Processing of Continuous-Time Signals
	4.4.1 Discrete-Time LTI Processing of Continuous-Time Signals
	4.4.2 Impulse Invariance

	4.5 Continuous-Time Processing of Discrete-Time Signals
	4.6 Changing the Sampling Rate Using Discrete-Time Processing
	4.6.1 Sampling Rate Reduction by an Integer Factor
	4.6.2 Increasing the Sampling Rate by an Integer Factor
	4.6.3 Simple and Practical Interpolation Filters
	4.6.4 Changing the Sampling Rate by a Noninteger Factor

	4.7 Multirate Signal Processing
	4.7.1 Interchange of Filtering with Compressor/Expander
	4.7.2 Multistage Decimation and Interpolation
	4.7.3 Polyphase Decompositions
	4.7.4 Polyphase Implementation of Decimation Filters
	4.7.5 Polyphase Implementation of Interpolation Filters
	4.7.6 Multirate Filter Banks

	4.8 Digital Processing of Analog Signals
	4.8.1 Prefiltering to Avoid Aliasing
	4.8.2 A/D Conversion
	4.8.3 Analysis of Quantization Errors
	4.8.4 D/A Conversion

	4.9 Oversampling and Noise Shaping in A/D and D/A Conversion
	4.9.1 Oversampled A/D Conversion with Direct Quantization
	4.9.2 Oversampled A/D Conversion with Noise Shaping
	4.9.3 Oversampling and Noise Shaping in D/A Conversion

	4.10 Summary
	Problems

	5 Transform Analysis of Linear Time-Invariant Systems
	5.0 Introduction
	5.1 The Frequency Response of LTI Systems
	5.1.1 Frequency Response Phase and Group Delay
	5.1.2 Illustration of Effects of Group Delay and Attenuation

	5.2 System Functions—Linear Constant-Coefficient Difference Equations
	5.2.1 Stability and Causality
	5.2.2 Inverse Systems
	5.2.3 Impulse Response for Rational System Functions

	5.3 Frequency Response for Rational System Functions
	5.3.1 Frequency Response of 1st-Order Systems
	5.3.2 Examples with Multiple Poles and Zeros

	5.4 Relationship between Magnitude and Phase
	5.5 All-Pass Systems
	5.6 Minimum-Phase Systems
	5.6.1 Minimum-Phase and All-Pass Decomposition
	5.6.2 Frequency-Response Compensation of Non-Minimum-Phase Systems
	5.6.3 Properties of Minimum-Phase Systems

	5.7 Linear Systems with Generalized Linear Phase
	5.7.1 Systems with Linear Phase
	5.7.2 Generalized Linear Phase
	5.7.3 Causal Generalized Linear-Phase Systems
	5.7.4 Relation of FIR Linear-Phase Systems to Minimum-Phase Systems

	5.8 Summary
	Problems

	6 Structures for Discrete-Time Systems
	6.0 Introduction
	6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations
	6.2 Signal Flow Graph Representation
	6.3 Basic Structures for IIR Systems
	6.3.1 Direct Forms
	6.3.2 Cascade Form
	6.3.3 Parallel Form
	6.3.4 Feedback in IIR Systems

	6.4 Transposed Forms
	6.5 Basic Network Structures for FIR Systems
	6.5.1 Direct Form
	6.5.2 Cascade Form
	6.5.3 Structures for Linear-Phase FIR Systems

	6.6 Lattice Filters
	6.6.1 FIR Lattice Filters
	6.6.2 All-Pole Lattice Structure
	6.6.3 Generalization of Lattice Systems

	6.7 Overview of Finite-Precision Numerical Effects
	6.7.1 Number Representations
	6.7.2 Quantization in Implementing Systems

	6.8 The Effects of Coefficient Quantization
	6.8.1 Effects of Coefficient Quantization in IIR Systems
	6.8.2 Example of Coefficient Quantization in an Elliptic Filter
	6.8.3 Poles of Quantized 2[sup(nd)]-Order Sections
	6.8.4 Effects of Coefficient Quantization in FIR Systems
	6.8.5 Example of Quantization of an Optimum FIR Filter
	6.8.6 Maintaining Linear Phase

	6.9 Effects of Round-off Noise in Digital Filters
	6.9.1 Analysis of the Direct Form IIR Structures
	6.9.2 Scaling in Fixed-Point Implementations of IIR Systems
	6.9.3 Example of Analysis of a Cascade IIR Structure
	6.9.4 Analysis of Direct-Form FIR Systems
	6.9.5 Floating-Point Realizations of Discrete-Time Systems

	6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters
	6.10.1 Limit Cycles Owing to Round-off and Truncation
	6.10.2 Limit Cycles Owing to Overflow
	6.10.3 Avoiding Limit Cycles

	6.11 Summary
	Problems

	7 Filter Design Techniques
	7.0 Introduction
	7.1 Filter Specifications
	7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters
	7.2.1 Filter Design by Impulse Invariance
	7.2.2 Bilinear Transformation

	7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters
	7.3.1 Examples of IIR Filter Design

	7.4 Frequency Transformations of Lowpass IIR Filters
	7.5 Design of FIR Filters by Windowing
	7.5.1 Properties of Commonly Used Windows
	7.5.2 Incorporation of Generalized Linear Phase
	7.5.3 The Kaiser Window Filter Design Method

	7.6 Examples of FIR Filter Design by the Kaiser Window Method
	7.6.1 Lowpass Filter
	7.6.2 Highpass Filter
	7.6.3 Discrete-Time Differentiators

	7.7 Optimum Approximations of FIR Filters
	7.7.1 Optimal Type I Lowpass Filters
	7.7.2 Optimal Type II Lowpass Filters
	7.7.3 The Parks–McClellan Algorithm
	7.7.4 Characteristics of Optimum FIR Filters

	7.8 Examples of FIR Equiripple Approximation
	7.8.1 Lowpass Filter
	7.8.2 Compensation for Zero-Order Hold
	7.8.3 Bandpass Filter

	7.9 Comments on IIR and FIR Discrete-Time Filters
	7.10 Design of an Upsampling Filter
	7.11 Summary
	Problems

	8 The Discrete Fourier Transform
	8.0 Introduction
	8.1 Representation of Periodic Sequences: The Discrete Fourier Series
	8.2 Properties of the DFS
	8.2.1 Linearity
	8.2.2 Shift of a Sequence
	8.2.3 Duality
	8.2.4 Symmetry Properties
	8.2.5 Periodic Convolution
	8.2.6 Summary of Properties of the DFS Representation of Periodic Sequences

	8.3 The Fourier Transform of Periodic Signals
	8.4 Sampling the Fourier Transform
	8.5 Fourier Representation of Finite-Duration Sequences
	8.6 Properties of the DFT
	8.6.1 Linearity
	8.6.2 Circular Shift of a Sequence
	8.6.3 Duality
	8.6.4 Symmetry Properties
	8.6.5 Circular Convolution
	8.6.6 Summary of Properties of the DFT

	8.7 Linear Convolution Using the DFT
	8.7.1 Linear Convolution of Two Finite-Length Sequences
	8.7.2 Circular Convolution as Linear Convolution with Aliasing
	8.7.3 Implementing Linear Time-Invariant Systems Using the DFT

	8.8 The Discrete Cosine Transform (DCT)
	8.8.1 Definitions of the DCT
	8.8.2 Definition of the DCT-1 and DCT-2
	8.8.3 Relationship between the DFT and the DCT-1
	8.8.4 Relationship between the DFT and the DCT-2
	8.8.5 Energy Compaction Property of the DCT-2
	8.8.6 Applications of the DCT

	8.9 Summary
	Problems

	9 Computation of the Discrete Fourier Transform
	9.0 Introduction
	9.1 Direct Computation of the Discrete Fourier Transform
	9.1.1 Direct Evaluation of the Definition of the DFT
	9.1.2 The Goertzel Algorithm
	9.1.3 Exploiting both Symmetry and Periodicity

	9.2 Decimation-in-Time FFT Algorithms
	9.2.1 Generalization and Programming the FFT
	9.2.2 In-Place Computations
	9.2.3 Alternative Forms

	9.3 Decimation-in-Frequency FFT Algorithms
	9.3.1 In-Place Computation
	9.3.2 Alternative Forms

	9.4 Practical Considerations
	9.4.1 Indexing
	9.4.2 Coefficients

	9.5 More General FFT Algorithms
	9.5.1 Algorithms for Composite Values of N
	9.5.2 Optimized FFT Algorithms

	9.6 Implementation of the DFT Using Convolution
	9.6.1 Overview of the Winograd Fourier Transform Algorithm
	9.6.2 The Chirp Transform Algorithm

	9.7 Effects of Finite Register Length
	9.8 Summary
	Problems

	10 Fourier Analysis of Signals Using the Discrete Fourier Transform
	10.0 Introduction
	10.1 Fourier Analysis of Signals Using the DFT
	10.2 DFT Analysis of Sinusoidal Signals
	10.2.1 The Effect of Windowing
	10.2.2 Properties of the Windows
	10.2.3 The Effect of Spectral Sampling

	10.3 The Time-Dependent Fourier Transform
	10.3.1 Invertibility of X[n,)
	10.3.2 Filter Bank Interpretation of X[n,)
	10.3.3 The Effect of the Window
	10.3.4 Sampling in Time and Frequency
	10.3.5 The Overlap–Add Method of Reconstruction
	10.3.6 Signal Processing Based on the Time-Dependent Fourier Transform
	10.3.7 Filter Bank Interpretation of the Time-Dependent Fourier Transform

	10.4 Examples of Fourier Analysis of Nonstationary Signals
	10.4.1 Time-Dependent Fourier Analysis of Speech Signals
	10.4.2 Time-Dependent Fourier Analysis of Radar Signals

	10.5 Fourier Analysis of Stationary Random Signals: the Periodogram
	10.5.1 The Periodogram
	10.5.2 Properties of the Periodogram
	10.5.3 Periodogram Averaging
	10.5.4 Computation of Average Periodograms Using the DFT
	10.5.5 An Example of Periodogram Analysis

	10.6 Spectrum Analysis of Random Signals
	10.6.1 Computing Correlation and Power Spectrum Estimates Using the DFT
	10.6.2 Estimating the Power Spectrum of Quantization Noise
	10.6.3 Estimating the Power Spectrum of Speech

	10.7 Summary
	Problems

	11 Parametric Signal Modeling
	11.0 Introduction
	11.1 All-Pole Modeling of Signals
	11.1.1 Least-Squares Approximation
	11.1.2 Least-Squares Inverse Model
	11.1.3 Linear Prediction Formulation of All-Pole Modeling

	11.2 Deterministic and Random Signal Models
	11.2.1 All-Pole Modeling of Finite-Energy Deterministic Signals
	11.2.2 Modeling of Random Signals
	11.2.3 Minimum Mean-Squared Error
	11.2.4 Autocorrelation Matching Property
	11.2.5 Determination of the Gain Parameter G

	11.3 Estimation of the Correlation Functions
	11.3.1 The Autocorrelation Method
	11.3.2 The Covariance Method
	11.3.3 Comparison of Methods

	11.4 Model Order
	11.5 All-Pole Spectrum Analysis
	11.5.1 All-Pole Analysis of Speech Signals
	11.5.2 Pole Locations
	11.5.3 All-Pole Modeling of Sinusoidal Signals

	11.6 Solution of the Autocorrelation Normal Equations
	11.6.1 The Levinson–Durbin Recursion
	11.6.2 Derivation of the Levinson–Durbin Algorithm

	11.7 Lattice Filters
	11.7.1 Prediction Error Lattice Network
	11.7.2 All-Pole Model Lattice Network
	11.7.3 Direct Computation of the k-Parameters

	11.8 Summary
	Problems

	12 Discrete Hilbert Transforms
	12.0 Introduction
	12.1 Real- and Imaginary-Part Sufficiency of the Fourier Transform
	12.2 Sufficiency Theorems for Finite-Length Sequences
	12.3 Relationships Between Magnitude and Phase
	12.4 Hilbert Transform Relations for Complex Sequences
	12.4.1 Design of Hilbert Transformers
	12.4.2 Representation of Bandpass Signals
	12.4.3 Bandpass Sampling

	12.5 Summary
	Problems

	13 Cepstrum Analysis and Homomorphic Deconvolution
	13.0 Introduction
	13.1 Definition of the Cepstrum
	13.2 Definition of the Complex Cepstrum
	13.3 Properties of the Complex Logarithm
	13.4 Alternative Expressions for the Complex Cepstrum
	13.5 Properties of the Complex Cepstrum
	13.5.1 Exponential Sequences
	13.5.2 Minimum-Phase and Maximum-Phase Sequences
	13.5.3 Relationship Between the Real Cepstrum and the Complex Cepstrum

	13.6 Computation of the Complex Cepstrum
	13.6.1 Phase Unwrapping
	13.6.2 Computation of the Complex Cepstrum Using the Logarithmic Derivative
	13.6.3 Minimum-Phase Realizations for Minimum-Phase Sequences
	13.6.4 Recursive Computation of the Complex Cepstrum for Minimum- and Maximum-Phase Sequences
	13.6.5 The Use of Exponential Weighting

	13.7 Computation of the Complex Cepstrum Using Polynomial Roots
	13.8 Deconvolution Using the Complex Cepstrum
	13.8.1 Minimum-Phase/Allpass Homomorphic Deconvolution
	13.8.2 Minimum-Phase/Maximum-Phase Homomorphic Deconvolution

	13.9 The Complex Cepstrum for a Simple Multipath Model
	13.9.1 Computation of the Complex Cepstrum by z-Transform Analysis
	13.9.2 Computation of the Cepstrum Using the DFT
	13.9.3 Homomorphic Deconvolution for the Multipath Model
	13.9.4 Minimum-Phase Decomposition
	13.9.5 Generalizations

	13.10 Applications to Speech Processing
	13.10.1 The Speech Model
	13.10.2 Example of Homomorphic Deconvolution of Speech
	13.10.3 Estimating the Parameters of the Speech Model
	13.10.4 Applications

	13.11 Summary
	Problems

	A: Random Signals
	B: Continuous-Time Filters
	C: Answers to Selected Basic Problems
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

